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ABSTRACT
The cosmic rays non-resonant streaming instability is believed to be the source of
substantial magnetic field amplification. In this work we investigate the effects of the
ambient plasma temperature on the instability and derive analytical expressions of its
growth rate in the hot, demagnetized regime of interaction. To study its non-linear
evolution we perform hybrid-PIC simulations for a wide range of temperatures. We
find that in the cold limit about two-thirds of the cosmic rays drift kinetic energy
is converted into magnetic energy. Increasing the temperature of the ambient plasma
can substantially reduce the growth rate and the magnitude of the saturated magnetic
field.
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1 INTRODUCTION

The electromagnetic ion streaming instability occurs when a
background plasma is traversed by a population of energetic
ions with a drift velocity aligned with the ambient mag-
netic field. This situation can lead to exponentially grow-
ing magnetohydrodynamic-like waves, generated at the ex-
pense of the bulk kinetic energy of the streaming particles.
Depending on their drift velocity and velocity dispersion,
three distinct modes can be excited. In general they grow
for streaming velocities larger than the Alfvén speed, have
a growth time of the order of the ion cyclotron time, and
can potentially coexist and compete in their growth. The
right-hand resonant mode (RHR, following the nomencla-
ture of Gary et al. 1984) requires a small streaming and
thermal velocity and is characterized by magnetic fluctu-
ations with right-hand polarisation. The left-hand resonant
mode (LHR) requires low streaming velocity and large veloc-
ity dispersion (Kulsrud & Pearce 1969) and and is left-hand
polarized. The non-resonant mode (NR) is right-hand po-
larized, requires a large drift velocity and its growth is not
associated with cyclotron resonances as for the other two
modes. The non-resonant mode was first investigated in the
context of back-streaming ions from the Earth’s bow shock
to the foreshock region using a kinetic description (Sentman
et al. 1981, Winske & Leroy 1984), and was later derived
within a fluid framework and applied to the amplification of
magnetic field due to cosmic rays (Bell 2004).

? E-mail: alexis.marret@obspm.fr

Important progress have been made in the last decades
to determine whether supernova shocks are able to accelerate
cosmic rays up to PeV energy (Pelletier et al. 2006, Riquelme
& Spitkovsky 2009, Ohira et al. 2009, Bai et al. 2015, Casse
et al. 2018, Crumley et al. 2019). These studies highlight the
possible role of the NR mode to amplify the magnetic field
fluctuations at supernova shocks at a sufficiently high level
for first order Fermi acceleration to take place efficiently.
This is in contrast to the two resonant modes which are
limited to magnetic field amplification lower than the am-
bient magnetic field, insufficient to accelerate particles up
to PeV energies. However, potentially important damping
mechanisms related to the environment where the shock is
propagating may also need to be taken into account. Some
theoretical studies have started assessing the effects of the
ambient medium temperature (Zweibel & Everett 2010) and
collisions with neutrals (Reville et al. 2008), showing that
the growth of the NR instability may be reduced in hot
and/or collisional environments.

In this work, we focus on the NR mode and develop
the linear theory for the thermally modified instability in
the regime where the background protons population is hot
and demagnetized. Using hybrid-PIC simulations, we per-
form a parametric study of the dependency of the magnetic
field amplification and saturation over a wide range of back-
ground plasma temperature. We show that while the NR
mode can generate substantial magnetic field amplification,
increasing the background temperature may significantly re-
duce the growth rate and should be taken into account when
modelling cosmic rays acceleration.
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This paper is organized as follow: in Sec. 2, we first
use a simplified fluid approach to capture the fundamental
mechanisms driving the growth of the NR instability, and
derive the associated spatial and temporal scales. Using a
kinetic theoretical framework, we then review the growth
rate, real angular frequency and wave number predictions
for negligible to small background temperatures, and extend
the existing theory to obtain analytical expressions for a
hot, demagnetized background plasma. In Sec. 3, we present
the numerical method and the one-dimensional and two-
dimensional simulations results. We investigate the growth
rate, saturation level, spatial structure, density fluctuations,
background plasma heating, and cosmic rays scattering and
compare these results to theoretical expectations. Sec. 4 is
a summary of the results of this study, and a discussion of
possible implications for cosmic rays driven magnetic field
amplification scenario.

2 MODELLING THE NON-RESONANT MODE

We consider three populations: a fully ionized background
plasma (main protons and electrons, noted with the sub-
scripts ’m’ and ’e’) embedded in a zeroth order magnetic
field B0 = B0ex, and traversed by a population of protons
cosmic rays (noted with the subscript ’cr’) with a drift ve-
locity along B0. This plasma is taken to be quasi-neutral:
nm + ncr = ne, where nα is the density of the species α
and initially homogeneous. In order to be consistent with
the assumption of an initially homogeneous magnetic field,
the total initial current must be null. This is achieved by
considering a drift velocity for the electrons population rela-
tive to the main protons, in the same direction as the cosmic
rays such that:

ue =
ncr
ne

ucr (1)

A different way of compensating the current would be to
distinguish two electrons populations: one with the same
density as the main protons, and an additional population
with the same charge density as the cosmic rays and drift-
ing alongside them. Within the framework of kinetic theory,
Amato & Blasi 2009 showed that the dispersion relation of
the NR mode is only modified by a corrective term of the or-
der O(n2

cr/n
2
m) depending on the choice to compensate the

current.

2.1 Heuristic fluid approach

To describe the basic mechanism of the NR mode and es-
timate the characteristic spatial and temporal scales, and
the saturated magnetic field associated to the non-resonant
mode, we can use a non-relativistic fluid approach. We con-
sider the main protons and electrons as a single fluid with
negligible thermal velocity, and investigate the effects of the
cosmic rays on this system. Several studies of the instabil-
ity using this model have been done (Bell 2004, Zirakashvili
et al. 2008, Bai et al. 2015, Matthews et al. 2017, Mignone
et al. 2018), and we adopt a similar approach as a starting
point for our study.

The momentum conservation equation for the specie α,

obtained by integration of the Vlasov equation over velocity
space, is:

ρα
duα
dt

= −∇ ·Pα + nαqα(E + uα ×B) (2)

In this equation, ρα = nαmα is the mass density, uα is the
fluid velocity, Pα is the pressure tensor, and d

dt
= ∂

∂t
+uα ·∇

is the material derivative. The collisions have been neglected.
By considering non-relativistic velocities, the total current
can be expressed with Ampère’s law as:

∇×B = µ0e(nmum + ncrucr − neue) (3)

In this expression, e is the elementary charge and µ0 the
permeability of free space. Performing a summation of the
main protons and electrons momentum conservation equa-
tions and inserting Ampère’s law, one obtains:

ρ
du

dt
= −∇ ·P +

1

µ0
(∇×B)×B− encr(E + ucr ×B)

(4)

In Eq. 4, the background plasma is defined with ρ = ρe+ρm,
u = (ρeue + ρmum)/ρ and P = Pe + Pm. Note that this
plasma is negatively charged to ensure quasi-neutrality. In
the following calculation, we will consider ncr/nm � 1 such
that ne ≈ nm. The electric field results from the electron
Ohm’s law, neglecting the electron inertia as well as their
pressure. Furthermore, one neglects the Hall effect for spa-
tial scales larger than the protons inertial length, hence ob-
taining:

E = −(u +
ncr
nm

ucr)×B (5)

Neglecting the Hall effect does not hold when considering
demagnetized main protons in a collisionless plasma, where
the electrons and protons dynamic are not directly corre-
lated. This will be further investigated in Sec. 2.2.

In the following, we will use the reference frame of the
initially at rest background fluid. To simplify this heuristic
investigation of the instability and to highlight the destabi-
lizing effects of the magnetic force driving term−encrucr×B
in Eq. 4, we neglect the background fluid pressure gradi-
ents, and consider the cosmic rays as drifting with a con-
stant and unperturbed velocity ucr = u‖crex. We also make
the assumption of electromagnetic fluctuations with wave-
lengths smaller than the cosmic rays gyroradius. The result-
ing Maxwell-Faraday and momentum equations, with a first
order linearization of the magnetic and background fluid ve-
locity fluctuations, give:

∂u1

∂t
=

(B0 ·∇)B1

µ0ρ
+
ncr
nm

Ω0

(
u1 × B0

B0

)
− jcr ×B1

ρ
(6)

∂B1

∂t
+ ∇ ·

(
ncr
nm

ucrB1

)
= (B0 ·∇)u1 (7)

where Ω0 = eB0/mp is the proton cyclotron frequency, mp

is the proton mass and jcr = encrucr is the current carried
by the cosmic rays. The subscripts ’0’ and ’1’ refer to the
order for the linearization.

Many of the underlying features of the instability can be
understood by inspecting these equations. The first term on
the right hand-side of Eq. 6 is the magnetic tension force as-
sociated to the fluctuating magnetic field and dominates the
background fluid dynamic at small enough scale. The sec-
ond term is responsible for a background fluid cyclotron-like
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motion at a fraction ωu = Ω0ncr/nm of the cyclotron fre-
quency, resulting from the ambient magnetic field and from
the excess of negative charge that compensates the cosmic
rays charge. The third term is the source of the instability
and drives growing background fluid velocity fluctuations via
the interaction of the cosmic rays current with the fluctuat-
ing magnetic field. The linearized magnetic field induction
equation (Eq. 7) has been rewritten to highlight its conser-
vative character and the presence of a source term, which is
unchanged by the presence of cosmic rays and couples the
background fluid velocity fluctuations to the magnetic field
ones. The plasma being homogeneous, the second term on
the left-hand side can be rewritten as a perturbed magnetic
field advection term at a velocity ncr

nm
u‖cr (equal to the ze-

roth order electrons current velocity).
To capture quantitatively the mechanism of the non-

resonant instability it is only necessary to retain the cou-
pling terms (i.e. neglect the second term in the right-hand
side of Eq. 6 and the second term in the left-hand side of
Eq. 7). This is equivalent to supposing fast growing modes,
with growth time much smaller than those associated to the
perturbed magnetic field advection and to the background
fluid cyclotron-like motion. We consider velocity perturba-
tions as u1ei(kx−ωt), and a circularly polarized magnetic
perturbation propagating along the x direction such that
B = B0ex + B1ei(kx−ωt). We have defined the angular fre-
quency ω = ωr+iγ where ωr is taken to be positive, and the
wave number k can be either positive or negative depending
on the direction of propagation. Solving Eqs. 6 and 7, one
finds:

ω =

(
ncr
nm

u‖crΩ0k + v2A0k
2

)1/2

(8)

where vA0 = B0/(µ0nmmp)
1/2 is the Alfvén velocity. The

second term on the right-hand side of Eq. 8 corresponds
to the magnetic tension and acts as a stabilizing term by
preventing large wave numbers to grow when it is equal or
greater to the magnetic force driving term. For k positive,
the angular frequency is purely real and the only effect of the
cosmic rays is to modify the dispersion of long wavelengths
Alfvén waves. However for negative k values, we obtain an
instability for |k| < kmax with

kmax =
ncr
nm

u‖cr
v2A0

Ω0 (9)

The unstable modes propagate backward relative to the CR
drift velocity, and with a right-hand polarization (corre-
sponding to a negative helicity, see Appendix A). Search-
ing for an extremum of Eq. 8, one finds the fastest growing
mode as γ = 1

2
ncr
nm

u‖cr
vA0

Ω0 and the corresponding wave num-

ber |k| = 1
2
ncr
nm

u‖cr
v2
A0

Ω0, which are identical to what can be

obtained from kinetic theory calculations in the case of neg-
ligible temperatures (see Sec. 2.2).

Thus, in the range of wave numbers |k| � kmax, the
contribution of the first term in the right-hand side of Eq. 6
corresponding to the magnetic tension can be neglected, and
one obtains that the perturbed background fluid velocity is
amplified by the interaction of the cosmic rays current with
the perturbed magnetic field. As a result the source term
of Eq. 7 is also amplified, which corresponds to the induced
first order electric field E1 = −u1×B0 closing the feedback
loop by enhancing the magnetic perturbation. This leads to

the exponential growth of the electromagnetic wave with a
growth rate γ varying as k1/2:

γ ≈
(
ncr
nm

Ω0u‖cr|k|
)1/2

(10)

One also find from Eq. 6 that the field of velocity fluctua-
tions grows with a phase shift of −π/2 with respect to the
magnetic perturbation. This distinctive geometrical prop-
erty will be further investigated in Sec. 3 as it is responsible
for the development of large anisotropies in the background
plasma. We note that the energy exchange between the cos-
mic rays and the waves is accomplished through the second
order parallel electric field E‖ = −u1×B1, which slows down
the cosmic rays and accelerates the background plasma.

A lower limit for the unstable wave numbers can be ob-
tained by examining the perturbed magnetic field advection
term of Eq. 7. The magnetic field perturbation propagates
in the direction opposite to the cosmic rays drift velocity. At
a given position, this corresponds to a rotation of the mag-
netic perturbation at a frequency ωB = ncr

nm
u‖cr|k|. In the

range |k|u‖cr < Ω0, one has ωB < ωu where ωu = Ω0ncr/nm
meaning that the driving force −jcr×B1 is unable to impose
the electromagnetic wave frequency to the background fluid
motion, which prevents the growth of the magnetic fluctua-
tions. This limit can also be found by considering the time
(|k|u‖cr)−1 for cosmic rays to cross one wavelength, which
has to be smaller than the cyclotron period Ω−1

0 . It corre-
sponds to a magnetization condition stopping the exponen-
tial growth, as the cosmic rays start following the perturbed
field lines at scales comparable to the cosmic rays Larmor
radius. Both approaches yield the same condition:

kmin =
Ω0

u‖cr
(11)

In the case of |k| < kmin, the cosmic rays velocity pertur-
bations cannot be neglected, and the contribution of the
jcr ×B1 term in Eq. 6 becomes small.

An estimate of the saturated magnetic field intensity
can be found by studying the time evolution of the two lim-
iting wave numbers kmin and kmax. During the instability
growth, B increases with time and so does the minimum
unstable wave number, whereas the maximum wave num-
ber decreases. The magnetic field saturation is expected to
occur when kmax = kmin (Bell 2004). This condition can
be rewritten in term of energies, and is fulfilled when the
magnetic energy equals the kinetic energy of the drifting
cosmic rays. The corresponding magnetic field is then esti-
mated by considering the cosmic rays drift velocity to be
constant. This yields a saturated magnetic field energy den-
sity equal to the initial cosmic rays drift kinetic energy den-
sity. For relativistic cosmic rays drift velocities, the kmin

limit is expressed as kmin = Ω0/u‖crγcr where γcr is the cos-
mic rays Lorentz factor (Amato & Blasi 2009, Zacharegkas
et al. 2019); in this case Bell’s saturation criterion is written
as B2/2µ0 = ncrmpγcru

2
‖cr/2. In general, depending on the

cosmic rays drift kinetic energy, a large magnetic field am-
plification B1 > B0 can be obtained. This is an important
feature of the NR instability, as the RHR and LHR modes
are restricted to fluctuations amplification B1/B0 ∼ 1 be-
cause of the resonance condition on the cosmic rays (Bell
2013).

Up to this point, we have neglected any potential damp-
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ing via thermal effects. In the following section, we will de-
rive the growth rate of the non-resonant mode while tak-
ing into account the background protons temperature. We
will consider a wide range of parameters, starting from the
zero and small temperature regimes (cold and warm plasma)
up to the demagnetized regime (hot plasma). We drop the
fluid description in order to accurately describe finite Lar-
mor radius effects and focus on obtaining analytical results
by expanding the full kinetic dispersion relation for the NR
mode.

2.2 Linear kinetic theory

The kinetic linear dispersion relation for transverse electro-
magnetic waves (k ·E = 0) propagating in a plasma parallel
to an ambient magnetic field is well known (Scharer 1967).
Considering Maxwellian velocity distribution functions with
drift velocities u‖α, isotropic temperatures Tα and ω/k � c,
where c is the speed of light, the dispersion relation can be
written as:

−k2c2 − 1√
2

∑
α

[
ω2
pα

vTα

(
u‖α −

ω

k

)
Z(ζ±α )

]
= 0 (12)

where the thermal velocity is given by vTα = (kBTα/mα)1/2,
kB is the Boltzmann constant, ωpα = (nαq

2
α/ε0mα)1/2 is

the plasma angular frequency, Ωα = qαB0/mα is the initial
cyclotron angular frequency, ε0 is the permittivity of free
space. The summation is performed over all populations α =
e,m, cr. We introduced the Fried and Conte function (Fried
& Conte 1961):

Z(ζ±α ) = π−1/2

∫ +∞

−∞

e−u
2

u− ζ±α
du (13)

A key parameter that characterizes the interaction of the
population α with the electromagnetic waves of angular fre-
quency ω and wave number k is the argument of the Fried

and Conte functions ζ±α =
1√

2vTαk
(ω−ku‖α+p±Ωα), where

p± = +1 for right-hand polarized waves and p± = −1 for
left hand polarized waves. Depending on the value of ζ±α ,
two regimes of interaction can be distinguished. The first one
corresponds to |ζ±α | � 1, where the bulk of the velocity dis-
tribution function of population α is far from the cyclotron
resonance condition ωr − ku‖α + p±Ωα = 0 (Gary & Feld-
man 1978). This so-called cold regime, is non-resonant and
may be correctly described using a fluid approach. The other
regime |ζ±α | < 1 can be defined as hot and demagnetized, as
the thermal Larmor radius is larger than the wavelength of
the mode.

Cold regime vTm → 0 krLm < 1
The expression for the fastest growth rate γcold and it’s asso-
ciated real angular frequency ωr,cold and wave number kcold

for the non-resonant mode were first derived in the cold
plasma limit for all populations by Winske & Leroy 1984,
using a non-relativistic kinetic framework and considering
protons populations with a small density ratio ncr/nm. In
this limit, Eq. 12 can be simplified using asymptotic expan-

sions of the Fried and Conte function, and one finds:

γcold =
1

2

ncr
nm

u‖cr
vA0

Ω0 (14)

ωr,cold =
1

2

(
ncr
nm

u‖cr
vA0

)2

Ω0 (15)

kcold =
1

2

ncr
nm

u‖cr
v2A0

Ω0 (16)

We have γcold = kcoldvA0. Note that the fastest growing
mode kcold is half of the maximum one kmax (Eq. 9). The
growth rate and wave number are identical to those found
by Bell 2004 using a fluid description for the background
plasma and a power law with relativistic velocities for the
streaming population. Both derivations were performed as-
suming low frequency modes and no resonant interactions.
This regime of interaction is particularly relevant in the con-
text of supernova shocks in the interstellar medium and of
backstreaming populations from the earth bow shock region
(Onsager et al. 1991, Akimoto et al. 1993), where thermal
effects are expected to be small.

Warm regime vTm 6= 0 krLm < 1
The warm regime corresponds to the limit of finite main pro-
tons thermal velocity vTm, but krLm < 1 such that |ζ±m| � 1.
In the same way as in the cold regime, Eq. 12 can be sim-
plified using asymptotic expansions but retaining additional
terms to account for thermal corrections. The fastest grow-
ing mode γwarm (Reville et al. 2008) and associated wave
number kwarm (Zweibel & Everett 2010) in the warm regime
are found to be:

γwarm =

(
ncr
nm

u‖cr
vTm

)2/3

Ω0 (17)

kwarm =

(
ncr
nm

u‖cr
vTm

)1/3
Ω0

vTm
(18)

The growth rate in this regime depends linearly on the initial
magnetic field, and as T

−1/3
m . Finite Larmor radius effects

tend to reduce the NR mode growth and shift the unstable
wavelengths toward larger scales. A threshold for this regime
can be calculated as vA0/vTm < (ncru‖cr/nmvTm)1/3. The
warm regime of interaction is of interest in low density, high
temperature medium such as superbubbles, where the non-
resonant mode may be significantly damped.

Hot regime vTm 6= 0 krLm > 1
Following the analysis of Reville et al. 2008 and Zweibel &
Everett 2010, we now derive the expressions of the growth
rate, real angular frequency, wave vector and phase velocity
for the hot, demagnetized regime of interaction krLm > 1.
We present here the results of the calculation, more details
can be found in appendix B.

We restrict ourselves to low frequency waves, such that
ω < Ωα, and consider a single electron population (whereas
two populations were considered in Zweibel & Everett 2010)
and a Maxwellian distribution for the cosmic rays (whereas a
mono-energetic distribution was considered in Reville et al.
2008). These differences have no impact on the final results
as long as the density ratio ncr/nm is small before unity
and the electrons are magnetized. Neglecting electron iner-
tia (which is equivalent to the low frequency assumption),
we obtain the expressions of the thermally modified growth
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Figure 1. Growth rate γhot (upper panel) and phase velocity

vφ = ωr,hot/k (lower panel) as a function of the wave number
k, obtained from Eqs. 19 and 20. Parameters used are, in nor-

malized units: ncr = 0.01 nm, u‖cr = 100 vA0. The black, red

and orange curves corresponds to Tm = 102, 104, 106 T0 respec-
tively. The dotted lines correspond to wave numbers where the

demagnetized main protons assumption is not fulfilled. The grey

vertical dotted line corresponds to k = kmax from Eq. 9.

rate γhot(k) and real angular frequency ωr,hot(k) for the hot
regime of the non-resonant streaming instability:

γhot(k)=
(2π)1/2

rLmξ

k

Ω0

(
v2A0−

ncr
nm

u2
‖cr

)
−p±

(
k2

Ω2
0

v2A0+
n2
cr

n2
m

)
u‖cr

π

k2r2Lm
+2

(
1

k2r2Lm
−ncr
nm

1

ξ
−1

)2

(19)

ωr,hot(k) =

k3r2Lm
(
k2r2Lm − 1

)(ncr
nm

u‖cr + p±
k

Ω0
v2A0

)
k4r4Lm + k2r2Lm

(π
2
− 2
)

+ 1

(20)

where we have defined the parameter ξ = p±ku‖cr/Ω0 − 1.
The growth rate γhot(k) and phase velocity vφ = ωr,hot(k)/k
are plotted in Fig. 1 for the main protons temperatures
Tm = 102, 104, 106 T0 (see Sec. 3.1 for a discussion on the
normalization). The growth rate is found to be strongly re-
duced with increasing temperature, and the fastest growing
mode shifts towards smaller wave numbers compared to the
cold regime. In the warm regime, finite Larmor radius effects
of the main protons play a role in determining the largest
unstable wave number. We find that in the hot regime how-
ever, the competition between the magnetic tension and the
cosmic rays current driving term is the only determining
factor of the largest unstable wave number, and one obtains
good agreement with the fluid estimate kmax = ncr

nm

u‖cr
v2
A0

Ω0.

This can be understood by considering the fluid model pre-
sented in Sec. 2.1 while retaining the Hall effect in Ohm’s
law (Eq. 5) to account for the decoupling between electrons
and background protons in the demagnetized and collision-
less regime. One then finds that for all the unstable wave-
lengths, the resulting background fluid momentum conser-
vation equation is not modified, resulting in identical max-
imum unstable wavenumber kmax in both the cold and hot
regimes.

Useful analytical expressions can be obtained by con-
sidering the limits krLm � 1, ku‖cr/Ω0 � 1 which corre-
sponds to the hypothesis of demagnetized main protons, and
to the instability requirement |k| > kmin discussed in Sec.
2.1. One finds the approximate expressions for the fastest
growing mode:

γhot =
(π

2

)1/2 ncr
nm

u‖cr
vTm

Ω0 (21)

ωr,hot =
n2
cr

n2
m

u‖cr
vA0

Ω0 (22)

khot =
ncr
nm

Ω0

vA0
(23)

vφ,hot = −ncr
nm

u‖cr (24)

We give here the absolute value of ωr,hot and khot. For
ζ±m & 1/2, the first order asymptotic expansion of the main
protons Fried and Conte function cannot accurately describe
the complete function. As a consequence, Eqs. 21 to 24 hold
for kcoldrLm & 2 which corresponds to the demagnetization
of half of the fastest growing mode in the cold limit.

The growth rate for hot, demagnetized main protons is
found to decrease as T−1/2 with temperature, more rapidly
than the T−1/3 dependency in the warm protons regime, and
we obtain γhot/γcold = (2π)1/2vA0/vTm. This result may be
of importance in high temperature plasmas with small am-
bient magnetic field, where the instability growth may be
strongly reduced. We find that the real angular frequency
and the fastest growing wave number are independent of
the main protons temperature, and the fastest growing wave
number is also independent of the cosmic rays velocity. The
phase velocity vφ,hot = ωr,hot/khot is equal and opposed to
the electron drift velocity compensating the cosmic rays cur-
rent, which is the same result as in the cold regime. We will
return to these results in Sec. 4 where we discuss possible
applications for astrophysical settings.

Having studied the instability linear theory for a large
range of temperature, we will now use hybrid-PIC simula-
tions to verify the theory developed in the last two sections,
and explore the non-linear behaviour of the unstable waves.
We will first present our numerical model, then our 1D and
2D simulations results.

3 SIMULATIONS RESULTS

We use the Hybrid-PIC code HECKLE (Smets, R. 2020),
which solves the Vlasov-Maxwell system using a predictor-
corrector scheme for the electromagnetic field and a non-
relativistic Boris pusher (Boris 1970) for the particles. The
main and cosmic rays protons are described as macro-
particles, and the electrons as a mass-less fluid. This hybrid
approach is well suited to study the kinetic, non-linear evolu-
tion of systems at the protons temporal scale while avoiding
prohibitive computational time.

3.1 Numerical model and setup

Masses and charges are normalized to the proton mass mp

and elementary charge e respectively. The densities and
magnetic field are normalized to a reference value n0 =
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nm(t=0) and B0 = B(t=0). Frequencies, lengths and veloc-
ities are normalized to the initial proton cyclotron angular
frequency Ω0 = eB0/mp, initial proton inertial length l0 =
c/ωpm where c is the speed of light, ωpm = (n0e

2/ε0mp)
1/2 is

the protons plasma frequency and vA0 = B0/(µ0n0mp)
1/2 =

l0Ω0 is the initial Alfvén velocity. Temperatures are ex-
pressed in units of energy as T0 = mpv

2
A0. The motion of

a macro-particle k is obtained as:

dvk
dt

=
qk
mk

(E + vk ×B) (25)

The electric field E is normalized to E0 = vA0B0. Maxwell’s
equations are solved in the non-relativistic regime:

∂B

∂t
= −∇×E (26)

J = ∇×B/µ0 (27)

Note that the current J in the Hall term is only the trans-
verse one. Quasi-neutrality is assumed at each time step.
The electric field is computed using the generalized Ohm’s
law:

E = −ui ×B +
1

ene
(J×B−∇ ·Pe) + σJ− σ′∆J (28)

where σ is the resistivity, and σ′ the hyperviscosity. These
coefficients are taken to be 10−3B0/en0 and 10−3B0l

2
0/en0

respectively in order to reduce small scale fluctuations with-
out introducing important dissipative effects. Electron iner-
tia terms have been neglected (me = 0), consistent with the
long time scale assumption. ui and ene are the fluid velocity
and charge density calculated over the ions populations l as:

ene(x) =
∑
`,k q`W`S(x− x`,k) (29)

ui(x) =
∑
`,k v`,kW`S(r− x`,k)/

∑
`,kW`S(r− x`,k)

(30)

In these expressions, x is the grid point position, xl,k the po-
sition of a macro-particle k from population l, and S(x−x`,k)
the first order B-spline. Ions populations have different nu-
merical weights W` for fluid quantities calculation, allowing
the simulation of different densities while keeping the same
number of macro-particles for each species. The electron
pressure is calculated by supposing an isothermal, isotropic
behavior:

Pe = nekBTe (31)

where kB is the Boltzmann constant, and Te the uniform
electron temperature fixed at the beginning of the simula-
tion.

The simulations are performed in 1D and 2D space. Vec-
tor quantities are defined in 3D. We consider two popula-
tions of protons with an initial Maxwellian velocity distri-
bution function. The ambiant magnetic field is initially ho-
mogeneous and oriented in the x aligned with the simulation
domain. The cosmic rays population of density ncr = 0.01 n0

is given a positive drift velocity parallel to the ambient mag-
netic field u‖cr = 100 vA0, in the reference frame of the main
protons. The electron density and initial velocity are calcu-
lated to ensure quasi-neutrality and satisfy the initial cur-
rent condition (Eq. 1). In this configuration, unstable waves
are expected to propagate with a negative phase velocity,
right-hand polarization and negative helicity.

We use a simulation domain of length Lx = 1000
l0 discretized with 1000 cells for one-dimensional simula-
tions. These dimensions are sufficient to simulate the ex-
pected range of unstable wave numbers kmax = l−1

0 and
kmin = 0.01 l−1

0 obtained from Eqs. 9 and 11, and to cor-
rectly model cascade effects. The plasma and field quantities
are initially homogeneous. The time step is fixed at 10−4 Ω−1

0

to properly satisfy the CFL condition on the whistler waves
and the most energetic macro-particles. We use 1000 macro-
particles per cell initially (500 for each proton populations)
to properly describe high temperature Maxwellian distribu-
tions, as well as the large density fluctuation that occur dur-
ing the instability growth. For two-dimensional simulations,
we use a domain length Ly = 200 l0 in the y-direction dis-
cretized with 200 cells. We also performed simulations with
Ly = 400 l0 discretized with 400 cells, without any notice-
able changes in the results. Periodic boundary conditions
are used in all directions. Collisions are not considered. The
simulations setup is an initial value problem as the cosmic
rays population is not injected over time during the simu-
lation. We choose Te and Tcr to be equal to the reference
temperature T0 for the electrons and cosmic rays, and focus
on studying initial main protons temperatures in the range
Tm = 0.1 to 200 T0. A summary of the simulation parame-
ters can be found in Table 1.

We will compare simulations with an initial main pro-
tons temperature Tm = T0 and Tm = 25 T0 to highlight the
change of behaviour of the instability from the cold regime
to the warm/hot regimes of interaction. 2D Simulations with
Tm = 25 T0 are compared to 1D simulations to retrieve addi-
tional informations on the spatial structure of the instability
in the hot background plasma limit.

3.2 Magnetic field amplification

One of the main feature of the non-resonant streaming insta-
bility is the generation of large magnetic fluctuations. Con-
trary to the right-hand and left-hand resonant mode, ampli-
fication beyond the initial magnetic field intensity is possi-
ble because of the large drift velocity required to drive the
instability which keeps the cosmic rays demagnetized (Bell
2013). The time evolution of the normalized perturbed mag-
netic field intensity B1 = ||B−B0||/B0 is presented in Fig.
2 for two different main protons temperatures Tm = T0 and
Tm = 25 T0. We highlight four distinct phases. The first one
(from t = 0 to 2 Ω−1

0 ) is purely numerical and corresponds to
micro-adjustments of the plasma from the random initializa-
tion to its eigenmode values. The second phase is character-
ized by the exponential growth of the perturbed magnetic
field intensity, with a reduced growth rate for larger tem-
perature. A non-linear phase occurs after a few e-foldings of
growth, further increasing the magnetic field until the satu-
ration is reached. Finally, the fourth phase corresponds to a
slow relaxation of the system with enhanced wave activity.
Despite the significant growth of a Bx component in 2D (not
permitted in 1D geometry), the growth rate and saturation
level are very comparable in 1D and 2D. The simulations
yield strong, non-linear amplification of the magnetic field
reaching peak values 10 times the ambient magnetic field.
In the following, we will focus on the linear and non-linear
phases which are of most interest to study the instability
behaviour and temperature dependency.
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dim ncr/nm u‖cr βm Tm Tcr Te Lx/Ly ∆x/∆y

1D 0.01 100 0.2 to 400 0.1 to 200 1 1 1000/ 1/

2D 0.01 100 20, 50, 100 10, 25, 50 1 1 1000/200 1/1

Table 1. Normalized parameters used in the simulations. We defined βm = 2(vTm/vA0)2. ∆x and ∆y are the mesh size in the x and y

directions.

Figure 2. Perturbed magnetic field intensity B1 = ||B−B0||/B0

evolution over time integrated over space (blue solid line) and
maximum value in simulation domain B1,max/B0 (green solid

line), for 1D simulations with a main protons temperature Tm =

T0 (upper panel) and Tm = 25 T0 (middle panel). 2D simulation
with Tm = 25 T0 is presented in the lower panel. The red dashed

line corresponds to an exponential fit in the linear phase. The

orange line in the lower panel correspond to the perturbed mag-
netic field parallel component B‖ = B1 · ex. The vertical dashed

lines corresponds, from left to right, to the beginning of the lin-
ear regime, transition to the non-linear regime and to magnetic

saturation, which is reached typically after 6 e-foldings of growth.

One important parameter characterizing the linear
phase is the growth rate of the instability. Fig. 3 shows the
predictions of the fastest growing mode in the three regimes
of cold (Eq. 14), warm (Eq. 17) and hot (Eq. 21) main pro-
tons, alongside growth rates extracted from 1D and 2D sim-
ulations γ1D,2D, as a function of the main protons tempera-
ture. The growth rate in the hot regime is found to decrease
with the temperature as T

−1/2
m as expected from the lin-

ear theory calculation of this work. In the low temperature
limit, the prediction from Winske & Leroy 1984 is very accu-
rate, and become rapidly invalid for temperatures Tm > T0.
The intermediate warm regime from T0 to 16 T0 is well re-
produced by the prediction from Reville et al. 2008 with
a decrease of the growth rate with temperature as T

−1/3
m .

The overestimates in the warm and hot regimes by a factor
∼ 2 may be linked to the fact that the theoretical values
correspond to the fastest growing mode. The magnetic field
intensity in the simulations is integrated over the whole k

10−1 100 101 102

Tm [T0]

10−1

100

γ
[Ω

0
]

T
−1/3
m

T
−1/2
m

γ1D
γ2D
γcold
γwarm
γhot

Figure 3. 1D and 2D simulations growth rate γ1D,2D (blue and red

dots), Winske & Leroy 1984 prediction γcold (Eq. 14, solid black
line), Reville et al. 2008 prediction γwarm (Eq. 17, solid green line)

and growth rate prediction of this work γhot (Eq. 21, solid orange

line) as a function of the main protons temperature Tm. The
vertical dashed lines indicates the transition to the warm regime

vA0/vTm < (ncru‖cr/nmvTm)1/3 (Zweibel & Everett 2010, left

line at Tm = T0), and to the hot regime kcoldrLm > 2 (Eq. 9,
right line at Tm = 16 T0). Parameters used are, in normalized

units: ncr = 0.01 nm, u‖cr = 100 vA0.

spectrum, which gives an overall smaller growth rate than if
only the fastest growing mode was observed.

To study the instability behaviour during the linear
phase, we investigate the time evolution of the maximum
and minimum unstable wave numbers kmax = ncr

nm

u‖cr
v2
A0

Ω0

and kmin = Ω0/u‖cr, which are expected to play a central
role in determining the maximum reachable magnetic field.
The results are presented in Fig. 4 upper panel. As the mag-
netic field increases, kmax decreases whereas kmin increases.
The moment these wave numbers become equal corresponds
to the magnetic field saturation proposed in Bell 2004. The
instability condition kmin < |k| < kmax cannot be satisfied
at any scale, and one expect to obtain a decrease of the main
protons velocity in the (ey, ez) plane.

To quantify the effects of the instability on the veloc-
ities of the proton populations, we will use a local mag-
netic field aligned basis e‖ = B0

B0
= ex (parallel component),

e× = B1
B1
× e‖ (normal component) and e⊥ = e‖ × e× (per-

pendicular component, aligned with the perturbed magnetic
field for an electromagnetic wave propagating along B0). As
this vector basis is built to follow the local magnetic pertur-
bation, the spatial average of any quantities on this frame
of reference does not create any loss of information on the
periodic space dependency of the wave. Fig. 4 middle panel
presents the derivative over time of the main protons normal
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m
B1

Figure 4. Upper panel: maximum (blue solid line) and minimum
(red solid line) unstable k (in unit of l−1

0 ), as a function of time

between t = 4 Ω−1
0 and t = 30 Ω−1

0 . The condition kmax = kmin

is indicated with the vertical dashed line at tNLT = 18.5 Ω−1
0

and reported in other panels. Greyed regions correspond to sta-

ble wave numbers. Middle panel: first order derivative over time
of the main protons normal velocity u×m (in unit of vA0, orange

solid line) and perturbed magnetic field intensity second order

derivative over time (in unit of B0 and multiplied by a factor
100, green solid line). Lower panel: perturbed magnetic field in-

tensity B1 (green solid line) and main protons normal fluid ve-

locity (orange solid line). Magnetic saturation is indicated with
the vertical dashed line at tsat = 21 Ω−1

0 . Values are taken from

1D simulation with a main protons temperature Tm = T0.

fluid velocity component u×m, which corresponds to the di-
rection of application of the magnetic force in the local mag-
netic field basis. The acceleration is increasing exponentially
during the linear phase, starts to decrease after t = 17 Ω−1

0 ,
and then becomes negative, corresponding to a slowing down
of the main protons rotation. The fluctuating magnetic field
second order derivative over time, expected to be closely re-
lated to the velocity field (Eq. 7), is also shown and exhibits
the same behaviour, confirming the correlation between the
main protons fluid motion and the growth of the magnetic
perturbation. One obtain an excellent match between the
kmax = kmin condition discussed previously and the deceler-
ation of the main protons velocity. This suggests that this
condition is correlated to the transition toward a non-linear
phase, and not to magnetic saturation as the magnetic field
keeps growing, although at a slower rate. We recover the
same correlation for all our simulations, indicating that the
kmax = kmin condition may be a robust criteria to identify
quantitatively the end of the exponential growth. We note
that linear theory describes very well the instability growth
even for large magnetic perturbation as the non-linear tran-
sition occurs when the perturbed magnetic field intensity is
already greater than the initial ambient magnetic field.

The non-linear phase which follows the linear phase of
the instability is characterized by a decrease of the main
protons fluid rotation velocity and a reduced magnetic field
growth. Fig. 4 lower panel presents the main protons nor-
mal velocity and perturbed magnetic field intensity evolu-
tion over time. The transition toward non-linear growth, cor-

related to the maximum in normal velocity u×m is shown
with the vertical dashed black line at tNLT = 18.5 Ω−1

0 , and
the magnetic field saturation by the second vertical dashed
black line at tsat = 21 Ω−1

0 corresponding to the maximum
in magnetic field intensity. The magnetic field keeps growing
during the non-linear phase until the normal velocity compo-
nent becomes negative, corresponding in the magnetic field
aligned basis to a loss of the −π/2 phase shift with respect
to the magnetic perturbation necessary to the growth of the
NR mode, as expected from the fluid model of the instability
presented in Sec. 2.1. As a consequence, the parallel induced
electric field changes sign and no longer slows down the cos-
mic rays drift velocity (Eq. 5), leading to the magnetic field
saturation. This saturation mechanism is well observed in all
our simulations. The normal velocity component decrease
during the non-linear phase is due both to the conversion
of the remaining rotational kinetic energy accumulated dur-
ing the linear phase into magnetic energy via the induced
electric field, and to the loss of the coupling between the
magnetic perturbation and the main protons fluid rotation
as the magnetic force driving term no longer operates, which
leads to a decrease of the normal velocity component (and
an increase of the perpendicular one) in the local magnetic
field aligned basis.

The saturated magnetic field intensity is a key parame-
ter of the instability in the context of supernova shocks, as it
dictates whether cosmic rays can be confined and accelerated
via first order Fermi acceleration. As discussed in Sec. 2.1,
the fluid model predicts that at saturation the magnetic en-
ergy density equals the cosmic rays drift kinetic energy den-
sity. An estimate for the saturated magnetic field can then
be found by assuming the cosmic rays to be drifting with
a constant velocity (Bell 2004). A different estimate can be
found by considering energy exchange rates within quasi-
linear theory calculations (Winske & Leroy 1984, Winske &
Quest 1986), which yield that the rate of energy gained by
the magnetic field is half of the rate of loss of the cosmic rays
drift kinetic energy. Extrapolating this result to saturation
and supposing that the cosmic rays drift velocity is null at
saturation, one obtains for the magnetic energy density:

B2

2µ0
∼ 1

4
ncrmpu

2
‖cr (32)

which is half of the fluid prediction obtained from the con-
dition kmin = kmax.

However, kinetic theory calculations show that for the
instability to exist, the cosmic rays drift velocity must be
larger than the Alfvén speed in the amplified field (Gary
et al. 1984). In some regimes, this condition is violated and
the growth of the instability is halted before the kmin =
kmax limit is reached (Riquelme & Spitkovsky 2009). All the
difficulty lies in assessing the highly non-linear evolution of
the cosmic rays drift velocity, which would then determine
whether the conditions kmin = kmax or u‖cr ∼ vA will give
the most accurate saturation mechanism, and whether the
assumption of constant or completely depleted drift kinetic
energy is relevant to estimate the saturated magnetic field.
As such, only numerical simulations can provide a precise
answer.

Fig. 5 presents the ratio between the magnetic field en-
ergy density WB = B2/2µ0 and the initial cosmic rays ki-
netic energy density Wcr = ncrmpu

2
‖cr/2, at non-linear tran-
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Figure 5. Magnetic field energy density WB = B2/2µ0 normal-

ized to the initial cosmic rays drift kinetic energy density Wcr =
ncrmpu2‖cr/2 (t0) = 50 l−3

0 mpv2A0 (see Table 1), as a function

of the main protons temperature for 1D simulations. Blue curve

corresponds to the ratio at non-linear transition (noted NLT )
and green curve to the ratio at magnetic saturation (noted sat).

The non-linear transition time is found numerically by equating

kmax = kmin averaged in the simulation box. The two dashed ver-
tical lines corresponds to the limits of the warm and hot regimes

of interaction as in Fig. 3.

sition (blue solid line) and at saturation (green solid line),
as a function of the main protons temperature. In the cold
regime, the simulations yield a conversion efficiency of 30 per
cent at the transition from linear to non-linear growth, and
about 60 per cent at saturation which is close to the quasi-
linear theory prediction. The intermediate, warm regime of
interaction shows a quick decrease of the conversion effi-
ciency with temperature. For temperatures corresponding to
the hot, demagnetized regime of interaction, the magnetic
energy shows low amplification of the order of 5 per cent of
the initial drift kinetic energy.

3.3 Wave-particles interactions

The instability relies on the helicity of the perturbed mag-
netic field and background fluid velocity field. Both inter-
act via the induced electric field and generate a positive
feedback with one another, destabilizing the electromagnetic
wave. The resulting main protons velocity field is a helix with
negative helicity, left-hand polarization, positive direction of
propagation and with a norm increasing exponentially over
time, whereas the perturbed magnetic field forms expanding
field lines with negative helicity, right-hand polarization and
negative direction of propagation (see appendix A). These
interlaced structures can be observed in Fig. 6, where the
main protons particle velocity phase φv = tan−1(vz/vy)
is plotted along with the perturbed magnetic field phase
φB = tan−1(Bz/By) at the beginning of the non-linear
growth phase, for low temperature Tm = T0 and high tem-
perature Tm = 25 T0.

The positive slope of the perturbed magnetic field phase
φB illustrates its negative helicity in the (ey, ez) plane. In
the cold case (Fig. 6 upper panel) it is clear that the veloc-
ity phase φv also develops a coherent structure that closely
follows that of the magnetic field. At a given position x, the
velocity phase of all the particles bunches around a well de-
fined value, for example at x = 625l0 the velocity phase is
φv ≈ π. The phase shift between the magnetic field and the
velocity field at a given position, ∆φ = φB − φv, is close to

Figure 6. Perturbed magnetic field phase φB = tan−1(Bz/By)

(black solid line) and main protons particle velocity phase φv =

tan−1(vz/vy) (black dots) as a function of space (from 600 to
800 x/l0) for 1D simulations, during the linear growth phase

phase. Upper panel: Tm = T0, lower panel: Tm = 25 T0.

π/2, which was expected from Eq. 6. Indeed the cosmic rays
driving term −jcr × B1/ρ accelerates the background fluid
in a direction perpendicular to both the ambient and local
perturbed magnetic field. The phase shift ∆φ is observed to
remain constant during the linear evolution of the instabil-
ity, corresponding to a coherent motion of the main protons
with respect to the electromagnetic wave.

Increasing the temperature does not modify the helicity
of the perturbation (Fig. 6 lower panel), and we see an in-
crease in wavelength as predicted by linear theory. We also
find a less clearly defined phase bunching of the main pro-
tons velocity compared to the cold regime. The main pro-
tons high mobility in the demagnetized regime allows them
to migrate quickly along the ambient magnetic field, mixing
up the phase shift between the background velocity and the
magnetic field fluctuations. As a result, the induced electric
field is weakened and the instability grows less efficiently.
This may constitute a possible physical interpretation to the
monotonously decreasing growth rate with thermal velocity
found in the hot regime (Eq. 21).

These effects can also be observed and quantified in 2D
simulations. Fig. 7 presents the phase difference between the
fluid velocity phase and magnetic field phase ∆φ = φB −φv
for three different times: t = 15 Ω−1

0 , t = 35 Ω−1
0 and

t = 45 Ω−1
0 , corresponding to the beginning and end of

the linear growth phase, and after magnetic saturation. The
main protons temperature is Tm = 25 T0. Other parameters
are described in Table 1. During the early times of growth
(upper panel), the magnetic field and background velocity
field are essentially uncorrelated and the growth is slow. By
the end of the linear phase (middle panel), the phase shift-
tends to the expected value ∆φ = φB−φv = π/2 and allows
the fast growth of the perturbation. After the magnetic field
saturation (lower panel), it randomizes as the cosmic rays
magnetic force no longer imposes the magnetic field rotation
to the background fluid.

The instability leads to the development of important
anisotropies in the protons velocity distributions for both the
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Figure 7. Magnetic field and main protons velocity phase differ-

ence ∆φ map at three different times: beginning of the linear

growth phase (t = 15 Ω−1
0 ), during the linear growth phase

(t = 35 Ω−1
0 ), after saturation (t = 45 Ω−1

0 ). The difference is

calculated locally as ∆φ = tan−1(sin(φB − φv)/ cos(φB − φv)).
Obtained from a 2D simulations with Tm = 25 T0. The theoret-

ical prediction from the fluid model yields a uniform phase shift

∆φ = π/2 and we recover this result in the simulations, with
modulations due to the high temperature of the main protons.

main and the cosmic rays populations which cannot be de-
scribed in isotropic fluid simulations. In the following, we will
make use of the magnetic field aligned basis (e‖, e×, e⊥) pre-
sented in the previous section to describe these effects. Fig. 8
shows the distributions of the proton populations in (v‖, v×)
space during the non-linear phase of the instability growth.
The parallel electric field induced by the main protons ro-
tating motion E‖ = −u1×B1 (Eq. 5) decelerates the cosmic
rays (upper right panel), leading to particles acquiring a ve-
locity in the opposite direction to their original one (in the
reference frame of the initially immobile main protons, lower
left panel). The cosmic rays are then able to interact reso-
nantly as the resonance condition ωr − ku‖α + p±Ωα = 0 is
fulfilled with the right-hand polarized backward propagating
waves. As a result, the cosmic rays are strongly scattered in
the (ey, ez) plane (lower right panel). This effect is highly
non-linear: the cosmic rays destabilize electromagnetic waves
in a non-resonant way, and interact later on with the large
amplitude waves they have generated. The main protons ac-
celeration in the normal direction e× (upper right panel) is
well observed, and is correlated to the slow down of the cos-
mic rays. We note that the cosmic rays velocity distribution
initially Maxwellian is greatly altered during the linear and
non-linear evolution, and returns to equilibrium only during
the relaxation phase.

The heating and scattering can be quantified by inves-
tigating the time evolution of the diagonal terms ii of the
protons pressure tensor over time, defined as:

Pii,` = m`W`

∑
k

S(x− xk)(vi`,k − ui`)2 (33)

where m` and W` are the mass and numerical weight of
the proton population `, and S(x − xk) is the first order
B-spline. The sum is calculated over all the macro-particles
k of population `. Fig. 9 shows the diagonal components in
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Figure 8. Distribution of the main protons (blue dots) and cosmic
rays (red dots) in (v‖, v×) space, during the instability non-linear

phase. Obtained from a 1D simulation with a main protons tem-

perature Tm = T0. The black circles indicate the initial velocity
dispersion.

the magnetic field aligned basis for the main protons (upper
panel) and the cosmic rays (lower panel) in the low tem-
perature case Tm = T0. The main protons pressure starts
increasing in the parallel and normal direction first, as mag-
netic perturbations become of the same order as the initial
magnetic field. The perpendicular direction is not heated.
This non-gyrotropic behaviour is a product of the electric
field fluctuations, which are oriented along the normal di-
rection because of Faraday’s law and generate heating in
this direction. As the main protons rotate with the electro-
magnetic perturbation, the perpendicular direction sees no
electric fluctuations and remains unheated. We obtain the
same pressure anisotropies in 2D simulations (not shown
here). The pressure gradient generated between the normal
and perpendicular components may act against the main
protons rotation, thus reducing the growth rate of the in-
stability as well as the saturation level. As a consequence,
introducing collisions between main protons at frequencies
comparable to the NR mode growth rate might favour the
growth of the NR mode, by isotropizing the pressure com-
ponents and reducing the pressure gradient counter force.

The beginning of the collision-less isotropization pro-
cess (around 18 Ω−1

0 ) occurs at the transition from linear
to non-linear growth phase, when the main protons rotat-
ing motion starts lagging behind with the electromagnetic
waves. The increase in perpendicular pressure is a conse-
quence of the rotation of the magnetic field aligned basis
as it starts being uncorrelated to the main protons motion.
The pressure observed in the normal direction is projected
along the perpendicular component, hence the increase in
the perpendicular component and the reduced growth of the
normal one. Pressure anisotropies are suppressed when the
phase shift ∆φ = φB − φv is totally randomized during the
non-linear and relaxation phases. The main protons are then
slowly heated during the relaxation phase. By supposing a
perfect gas behaviour, we can estimate the temperature as
kbTm = Pm/nm, and obtain values corresponding to one
order of magnitude increase with respect to the initial one.
Simulations with larger initial main protons temperatures
show less heating as the instability develops less efficiently.
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Figure 9. Diagonal terms of the pressure tensor in the local mag-

netic field aligned basis for the main protons (upper panel) and

cosmic rays (lower panel), as a function of time between t = 0 Ω−1
0

and t = 40 Ω−1
0 , for a main protons temperature Tm = T0. The

blue, orange and red curves corresponds to the parallel P ‖, normal
P× and perpendicular P⊥ components respectively. The values

are calculated locally, then averaged over the simulation domain.

Obtained from a 1D simulation with a main protons temperature
Tm = T0.

We observe that the cosmic rays pressure increase in the
(ê×, ê⊥) plane takes place when a fraction of the streaming
particles acquire a negative velocity. This corresponds to the
sudden increase in pressure, in agreement with the previ-
ous discussion. The cosmic rays velocity dispersion during
the linear growth phase seen in (v‖, v×) space (Fig. 8 upper
right panel) is an effect of the velocity space representation,
which does not take into account the position of the macro-
particles. The cosmic rays follow an organized motion as no
pressure increase occurs, becoming stochastic after resonant
interactions begin settling in during the non-linear phase
(Fig. 8 lower left panel).

The heating in the parallel direction has a different ori-
gin, and can be linked to the electric field induced by the
rotating motion of the main protons. A study of the rel-
ative intensities of the longitudinal k · E/k and transverse
k×E/k electric field reveals an important electrostatic com-
ponent developing during the non-linear phase. The longi-
tudinal electric field (corresponding to the parallel compo-
nent in 1D simulations) spatial and temporal evolution is
presented in Fig. 10 alongside with the main protons den-
sity. Regions of fast growing mode appear well delimited in
space, and expand in both negative and positive directions.
Large electric field gradients are generated, leading to an
important heating of both protons populations. The back-
ground fluid is accelerated in the same direction as the cos-
mic rays initial velocity as it is negatively charged. Because
of the continuity equation, the background plasma accumu-
lates mass on the right of the growing electric field regions.
As a consequence, large density fluctuations are generated
with cavities of low density, correlated with regions of fast
growing modes and important heating of both protons popu-
lations. Note the reversal of the electric field after saturation
(tsat = 21 Ω−1

0 ), corresponding to the main protons normal
velocity u×m changing sign in the magnetic field aligned basis

Figure 10. Parallel electric field component E‖ (in unit of vA0B0,

blue to red color scale) and main protons density nm (white nm =

0.5 n0 to black nm = 3 n0 contours) as a function of space (from
0 to 300 x/l0, abscissa) and time (from 10 to 25 tΩ0, ordinate),

for a 1D simulation with a main protons temperature Tm = T0.

The magnetic field saturation is reached at t = 21 Ω−1
0 .

(Fig. 4, lower panel) and inducing a positive electric field.
As a consequence the cosmic rays drift kinetic energy cannot
be converted into magnetic energy, leading to the NR mode
saturation as discussed previously.

The 2D simulations bring additional information on the
main protons density spatial structures. Our simulations re-
sults are presented in Fig. 11. Density fluctuations are found
to increase in scale from tenth to hundredth of l0 over time,
as small scale density holes along the initial magnetic field
direction (observed in 1D simulations) merge together to
generate large scale fluctuations during the non-linear evo-
lution of the instability. The density holes expand in the
perpendicular plane because of the increasing magnetic pres-
sure, generating density fluctuations up to nm/n0 ∼ 2 in the
background plasma at the same spatial scales as the mag-
netic fluctuations, on the order of a hundredth of the proton
inertial length for the parameters investigated. This result
agrees with previous studies using a fluid description (Bell
2013, Bai et al. 2015), and may play a role in allowing fur-
ther magnetic field amplification, by taking into account po-
tentially important dynamo effects at supernova shocks (del
Valle et al. 2016).

4 SUMMARY AND DISCUSSION

The non-resonant cosmic rays streaming instability has
drawn much attention as an efficient sources of large am-
plitude magnetic field fluctuations. Its presence is thought
to be ubiquitous in many space and astrophysical environ-
ments with hugely varying physical conditions (temperature,
magnetic field, etc). The basic mechanism of the instabil-
ity may be simply captured within a fluid model consisting
of a negatively charged background plasma immersed in a
large scale magnetic field. The fluid supports an electric cur-
rent that acts to compensate the current generated by the
streaming cosmic rays and which ultimately drives the in-
stability. However a fluid model for the background plasma
neglects kinetic effects which may be crucial to correctly de-
scribe both the linear and non-linear evolution of the NR
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Figure 11. Main protons density nm/n0 map (left panels) and perturbed magnetic field intensity B1 = ||B−B0||/B0 map (right panels)

at three different times: beginning of the linear growth phase (t = 15 Ω−1
0 ), during the linear growth phase (t = 35 Ω−1

0 ), after saturation

(t = 45 Ω−1
0 ). Obtained from a 2D simulation with Tm = 25 T0.

mode. In this work we have explored the effects of plasma
temperature on the development of the NR mode.

Within the framework of linear kinetic theory, we have
extended the existing theory of the instability from zero
or small main protons temperatures to the hot, demagne-
tized regime of interaction, and proposed analytical expres-
sions for the growth rate and associated angular frequency,
and wave number. In particular, we found that the tem-
perature dependence of the growth rate of fastest grow-
ing mode changes from T−1/3 for relatively small temper-
atures (warm regime), to a steeper T−1/2 at higher tem-
peratures (hot, demagnetized regime). The threshold for
the hot, demagnetized regime is estimated from the Lar-
mor radius of the main protons and the maximum unsta-
ble wave number as kcoldrLm > 2, which can be rewritten
as βm/2 > (4nmvA0/ncru‖cr)

2 where we have defined the
plasma βm = 2(vTm/vA0)2.

Using a density ratio ncr/nm = 10−5 and a shock ve-
locity u‖cr = 2.103 km.s−1 typically considered in super-
nova and galaxy clusters shocks, one immediately finds that
very large plasma βm are required to reach the demagnetized
regime. For typical parameters of the interstellar medium,
nm = 1 cm−3, Tm = 104 K and B = 10−6 G the de-
magnetized regime is not relevant even by considering lo-
cally smaller magnetic field, and larger temperatures such
as those found in superbubbles (Mac Low & McCray 1988).
The picture may change however when considering leakage
of cosmic rays in the intergalactic medium. Taking param-
eters nm = 10−6 cm−3, ncr = 10−9 cm−3, Tm = 106 K,
u‖cr = 102 km.s−1, and a magnetic field B = 10−11 G (Kul-
srud & Zweibel 2008), one obtains a plasma βm larger than
the required value for the main protons to be demagnetized,
and finds a growth rate γhot = 6.6× 10−10 s−1 from Eq. 21
corresponding to a growth time of the order of 2πγ−1

hot = 300
years. The growth rate is strongly reduced by temperature
by a factor (2π)1/2vA0/vTm = 3 × 10−3 compared to the
cold prediction, but still larger than the cosmic rays advec-
tion rate (Zweibel & Everett 2010), which implies that the

non-resonant mode could develop in such a medium despite
the background protons being demagnetized.

To explore the non-linear evolution of the instability,
we have performed 1D and 2D hybrid-PIC simulations for
main protons temperatures spanning over three orders of
magnitude, allowing us to probe the cold, warm, and hot
regimes of interaction. Both analytical and numerical re-
sults show that because of the finite main protons Larmor
radius, the unstable waves at small scales are damped with
increasing temperature. This leads to a shift of the unstable
wavelengths toward larger scales and to an overall slower
growth of the magnetic field perturbations. Another impor-
tant kinetic effect, which to our knowledge was not discussed
in the literature before, is the development of an important
anisotropic heating of the background protons during the
linear phase of growth. It occurs between the two compo-
nents in the plane perpendicular to the ambient magnetic
field, and is generated by the distinctive geometrical cor-
relation between the electric and background fluid velocity
fields during the growth of the instability. This result sug-
gests that MHD and MHD-PIC simulations with isotropic
closure may not be adequate to describe all of the essential
features of the NR mode, as a more sophisticated closure
may be required to reproduce the anisotropic heating.

We have highlighted the existence of a non-linear phase
of amplification of the magnetic field which follows the
growth predicted by linear theory. This phase starts once
the kmin = kmax condition is fulfilled, and ends with the loss
of correlation between the magnetic perturbation and the
background fluid motion, which halts the growth of the in-
stability. This saturation mechanism is well observed in all
the simulations. A quantitative prediction of the saturated
magnetic field intensity remains a challenging issue. An es-
timate can be obtained by extrapolating quasi-linear theory
results (Winske & Leroy 1984, Winske & Quest 1986) to
saturation, which yields that half of the initial cosmic rays
drift kinetic energy should be converted into magnetic field
energy (Eq. 32). We find in the simulations that the energy
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conversion efficiency between the streaming population drift
kinetic energy and the magnetic field energy can be up to 60
per cent in the low temperature case, corresponding to one
order of magnitude increase in comparison to the initial am-
bient magnetic field with our parameters. This is strongly
reduced with increasing temperature, down to less than 5
per cent in the hot and demagnetized regime.

The non-resonant mode growth leads to the generation
of large density gradients in the background plasma dur-
ing the non-linear phase, produced by the induced parallel
electric field and by the increasing magnetic pressure. In ad-
dition, the cosmic rays are decelerated by this parallel elec-
tric field and some of them are then able to interact with
the large amplitude electromagnetic waves they have gener-
ated, leading to important scattering in velocity space. As
such, the non-resonant mode contains an intrinsic scattering
mechanism, which may play a role in the efficient confine-
ment of the cosmic rays at the shock boundary of supernova
remnants.

We conclude by noting that as in many previous stud-
ies (e.g. Winske & Leroy 1984, Riquelme & Spitkovsky 2009,
Ohira et al. 2009), we performed simulations without a con-
tinuous injection of streaming particles. The immediate con-
sequence is that the cosmic rays current is self-consistently
decreasing through time as the drift kinetic energy is be-
ing converted into magnetic fluctuations. An alternative ap-
proach is to maintain the driving current, either by re-
accelerating the cosmic rays artificially (Lucek & Bell 2000),
or by injecting new ones in the simulation domain over time
(Bai et al. 2015, Mignone et al. 2018, Casse et al. 2018)
which was used to directly simulate particles acceleration at
supernova shocks. A comparison between these approaches
shows that the development of the NR instability is not sig-
nificantly altered. In particular the magnetic field intensity
at saturation and the density fluctuations are quantitatively
similar, with magnetic field amplifications of the order of
ten times the ambient magnetic field and large density fluc-
tuation of the order of the initial plasma density. These re-
sults however apply to the cold regime, and the ambient
medium temperature remains an important factor in deter-
mining whether the non-resonant streaming instability can
efficiently generate magnetic field fluctuations, and should
be taken into account to model accurately cosmic rays ac-
celeration with realistic plasma conditions.
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APPENDIX A: HELICITY AND POLARIZATION

We consider an electromagnetic, circularly polarized perturbation propagating along the ex direction with an angular frequency
ω = ωr+iγ where ωr is defined to be positive. The wave number k can be either positive or negative depending on the direction
of propagation. We define the polarization as the sense or rotation of the magnetic field in time, observed at a given position
in space such that B1 = B1 cos(kx− p±ωt)ey − B1 sin(kx− p±ωt)ez, where p± corresponds to the polarization of the wave:
p± = +1 for a right hand polarized wave and p± = −1 for a left hand polarized wave. We define the helicity of a wave, as the
sense of rotation of the magnetic field in space, at a given time. Helicity and polarization are linked through the direction of
propagation of the wave vφ = ωr/k. The following table summarize these properties:

vφ > 0 vφ < 0

Positive helicity Right polarization Left polarization

Negative helicity Left polarization Right polarization

APPENDIX B: KINETIC THEORY FOR A DEMAGNETIZED PLASMA

The dispersion relation for parallel propagating electromagnetic waves in plasma with Maxwellian populations can be written
as:

−k2c2 − 1√
2

∑
α

[
ω2
pα

vTα

(
u‖α −

ω

k

)
Z(ζ±α )

]
= 0 (B1)

where the thermal velocity is given by vTα = (kBTα/mα)1/2, kB is the Boltzmann constant, ωpα = (nαq
2
α/ε0mα)1/2 is the

plasma angular frequency, Ωα = qαB0/mα is the initial cyclotron angular frequency, ε0 is the permittivity of free space. The
summation is performed over all populations α = e,m, cr. We will restrict ourselves to low frequency waves, such that ω < Ωα.
Under this assumption, ζ±α can be rewritten as:

ζ±α ≈
1√
2

(
p±

krLα
− u‖α
vTα

)
(B2)

Eq. B2 highlights two different physical parameters. The first term is the ratio between the wavelength and the thermal
Larmor radius, and characterizes the magnetization of the population. The second term is the ratio between the drift and
thermal velocity of the population, which describes the velocity distribution. Populations with small thermal velocity and/or
large drift velocity such as the cosmic rays will interact non-resonantly with the perturbations at a scale k, whereas sufficiently
hot and slowly drifting population such as the main protons may interact resonantly or become demagnetized.

We will use the reference frame of the main protons. By making the assumption of magnetized electrons, demagnetized
main protons, and of cosmic rays with a large drift over thermal velocity ratio, the arguments of the Fried and Conte functions
in Eq. B1 follow the limits: |ζ±cr| � 1, |ζ±e | � 1 and |ζ±m| < 1. Using the appropriate asymptotic expansions, the Fried and
Conte functions can then be rewritten as:

Z(ζ±cr) = −
√

2

(
p±

krLcr
− u‖cr
vTcr

)−1

+O(ζ±cr)
3 (B3)

Z(ζ±e ) = −
√

2

(
p±

krLe
− u‖e
vTe

)−1

+O(ζ±e )3 (B4)

Z(ζ±m) = −
√

2

(
p±

krLm

)
+ iπ1/2 +O(ζ±m)3 (B5)

We have simplified the exponential terms and neglected the contributions of order O(ζ±α )3. In the following, we will write Rα
as the real part of the expansions for each populations α. Inserting the Fried and Conte expansions in the dispersion relation
gives:

√
2k2

v2A0

Ω2
0

=
1

vTm

[ω
k

(Rm + iπ1/2)
]

+
Re
vTe

ω2
pe

ω2
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[ω
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]
+
Rcr
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ω2
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ω2
pm

[ω
k
− u‖cr

]
(B6)

Separating the real and imaginary parts of ω = ωr + iγ, one obtains:

γ(k) = −k
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ω2
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+
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(B7)
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ωr(k) = k
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We consider protons populations with a small density ratio ncr/nm, neglect electron inertia (which is equivalent to the low
frequency assumption) and use the current condition (Eq 1). After some algebra, one obtains the growth rate and real angular
frequency in the hot, demagnetized regime of interaction:

γhot(k) =
(2π)1/2

rLmξ

k

Ω0

(
v2A0 −

ncr
nm

u2
‖cr

)
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(
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0
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n2
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n2
m

)
u‖cr

π

k2r2Lm
+ 2

(
1
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1
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)2 (B9)

ωr,hot(k) =

k3r2Lm
(
k2r2Lm − 1

)(ncr
nm

u‖cr + p±
k

Ω0
v2A0

)
k4r4Lm + k2r2Lm

(π
2
− 2
)

+ 1
(B10)

where we have defined the parameter ξ = p±ku‖cr/Ω0 − 1. We consider krLm � 1 and ku‖cr/Ω0 � 1, which corresponds to
the hypothesis of demagnetized main protons, and to the instability requirement k > kmin discussed in Sec. 2.1. One finds:

γhot(k) =
(π

2

)1/2 1

rLmu‖cr
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]
(B11)

ωr,hot(k) = k

(
ncr
nm

u‖cr + p±
k

Ω0
v2A0

)
(B12)

Calculating the growth rate derivative over k and searching for an extremum yields:

khot =
ncr
nm

Ω0

vA0
(B13)

Inserting in the expressions of γhot(k) and ωr,hot(k), we obtain the growth rate, real angular frequency and phase velocity
vφ,hot = ωr,hot/khot for the fastest growing unstable mode:

γhot =
(π

2

)1/2 ncr
nm

u‖cr
vTm

Ω0 (B14)

ωr,hot =
n2
cr

n2
m

u‖cr
vA0

Ω0 (B15)

vφ,hot = −ncr
nm

u‖cr (B16)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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