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ABSTRACT
We present the first application of the extended Fast Action Minimization method (eFAM) to a real data set, the SDSS-
DR12 Combined Sample, to reconstruct galaxies orbits back-in-time, their two-point correlation function (2PCF) in real-space,
and enhance the baryon acoustic oscillation (BAO) peak. For this purpose, we introduce a new implementation of eFAM
that accounts for selection effects, survey footprint, and galaxy bias. We use the reconstructed BAO peak to measure the
angular diameter distance, DA(z)rfid

s /rs, and the Hubble parameter, H (z)rs/r
fid
s , normalized to the sound horizon scale for a

fiducial cosmology rfid
s , at the mean redshift of the sample z = 0.38, obtaining DA(z = 0.38)rfid

s /rs = 1090 ± 29(Mpc)−1, and
H (z = 0.38)rs/r

fid
s = 83 ± 3(km s−1 Mpc−1), in agreement with previous measurements on the same data set. The validation

tests, performed using 400 publicly available SDSS-DR12 mock catalogues, reveal that eFAM performs well in reconstructing
the 2PCF down to separations of ∼25h−1Mpc, i.e. well into the non-linear regime. Besides, eFAM successfully removes the
anisotropies due to redshift-space distortion (RSD) at all redshifts including that of the survey, allowing us to decrease the
number of free parameters in the model and fit the full-shape of the back-in-time reconstructed 2PCF well beyond the BAO peak.
Recovering the real-space 2PCF, eFAM improves the precision on the estimates of the fitting parameters. When compared with
the no-reconstruction case, eFAM reduces the uncertainty of the Alcock-Paczynski distortion parameters α⊥ and α� of about 40
per cent and that on the non-linear damping scale �� of about 70 per cent. These results show that eFAM can be successfully
applied to existing redshift galaxy catalogues and should be considered as a reconstruction tool for next-generation surveys
alternative to popular methods based on the Zel’dovich approximation.

Key words: methods: numerical – cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

Baryon acoustic oscillations (BAO) are one of the main cosmological
probes to investigate the nature of dark energy and search for
deviations from General Relativity on cosmological scales. For this
reason, they have been selected as primary science case of both
current spectroscopic surveys, such as WiggleZ (Drinkwater, Blake
& Wigglez Team 2009), the Baryon Oscillation Spectroscopic Survey
(BOSS; Dawson et al. 2013), and its successor the extended Baryon
Oscillation Spectroscopic Survey (eBOSS; Blanton et al. 2017), and
future surveys operated by the Dark Energy Spectroscopic Instrument
(DESI; DESI Collaboration 2016), the ESA Euclid mission (Laureijs
et al. 2011), and the Roman Observatory (Green et al. 2012). Thanks
to their wide sky coverage, all the new-generation surveys allow
the measurement of the acoustic scale with unprecedented accuracy.
However, to reach the ambitious goal of sub per cent precision and

� E-mail: elena.sarpa@lam.fr

extract the maximum information from the non-linear scales, one
needs to pair the quality of observations with an accurate model of the
small-scale clustering. To this end, the use of highly-optimized BAO
reconstruction techniques able to minimize the non-linear effects
that blur the acoustic feature and possibly trace the orbits of galaxies
backwards-in-time is nowadays an essential step of any clustering
analyses.

For the official SDSS-III/BOSS analysis, the Zel’dovich recon-
struction technique (ZA; Eisenstein et al. 2007b; Padmanabhan
et al. 2012) has been successfully adopted, yielding a remarkable
improvement on the BAO measurements in both momentum (Beutler
et al. 2017) and configuration space (Alam et al. 2017). However, the
intrinsic linearity of the method prevents the accurate modelling
of redshift-space distortions (RSD), usually overestimating their
amplitude (Kazin et al. 2013), and limits the range of validity
of the recovered linear two-point correlation to relatively large
separations (Padmanabhan, White & Cohn 2009). Pursuing a more
accurate description of the real-space linear correlation function,
new non-linear BAO reconstruction techniques have been proposed.
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In particular, iterative reconstruction techniques (e.g. Schmittfull,
Baldauf & Zaldarriaga 2017; Wang et al. 2017; Hada & Eisenstein
2018) have attracted special attention and have been successfully
tested on N-body dark matter simulations. Mao et al. (2020) proposed
an innovative approach which intends to recover the BAO signal
using deep convolutional neural networks. The extended Fast Action
Minimization method (eFAM; Sarpa et al. 2019), used in this work, is
a variational reconstruction method designed to recover the geodesics
of the mass tracers via minimization of the action of the system.

In this study, we present the first application of eFAM to spectro-
scopic data emphasizing its distinctive capability to simultaneously
recover the real-space correlation function at both the observed
and high redshift well into the mildly non-linear regime. To fully
exploit the non-linearity of eFAM, we apply the reconstruction on
the lower redshift bin 0.2 < z < 0.55 extracted from the BOSS-DR12
Combined Sample, which is mostly affected by non-linear clustering.
Finally, we measure the expansion rate H(z) and the angular diameter
distance DA(z) before and after reconstruction using the clustering
wedges (Kazin, Sánchez & Blanton 2012).

The paper is organized as follows. In Section 2, we illustrate the
new features of the eFAM algorithm accounting for masked regions,
fibres collision, flux selection, and galaxy bias, as required for the
application to wide-field, massive spectroscopic galaxy surveys. The
BOSS-DR12 data and the mocks employed to test the method and
build the covariance matrix are illustrated in Section 3. In Section 4,
we describe the statistical tools used in the analysis, and motivate
the choice of the fiducial fitting procedure in Section 5. We study the
systematic behaviour of eFAM by reconstructing 400 realistic mocks
in Section 6, and analyse SDSS data in Section 7. In Section 8, we
discuss the main points of our study and present our conclusions.

2 EFA M FO R R E A L G A L A X Y S U RV E Y S

The eFAM method, described in details in Sarpa et al. (2019),
reconstructs the full-orbit of N point-like mass particles at their
observed positions {xi(t)}i=1,··· ,N , by minimizing the action of the
self-gravitating system

S =
N∑

i=1

∫ Dobs

0
dD

[
f EDa2 1

2

(
dxi

dD

)2

+ 3�m,0

8πf EDa
φtot(xi)

]

+
N∑

i=1

1

2
(f EDa)2

obs

(
dxi,obs

dD
· xi,obs

)2

(1)

using mixed boundary conditions (Peebles 1989). Under the hypoth-
esis that galaxies trace the underling mass distribution, boundary
conditions are set by the galaxies observed redshifts, si,obs, and their
assumed vanishing peculiar velocities at early times. Here, a indicates
the scale factor, D is the linear growth factor that we used as time
variable, f = d ln D/d ln a is the linear growth rate, and E = H/H0 is
the dimensionless Hubble parameter. �m represents the mass density
parameter and the subscripts ‘0’ and ‘obs’ indicate, respectively,
quantities measured at the present epoch and at the redshift of the
survey z = zobs. Following Nusser & Branchini (2000), we model
galaxies’ orbits as a linear combination of M time-dependent basis
functions {qn(D)}n viz.

xi(D) = xi,obs +
M∑

n=0

Ci,nqn(D) (2)

and minimize the action in equation (1) with respect to the expansion
coefficients Ci,n.

In this work, we modify the original implementation of the eFAM
algorithm (Sarpa et al. 2019), which has been already tested on sim-
ulated haloes catalogues, to optimize its application to real surveys.
Specifically, we focus on the inclusion of unique selection effects,
observational biases, and sample geometry in the computation of the
total gravitational potential of the system, φtot.

2.1 Survey geometry

Real surveys probe the mass distribution within a large yet finite
region of the Universe. The total gravitational potential at any point
x in this region, φtot(x), is given by the sum of two terms: the
potential due to the matter distribution inside the volume of the
survey, φint(x), and the potential due to the external mass distribution,
φext(x), which is unknown. Neglecting the external matter distribution
in the estimation of φtot in equation (1) generates spurious tidal fields
that affect the quality of the reconstruction. To mitigate their effect, a
typical approach is to estimate φext(x) assuming a homogeneous and
isotropic distribution of matter outside the survey volume with the
same mean density of the galaxy sample. This procedure removes
the spurious tidal fields due to the geometry of the survey. However,
since we do not model the clustering properties of the external mass
distribution, residual tidal effects are expected to degrade the quality
of the reconstruction as we approach the edge of the survey volume.
For this reason, we define a buffer region at a distance dBuffer from
the edges that we use to perform the reconstruction but discard in
the analysis of the reconstructed field. The optimal value for dBuffer

depends on the survey geometry and on the desired accuracy of the
reconstruction and thus needs to be evaluated in each specific eFAM
application.

A simple, brute force implementation of this strategy would be
to embed the survey region in a much larger volume filled with
an un-clustered distribution of synthetic objects with same angular
and radial selection function and mean density as the real galaxies
of the survey, and run eFAM over all objects, real and synthetic
alike. However, the computational time required by this procedure
is prohibitive since the number of synthetic objects needs to be
very large to minimize shot-noise errors (with the Poisson solver
implemented by eFAM, the CPU time required to compute the
gravitational potential increases linearly with the number of objects).

For this reason, we adopt instead an equivalent, more effective
approach based on the Newton’s shell theorem: (i) we assume a
homogeneous isotropic distribution of mass throughout the whole
Universe, inside and outside the survey volume, and set φtot(x) = 0
everywhere; (ii) we use a Poisson solver to numerically estimate the
potential φint as generated by a uniform distribution of matter within
the survey volume; (iii) we set φext = −φint. As mentioned above,
the CPU time required for the computation of the potential due to
synthetic objects is larger than the one needed to compute it from
galaxies. Though, here the calculation is performed only once per
eFAM reconstruction and not at each time-step in equation (1). The
increase in computational time is, therefore, negligible.

To assess the accuracy of this procedure, we apply eFAM to
a set of dark matter haloes extracted from the DEUS simulation
(Rasera et al. 2014) with same footprint and similar depth as the
BOSS-DR12 survey. Fig. 1 illustrates the comparison between the
‘true’ velocity field in the N-body simulation (top-left panel) and
the reconstructed one before (top-right panel) and after (bottom-
left panel) including the effect of the model tidal field φext. Our
procedure effectively removes the spurious bulk-flow that would
otherwise dominate the velocity field. The velocity residuals map
(bottom-right panel) confirms that spurious flows are confined to
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542 E. Sarpa et al.

Figure 1. 2D velocity maps for the BOSS-like sub-sample carved from the DEUS dark matter haloes simulation. Top-left panel: N-body velocity field. Top-right
panel: velocity field reconstructed without accounting for the external tidal field and assuming an empty universe outside the survey; the bulk flow induced
by the geometry of the survey is dominant. Bottom left-hand panel: velocity field reconstructed including the external tidal field; the geometrical bulk flow is
successfully removed and the Nbody velocity field efficiently recovered. Bottom right-hand panel: residuals velocity field VNbody-VeFAM after correcting for the
external tidal field.

the regions near the edges justifying our choice of discarding those
regions in the analysis. A quantitative assessment of the quality of
the reconstruction and a test designed to evaluate systematic errors
is illustrated in Appendix A.

2.2 Galaxy bias

The original implementation of FAM (Nusser & Branchini 2000)
assumes that the average mass density of the survey volume matches
the cosmological mean and that all the mass is associated with
individual, point-like visible objects. However, real galaxies are
known to be biased tracers of the mass density field. To account for
galaxy bias, we assume that bias is a local, linear and deterministic
phenomenon and that the total mass distribution can be split in two
components: a distribution of point-like discrete masses accounting
for both the luminous and dark matter associated to each observed
galaxy, ρ ′

g(x), surrounded by a uniform, smooth distribution of dark
matter, ρ̄DM, filling the survey volume, i.e.

ρtot(x) ≡ ρ ′
g(x) + ρ̄DM

∑
g

[
1 − δD(x − xg)

]
, (3)

where the sum runs over galaxy positions xg. The relation between
the observed galaxy density field, ρg, and ρ ′

g is set by the linear
biasing assumption δtot = δg/b to

ρ ′
g(x) =

(
δg(x)

b
+ 1

)
�m,0

3H 2

8πG

∑
g

δD(x − xg), (4)

where �m,03H 2/ (8πG) = ρ̄tot, δtot = 1 + ρtot/ρ̄tot, and δg = 1 +
ρg/ρ̄g.

Equation (4) implies that the net effect of the bias is to down-weight
the mass of individual objects, hence lowering their contribution to

the mass density below the cosmological mean. Since eFAM solely
accounts for the mass component associated with discrete objects,
the down-weighting of the masses will cause the survey volume
to be treated as an under-dense region and a net outflow will be
predicted. To restore the density balance, we thus need to account
for the gravitational pull of the smooth dark component. Our strategy
is to model the gravitational potential generated by the smooth dark
matter distribution, φsmooth, as an extra unknown external field to be
added to the one exerted by the homogeneous external distribution
described in Section 2.1. Similarly to the procedure adopted for the
external tidal field, we infer the new external gravitational potential
φ′

ext ≡ φext + φsmooth setting φ′
ext = −φ′

int, where φ′
int is now estimated

having fixed the mean density of the smooth matter distribution
within the survey to ρ̄ ′

R = ρ̄tot − ρ̄DM.
In our fiducial biasing scheme, we treat all mass tracers as point-

like masses, ignoring the physical extension of both the observed
galaxies and their hosting haloes. Although this approximation does
not constitute a problem as long as the inter-object separation is
significantly larger than the halo radius (Sarpa et al. 2019)), it
becomes relevant when attempting to trace the orbits of galaxies in
high-density environments, like groups, or in a �m = 1 cosmology,
where haloes are very extended objects (see e.g. Fig. 5 in Branchini
& Carlberg (1994)). In this work, we reconstruct the dynamic of
a relatively low-density galaxy sample, n̄g = 0.003, evolving in a

CDM universe, i.e. with a mean galaxy separation larger than
their typical halo size. We can, therefore, safely ignore the physical
extension of the galaxies.

The second peculiarity of our bias model is the conservation of
the number of tracers trough time. As a result, eFAM fails to recover
the merging history of both observed galaxies and their hosting
haloes effectively tracing the trajectories of the centre-of-mass of
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the clustered matter distribution associated with visible objects. This
approximation should not spoil the quality of reconstruction as long
as the mismatch between the position of the centre-of-mass and that
of the parent haloes is small compared to the scale of the structures
we wish to trace. Since most of the displacement along the trajectory
occurs at recent epochs, where major mergers are less common, we
expect this assumption to produce negligible effects on our clustering
measurements at high redshifts. The goodness of this assumption has
been verified by the success of eFAM at recovering the linear two-
point correlation functions at relatively high redshifts when applied
to simulated halo catalogues (Sarpa et al. 2019)).

3 DATA AND SIMULATIONS

3.1 SDSS-DR12 Combined Sample

We apply eFAM reconstruction algorithm to the galaxies in the low-
redshift bin 0.2 < z < 0.55 of the ‘BOSS Combined Sample’,
corresponding to the first redshift bin considered in the clustering
analyses of the BOSS collaboration (Kitaura et al. 2016; Ross et al.
2017; Vargas-Magaña et al. 2018). The ‘Combined Sample’ spans
the redshift range 0.2 < z < 0.75 and includes both the Constant
Stellar Mass sampe (CMASS), designed to be approximately stellar-
mass limited above z = 0.45, and the low-redshift (LOWZ) sample,
targeting galaxies in the redshift range 0.15 < z < 0.43. Having
considered the survey footprint, we decide to focus on the northern
galactic cap to reduce both the computational cost of the recon-
struction and the impact of the external tidal field, which would
be large in the thinner southern strip. Following (Ross et al. 2017,
hereafter Ross17), we assign a statistical weight to each galaxy to
account for fibre collision, veto flag, and the need to minimize the
variance of the clustering estimator. The latter aspect is dealt with
using the so-called FKP weight (Feldman, Kaiser & Peacock 1994)
ωFKP = 1/[1 + n̄(zi)P (k0)] where n̄ is the redshift distribution at the
galaxy redshift (zi), and P(k0) = 40 000(h−1Mpc)3 is the amplitude
of the power spectrum evaluated approximately at the BAO scale for
SDSS Luminous Red Galaxies (LRG). In the eFAM implementation,
we use these weights to assign an effective mass to each individual
object.

3.2 MultiDark-Patchy mock catalogues

To test the performances of eFAM and estimate the covariant errors
employed in the likelihood analysis, we make use of the publicly
available MultiDark-Patchy (hereafter MD-Patchy) mocks (Kitaura
et al. 2016; Rodrı́guez-Torres et al. 2016). MD-Patchy are extracted
from the Big-MultiDark Planck simulation (Klypin et al. 2016)
which assumes a spatially flat 
CDM Planck cosmology with �m =
0.307115, �
 = 0.692885, �b = 0.048, σ 8 = 0.8288, ns= 0.9611,
h = 0.6777. Furthermore, a non-linear, deterministic, stochastic
bias recipe has been applied to the galaxy catalogue to match the
clustering properties of the BOSS LRG sample.

In the following analysis, we use the V6-C version of the
‘Combined’ sample mocks, built to estimate the covariance matrix
of the 1, 2, and 3-points clustering statistic of SDSS-DR12/BOSS.
Since we are interested in computing the 2PCF of the mock galaxies,
we also use the associated mock random catalogue which contains
50 times as many objects as the SDSS-DR12 mocks and has the
same footprint, selection function, and statistical weights. To reduce
the computational cost of our analysis, we decide to consider only
400 mocks out to the 1000 employed by Ross17. The impact of this
choice is discussed in Section 8.

4 STATI STI CAL TOOLS

4.1 Two-point correlation function estimator

To gauge the performance of the eFAM method, we perform a
similar clustering analysis to that already carried out by the BOSS
collaboration aimed at estimating the Hubble parameter, H, and the
diameter angular distance, DA, from the analysis of the BAO peak
in the anisotropic 2PCF, ξ (s, μ). Here, s represents the separation of
the galaxy pair and μ is the cosine of the angle between s and the
bisector of the angle to the pair. To estimate the ξ (s, μ) of each sam-
ple,we use the minimum variance, unbiased Landy & Szalay (1993)
estimator

ξ (s, μ) = DD(s, μ) − 2DR(s, μ) + RR(s, μ)

RR(s, μ)
, (5)

where the data-data, DD, data-random, DR, and random-random,
RR, counts are evaluated in bins of �s = 5h−1Mpc and �μ =
0.05, within the ranges 30 < s < 190 and 0 < μ < 1, respectively.
We measure the 2PCF of three types of data sets: (i) the observed,
redshift-space (hereafter labelled ‘Obs’), in which SDSS galaxies
are placed at their comoving coordinates using measured redshift
as distance proxy and assuming the cosmology of the mocks as
fiducial model, (ii) the reconstructed real-space galaxies at the epoch
of observation (labelled ‘RecZ’), obtained by placing galaxies at
their reconstructed real-space positions, and (iii) the back-in-time
reconstructed real-space positions (‘RecL’) in which galaxies are
displaced back-in-time to the real-space positions they occupied at an
earlier epoch. Unlike the standard ZA reconstruction, eFAM does not
require any spatial smoothing of the observed density field to obtain
the reconstructed one. We can thus use the estimator in equation (5)
rather than the modified version of Padmanabhan et al. (2012),
which additionally requires to reconstruct the back-in-time orbits
of the random objects, with a consequent important computational
load.

To minimize the impact of the external tidal field, we estimate
the 2PCF of the sample after having discarded all the objects, real
and random alike, that reside in the buffer region (see Section 2.1).
Besides, since reconstruction displaces the objects from their original
positions, we trim the reconstructed catalogs to match the survey
footprint and depth. Finally, the 2PCF is estimated by assigning to
each object its statistical weight accounting for FKP, fibre collision,
and veto flag.

4.2 Clustering wedges

We analyse the anisotropic 2PCF focusing on the wedge clustering
statistics introduced by Kazin et al. (2012) and applied by Kazin et al.
(2013) to the study of the SDSS-DR11 galaxy clustering. We shall
consider the two wedges that model clustering along the parallel (�)
and transverse (⊥) direction to the line-of-sight:

ξ‖(⊥)(s) = 1

�μ

∫ 1(0.5)

0.5(0)
dμξ (s, μ). (6)

Following Kazin et al. (2013), we focus on the BAO peak whose
scale depends on a combination of H, DA and the sound horizon scale
during baryon drag epoch, rs. Since the radial clustering wedge ξ � is
mostly sensitive to H while the transverse one, ξ⊥, is sensitive to DA,
one can measure ξ � and ξ⊥ to break this degeneracy. This is done by
exploiting the Alcock-Paczynski effect (Alcock & Paczynski 1979)
(hereafter AP), which quantifies the dependence of the measured
separations along and across the line of sight, sfid

‖ and sfid
⊥ , on a
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544 E. Sarpa et al.

Figure 2. Correlation matrices of the clustering wedges estimated from 400 MD-Patchy mocks. Left panels: Obs sample. Middle panels: RecZ samples. Right
panels RecL samples. Top panels: catalogs extracted by excluding all objects laying within dBuffer = 200h−1Mpc from the survey edges. Bottom panels: dBuffer

= 125h−1Mpc. The colour code is set accordingly to the normalized covariance amplitude.

fiducial cosmological model, i.e.

s t
⊥ = α⊥sfid

⊥ with α⊥ ≡ Dt
A

Dfid
A

rfid
s

r t
s

, (7)

s t
‖ = α‖sfid

‖ with α‖ ≡ H fid

H t

rfid
s

r t
s

, (8)

to infer the ‘true’ values Ht and Dt from the modelling of the
anisotropy in the measured 2PCF. The discrepancy between the
fiducial and true separation, and thus between the fiducial and true
cosmology, is quantified by the parallel and perpendicular dilation
parameters, α� and α⊥.

In redshift-space, anisotropies in the 2PCF are generated by both
RSD and AP-distortions. Hence, one needs to disentangle the two
effects to accurately estimate Ht and Dt. In this work, we use eFAM to
remove RSD. However, since the reconstruction algorithm demands
to set a value for the linear growth rate, f, we shall not attempt to
estimate its value in the likelihood analysis of reconstructed samples.
Instead, we will check the adequacy of the fiducial f by verifying that
the RSD have been consistently removed in both reconstructed data
sets, RecZ and RecL.

In addition to clustering wedges, we study the anisotropy in the
2PCF considering its multipoles (Padmanabhan & White 2008)

ξl(s) = 2l + 1

2

∫ 1

−1
dμξ (s, μ)Ll(μ), (9)

where Ll(μ) are the Legendre polynomials, which provide an
equivalent analysis of the clustering properties to that of the wedges
but ease the estimation of anisotropies as a non-vanishing quadrupole.

4.3 Covariance matrix

Given the strong correlation between ξ⊥ and ξ �, the covariance
matrix of the clustering wedges Cs is built by combining the auto-
covariance and the cross-covariance of the binned parallel and
perpendicular wedges measured from the 400 mocks. As shown
by Hartlap, Simon & Schneider (2007), Percival et al. (2014), the
precision matrix, �, estimated by inverting the measured covariance
matrix, Cs, is a biased estimate of the true one, with the amplitude
of this bias depending on both the number of mocks ns used to
measure Cs and its dimension nb × nb. To correct for this bias
we set

� =
(

1 − nb + 1

ns − 1

)
C−1

s . (10)

The core of our analysis focuses on the properties of the 2PCF in the
separation range [50, 150]h−1Mpc. For this application, we sample
the clustering wedges in 20 bins of 5h−1Mpc covering the whole
range of interest.

Fig. 2 illustrates the auto and cross-correlation matrices of the
clustering wedges measured for the Obs (left panels), RecZ (middle)
and RecL (right) mock samples. The difference between the top
and bottom panels is due to the different extent of the buffer region
that contains objects excluded from the analysis. A simple visual
inspection reveals that the application of eFAM significantly reduces
the amplitude of the off-diagonal terms in both RecZ and RecL
samples.
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eFAM: application to SDSS-DR12 combined sample 545

Table 1. Fitting parameters in the likelihood analysis and their prior range. Top: parameters used to fit the correlation function averaged over the mocks 〈ξ〉
(Section 6.1). Bottom: parameters used to fit the 2PCF of the data (Section 7 and that of a single mock (Section 6.2).

sample α⊥ α� �⊥ (h−1Mpc) �‖ (h−1Mpc) b f �s (h−1Mpc) {Ap, i}i = 0, 1, 2

〈ξ〉 (Section 6.1)
All Flat: [0.7,1.3] Flat [0.7,1.3] Flat: [0,15] Flat: [0,15] Flat: [0,10] Flat: [0,5] Flat: [0,10] Flat: [−10, 10]

Data and individual mocks (Section 6.2 and 7)
Obs Flat: [0.7,1.3] Flat: [0.7,1.3] Fixed to 〈ξ〉 Fixed to 〈ξ〉 Fixed to 〈ξ〉 Fixed to 〈ξ〉 Fixed to 〈ξ〉 Flat: [−10, 10]
RecL Flat: [0.7,1.3] Flat: [0.7,1.3] Fixed to 〈ξ〉 Fixed to 〈ξ〉 Fixed to 〈ξ〉 Fixed to 0 Fixed to 0 Flat: [−10, 10]

5 MO D E L L I N G TH E 2 P C F

5.1 Two-point correlation function model

The goal of this study is to model the anisotropic 2PCF over a large
range of scales including the BAO peak. Hence, we need to take into
account RSD, AP-distortions and non-linear clustering evolution.
The first step is to model the non-linear mass power spectrum in
real-space, PR(k, μ), using the Eisenstein & Hu (1998) model

P R(k, μ) = [Pl(k) − Pnw(k)] e
−k2

[
(1−μ2)�2

⊥/2+μ2�2
‖/2

]
+ Pnw(k),

where Pl(k) is the linear power spectrum, Pnw is the no-wiggle power
spectrum, and �� and �⊥ quantify the non-linear damping along and
across the line-of-sight (Crocce & Scoccimarro 2006; Eisenstein,
Seo & White 2007a; Crocce & Scoccimarro 2008). Pl is estimated
using CAMB (Lewis, Challinor & Lasenby 2000) having assumed
the same cosmological model as the mock catalogs while Pnw is
computed analytically.

To model RSD, we combine linear theory to model large-scale
coherent motion (Kaiser 1987), with the streaming model (Peacock
& Dodds 1994) to account for small-scale incoherent velocities
obtaining

P S(k, μ) = (1 + μ2f /b)2

1 + (
k2μ2�2

s

)2 P R(k, μ), (11)

where the superscript ‘S’ indicates quantities measured in redshift-
space, μ is the cosine angle between the wave vector and the line-
of-sight direction, b is the linear bias parameter, and �s is the
velocity dispersion parameter. The redshift-space template is only
used to fit the 2PCF of the Obs sample, i.e. before performing eFAM
reconstructions; it is not included to model the reconstructed 2PCF
of the RecZ and RecL sample since we find that the reconstructed
2PCF of the RecZ and RecL samples is well fit by a model with f =
�s = 0 (see Section 6.1).

Finally, we model the measured clustering wedges, {ξ̃R(S)
p }p=⊥,‖,

as follows: i) we estimate the multipoles of the anisotropic power
spectrum, PR(S)(k, μ), defined as

P
R(S)
l (s) = 2l + 1

2

∫ 1

−1
dμP R(S)(k, μ)Ll(μ); (12)

ii) we compute the corresponding 2PCF multipoles ξ l performing a
Fourier transform of each multipole Pl; (iii) we combine the 2PCF
multipoles to obtain the clustering wedges, ξR(S)

p (s) as described in
Kazin et al. (2012), and (iv) we obtain the fiducial template by adding
the full-shape term Ap(s), viz.

ξ̃R(S)
p (s; α⊥, α‖) = ξR(S)

p (s; α⊥, α‖) + Ap(s). (13)

Here, the two dilation parameters are free parameters accounting for
the mismatch between the fiducial and the true cosmology while the
full-shape term Ap(s) = Ap, 0 + Ap, 1/s + Ap, 2/s2 is introduced to

account for possible systematic errors in reconstructing the broad-
band shape of the 2PCF. Differently from the fiducial BOSS template
(Ross17), we omit the shape parameter B that would be highly
degenerate with those controlling the RSD.

5.2 Likelihood analysis

5.2.1 Maximization of the likelihood

To fit the model to the measured 2PCF, we search for the maximum of
the likelihood in the space of the free parameters using the modelling
routine in the CosmoBolognaLib library (Marulli, Veropalumbo &
Moresco 2016). Maxima are searched for using a two-step procedure.
First, the Nelder-Med method (Nelder & Mead 1965) is used
to approach the best-fitting value. Here, the the Np-dimensional
parameters space is probed by evaluating the likelihood at the vertex
of a running (Np + 1)-dimensional simplex which progressively
approaches the nearest maximum. Second, once convergence is
attained, we refine the search by running a Markov Chain around the
best-fitting value. In the following, we perform different likelihood
analyses varying the number of free parameters. Table 1 summarizes
our choices for the analysis of the mean correlation function averaged
over 400 mocks, 〈ξ〉, and for the study of individual mocks.

Similarly to the majorities of the multidimensional optimization
algorithms, the Nelder-Med method approximates a local rather
than the global maximum. To ensure convergence to the global
maximum, it is crucial to set the initial size of the simplex so as
to cover a sufficiently large portion of the Np-dimensional domain.
We do so by starting the maximization of the likelihood from an
equilateral simplex and re-scaling the fitting parameters so that to
have similar magnitudes. The parameters α⊥, �, �⊥, �, �s, f, and b
represents physical quantities thus their amplitude can be guessed
from perturbation theory (Crocce & Scoccimarro 2008). Ross17
estimate them to be in the range [1,10]. On the contrary, the values of
the shape parameters {Ap, i}i is a priori unknown and their values can
significantly vary. To avoid handling quantities with very different
magnitudes we normalize the values of Ap, i by the factor 3σξp (rref )r

i
ref ,

where σξp (rref ) is the standard deviation of ξ p(rref) among the mocks
evaluated at an arbitrary scale rref. With this parametrization, and
assuming Ap, i = 0 ∀i for the mean wedges averaged over all the
mocks 〈ξ p〉, we are able to model the 2PCF at rref for the almost
totality of the mocks using |Ap, i| � 1. Aiming at modelling the
distortion of the 2PCF that can not be described solely by physical
parameters (e.g. a negative value of the correlation function at small
scales), we set rref ∼ 80h−1Mpc, corresponding to the deep of the
correlation function at small separations.

5.2.2 Prior and posterior

To minimize the risk of biased results, we assign flat, non-
informative, priors to the parameters of the model. This approach
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differs from the one of Ross17, Anderson et al. (2014), Xu et al.
(2012), which assigned a Gaussian prior to the shape parameter B.
The downside of this choice is the risk of hitting a local maxima
of the likelihood, PL(p), hence of increasing the uncertainty of the
parameters estimate. To minimize this effect, we infer the median
and the variance of the i-th parameter pi by performing a robust-
sigma estimation (Section 3.2 in Longobardi et al. 2015) on the
corresponding marginalized one-dimensional posterior

PL(pi) =
∫

D

dp1 . . . dpi−1dpp+1 . . . dpNpPL(p), (14)

where D is the interval over which the prior of all j parameters (j �= i)
are defined. We do so by defining the 2σ -clipped posterior,P2σ (pi) =
PL(pi)�

(
pi − 〈pi〉f − σf,i

)
�
(〈pi〉f − σf,i − pi

)
, where 〈pi〉f and

σ f, i are the mean and variance ofPL(pi) prior to sigma-clipping, and
� is the Heaviside step function. The variance of P2σ (pi) is assigned
to pi, scaled by a numerical factor determined from Monte Carlo
simulations to complete the 2σ -clipped distribution to a complete
Gaussian.

6 EFA M R E C O N S T RU C T I O N IN TH E M O C K
CATA LOGS. VALIDATION TESTS

In this section, we validate and investigate the performance of eFAM
reconstruction focusing on two key aspects: its ability to remove
RSD, and that of improving the signal-to-noise ratio of the BAO
feature. For the following tests, we use the 400 MD-Patchy mocks
mimicking the SDSS catalog described in Section 3.2.

6.1 From redshift to real-space

To assess the quality of the redshift-to-real space reconstruction, we
apply eFAM to each of the 400 mock catalogues and measure the
2PCF monopole and quadrupole moments as well as the clustering
wedges of the observed (Obs) and reconstructed (RecZ and RecL)
samples defined in Section 4.1. To minimize the effect of tidal fields,
we discard all objects within dBuffer = 200h−1Mpc from the edges of
the survey. The results are illustrated in Fig. 3. Top panels illustrates
the results obtained from the Obs sample. Middle and Bottom panel
refer to the RecZ and RecL cases, respectively. Panels on the left show
the 2PCF parallel (red) and perpendicular (blue) clustering wedges.
Panels on the right illustrate the 2PCF monopole and the quadrupole
moments. All quantities are multiplied by the square of the spatial
separation s. Thin curves show the measurement for each of the 400
mocks, thick curves show their average values, and shaded areas
indicate the standard deviation among the mocks, corresponding to
the square root of the diagonal elements of the covariance matrix.
Finally, yellow thick curves on the left panels represent the best-
fitting model for the clustering wedges.

In redshift-space (Obs, top-left), the parallel and perpendicular
wedges are significantly different from each other. This discrepancy
is expected. Indeed, RSD simultaneously reduce the amplitude of the
clustering signal along the line-of-sight and boost up the amplitude
of the perpendicular wedge. Moreover, RSD generate a quadrupole
moment that is clearly visible in the top-right panel. A visual
inspection of the mid panels (RecZ) shows the success of eFAM
at removing RSD; the two wedges are now in agreement, almost
superimposed to each other (left-hand panel), and the quadrupole
moment is consistent with zero (marked by the black, dotted
horizontal line in the right-hand panels). Remarkably enough, the
statistical isotropy is restored down to the smallest scales shown in

the plot, ∼40h−1Mpc, demonstrating that eFAM is indeed able to
model dynamics well into the non-linear regime.

A successful reconstruction must remove RSD at all epochs, not
only at the redshift of the survey. We check for this behaviour esti-
mating the isotropic 2PCF of the RecL sample at a conveniently high
redshift. Here, we stop the reconstruction at z ∼ 40 corresponding
to the highest redshift for which the measured �� and �⊥ have the
smallest, non-negative value (see Section 4 of Sarpa et al. (2019)
for a detailed discussion on the definition and justification of the
maximum redshift of the eFAM reconstruction). The 2PCF wedges
and multipoles of the RecL sample are plotted in the bottom panels
of Fig. 3. Similarly to the RecZ case, RSD are successfully removed,
although some residual anisotropy is seen at very large separations.
We interpret this feature as a signature of imperfect correction for
external tidal fields. To check this hypothesis, we repeated the test
varying the depth of the buffer region dBuffer. The results are shown
in Fig. 4. Thick lines represent the average monopole (blue-solid)
and quadrupole (red-dashed) moments of the 2PCF measure in 20
independent mock catalogues. Shaded areas represent the standard
deviation. The value of dBuffer used in each reconstruction is indicated
in each panel. For all the values of dBuffer we testes, we also show the
reference case dBuffer = 200 h−1 Mpc (light blue and light red curves
and areas for the monopole and quadrupole moments, respectively).
The quality of the reconstruction improves when using larger dBuffer,
i.e. when discarding an increasing fraction of objects in the sample.
The main effect of the spurious tidal field is a deceptive quadruple
at large separation that is particularly significant for dBuffer = 50 h−1

Mpc, and progressively vanishes when moving towards larger sizes
of the buffer region. A second effect is a tiny artificial correlation at
the deep’s scale in the monopole. Based on this test, we decide to
set dBuffer = 200 h−1 Mpc being confident that with this choice RSD
are effectively removed down to ∼40 h−1 Mpc and the measured
monopole signal is robust to less conservative choices of dBuffer.

A more quantitative assessment of the quality of the RSD removal
is provided by the likelihood analysis. Table 2 shows the values of the
best-fitting parameters to the mean clustering wedges estimated in the
400 mocks and their 1σ uncertainty. The parameters that quantify
RSD are the growth rate f and the velocity dispersion �S. Their
value can be estimated by measuring the wedges in redshift-space
(Obs sample, first row in the Table). The efficient removal of RSD
by eFAM is testified by the 1σ compatibility of both parameters with
zero the RecZ and RecL samples alike. To perform the likelihood
analysis we have considered the range of separation s = [50, 150]h −
1 Mpc and the best-fitting curves are drawn in yellow colour in Fig. 3.

As shown by Padmanabhan et al. (2012), another test of the quality
of the reconstruction is to compare the relative magnitude of the
two damping parameters, �⊥, �, before and after reconstruction.
Indeed, to move galaxies to their correct real-space position one
should remove all sources of anisotropy, not just the RSD. As result,
a successful reconstruction should bring the ratio ��/�⊥ closer
to unity (Ivanov & Sibiryakov 2018). Since eFAM is designed to
account for non-linear motions, we also expect that the absolute
magnitude of both parameters should be reduced. The contour levels
of the marginalized, joint probability distribution of �� and �⊥
shown in Fig. 5 prove that this is indeed the case. The blue-dotted
contours show the results obtained before reconstruction for the
Obs sample while the large blue-dot show the median values. The
magnitude of the two parameters is rather large and their ratio is
about 2σ apart from unity (dot-dashed purple line). Dark-green
continuous curves (and the green-triangle) show the results after
the eFAM reconstruction for the RecZ sample, i.e. after removing
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Figure 3. Two-point correlation function wedges (left-hand panels) and multiples (right) estimated from 400 mock catalogues. Top: mock galaxies are placed
at their observed redshift positions, Middle: galaxies are placed at the reconstructed real-space positions at the same redshift of the survey. Bottom: galaxies are
located at their back-in-time reconstructed real-space positions. Thin curves show the wedges measured in each mock. Thick curves with different line-styles
show their average. Shaded regions show the 1σ uncertainty strip. Yellow curves on the right-hand panels are the best-fitting models.

RSD but with non-linear effects still present. The magnitude of the
two parameters remains the same but their ratio is closer to unity.
Gold-dashed contours show the RecL case, after eFAM back-in-time
reconstruction. In this case, also the magnitude of both parameters
is significantly reduced. Besides, we notice that the reconstruction
significantly diminishes the uncertainty in the measured ��. This
improvement indicates that eFAM efficiently lifts the degeneracy
between �� and the Ap(s) parameters describing the broad-band
shape of the 2PCF while restoring statistical isotropy.

The validation tests performed in this section are designed to
quantify the ability of eFAM to remove the anisotropies generated

by linear and non-linear motions rather than the ones arising from
an incorrect choice of the fiducial cosmology. For this reason, we
assume the same cosmological model as the mock catalogues. To
test for the absence of Alcock-Paczynski distortions, we do not set
the dilation parameters equal to unity but treat instead α� and α⊥
as free parameters in the fit and check if their best-fitting value is
indeed consistent with unity. The results listed in Table 3 show that
this is indeed the case. The largest departures are at ∼2σ level for
α�. These results prove that eFAM successfully removes RSD from
the 2PCF and allow us to use the real-space template (f = �s = 0)
to model the reconstructed 2PCF of the data in Section 7.
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Figure 4. Effect of the external (super-survey) tidal field on reconstruction.
Mean monopole (blue-solid lines) and quadrupole (red-dashed lines) of
the 2PCF averaged over 20 mocks measured for different choices of the
discarded buffer region, dBuffer. Light-blue dot-dashed lines and orange-dotted
lines mark the mean monopole and quadrupole as estimated for dBuffer =
200h−1Mpc.

6.2 Acoustic scale measurements

6.2.1 Alcock-Paczynski distortions

The second part of the validation process focuses on the ability of
eFAM to estimate the dilation parameters α� and α⊥. For this purpose,
we perform a likelihood analysis in each mock using the clustering
wedges measured in the separation range s ∈ [50, 150]h−1Mpc. In this
analysis, the values of f, ��, and �⊥ are kept constant. For the Obs
sample they are set equal to their best-fitting values listed in Table 2,
while for RecZ and RecL we set them equal to zero. To reduce the
uncertainty in the estimated α⊥ and α�, we searched for the largest
volume of the sample, namely for the minimum value of dBuffer,
yielding an unbiased estimation of the real-space density field. We
find dBuffer = 125h−1Mpc to be a good compromise between sample
volume size and systematic errors driven by edge effects. A smaller
dBuffer would not bias the position of the BAO peak, albeit it would
reduce the accuracy of the RSD modelling for s > 150h−1Mpc,
as shown in the top-right panel of Fig. 4. Hereafter, we will only
consider the Obs and RecL samples.

The results of our reconstruction of the acoustic feature are shown
in Fig. 6 and 7 summarized in Table 3. Each point in Fig. 6 represents
the best-fitting value obtained from each mock catalog before (top)
and after (bottom) eFAM reconstruction. In both cases, we fit the
distribution of points in the (α⊥, α�) plane with a bi-variate Gaussian
for which we show its maximum (star symbol) and the 68, 95 and 99
per cent confidence levels. The histograms on the top and right side
of each panel show the marginalized probability distribution function
of α⊥ and α�, respectively. Since our fiducial cosmology is set to the
one of the mocks, the expected values are α⊥ = α� = 1.

The distribution of the best fit α� and α⊥ in the Obs sample (top
panel) is � 30 per cent broader than in the RecZ sample (bottom
panel). Alongside, the central value of the bi-variate Gaussian is
more biased pre-reconstruction, ∼1.7 per cent along the α� direction,
than post-reconstruction; see Table 3. Not expecting any Alcock-
Paczynski distortion, we interpret both the bias and the strong
uncertainty in the pre-reconstruction estimates of α� and α⊥ as a
sign of the inadequacy of the fiducial RSD model (equation 11) to

account for non-linear effects. Remarkably enough, the fact that our
reconstruction significantly decreases both the dispersion and the
offset of the dilation parameters indicates that eFAM successfully
accounts for both linear and non-linear motions in the range of scales
considered in the analysis. The residual bias and dispersion affecting
in the post-reconstruction measurements are probably a consequence
of the imperfect modelling of the external mass distribution and its
tidal field.

To further investigate the sources of uncertainty we have consid-
ered the results of the likelihood analysis performed on a single mock
in which no clear BAO peak is detected in the clustering wedges
before reconstruction (top right panel of Fig. 8). The histograms in
the central and right top panels show the one-dimensional posterior
probability function for α⊥ and α�, respectively, obtained from the
Markov Chain procedure. With no BAO feature detected, neither
distribution exhibit a well defined, main peak. Instead, Pα⊥ (left) has
two maxima of comparable amplitude whereas Pα‖ shows a broad
peak extending beyond the range allowed for this parameter. As a
result, one obtains a noisy and biased estimate of both parameters.
The situation dramatically improves after eFAM reconstruction (bot-
tom panels). A BAO signature is now visible in both wedges (bottom
right) and, consequently, the posterior probability distributions of
both dilation parameters show a well defined, sharp maximum
centered on the expected values α⊥ = α� = 1.

An alternative way to assess the impact of eFAM in reducing
the uncertainty of α⊥ and α⊥ is that of considering the errors of
these parameters estimated from the clustering wedges measured
in a single mock catalog. The scatter-plot in Fig. 7 compares the
single-mock uncertainties σα⊥ (top panel) and σα‖ (bottom panel)
estimated before the reconstruction (X-axis) to those estimated
after the reconstruction (Y-axis). The histograms on top and on the
side show the marginalized one-dimensional distributions of both
quantities. Before the reconstruction, both distributions are skewed
toward large errors. After reconstruction eFAM succeeds in reducing
the the skewness by ∼30 per cent.

6.2.2 Robustness to non-linear effects.

To test the robustness of eFAM reconstruction to the inclusion of
small scales characterized by non-linear effects, we push the likeli-
hood analysis performed in the previous section down to separations
as small as smin = 25h−1Mpc. The results of this test are summarized
in Table 3 where we list the best-fitting values of α⊥ and α� and
their error for smin = 25 and 40h−1Mpc along with the reference
case smin = 50h−1Mpc. We notice that the bias on α� measured
before the reconstruction increases when pushing the correlation
analysis down to smaller scales. This is not surprising and confirms
the increasing inadequacy of the RSD model in accounting for the
effect of non-linear peculiar velocities. The eFAM reconstruction
reverse this trend. The systematic error on α� remains the same,
irrespective of the smin considered. This result demonstrates the
success of eFAM reconstruction and corroborates our conclusion
that systematic errors on α� originate from the external tidal field
rater than non-linear effects.

7 R ECONSTRUCTI NG SDSS DATA

In this section, we apply eFAM to the SDSS DR12 galaxy sample
and analyse the clustering properties before and after eFAM recon-
struction.

To perform the reconstruction, we set the fiducial cosmology to
the one of the mocks. We weigh the mass of each galaxy by its linear
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Table 2. Best fit parameters and their 1σ uncertainties estimated to the mean clustering wedges for the three cases
considered: redshift-space sample (Obs), eFAM reconstructed real-space sample at the redshift of the survey (RecZ),
and back-in-time reconstructed sample (RecL).

sample α⊥ α� �⊥(h−1Mpc) ��(h−1Mpc) f �s(h−1Mpc)

Obs 0.997 ± 0.003 1.011 ± 0.007 7.37 ± 0.45 10.20 ± 1.82 0.51 ± 0.13 4.43 ± 1.83
RecZ 0.997 ± 0.003 1.011 ± 0.006 7.79 ± 0.36 9.12 ± 0.68 0.07 ± 0.06 1.09 ± 1.18
RecL 0.997 ± 0.002 1.010 ± 0.004 5.21 ± 0.39 6.93 ± 0.53 0.06 ± 0.05 1.02 ± 0.88

Figure 5. Marginalized probability contours of �⊥, �� estimated from the
fit of the mean clustering wedges of the mocks obtained from the Obs sample
(blue dotted contours), the RecZ sample (dark green solid contours) and the
RecL sample (gold, dashed contours). The large symbols (circle, triangle and
star) show the value of the best-fitting parameters for, respectively, the Obs,
RecZ and RecL cases. The contours are drawn at 1, 2, and 3σ confidence
levels. Small dots show the values obtained at each step of the Markov-Chain.
The purple, dot-dashed line is drawn for reference to indicate �� = �⊥.

bias, b = b(zgal), estimated interpolating the redshift-to-bias relation
of SDSS-III galaxies at the redshift of the galaxy, zgal (Salazar-
Albornoz et al. 2017).

For the present study, we consider the Obs and RecL sample.
Here, distances are assigned to redshift coordinates using the same
(fiducial) cosmological of reconstruction. To avoid to be affected
by spurious tidal fields induced by edge effects, we exclude from
the analysis all galaxies lying in a buffer region within dBuffer =
125h−1Mpc from the sample’s edges.

For the two samples, we evaluate the 2PCF of the galaxies using
the statistical weights described in Section 3.1 and measure its its
parallel and perpendicular clustering wedges. Finally, we compare
ξ⊥ and ξ � with the models presented in Section 5.1.

Similarly to Ross17, we focus the analysis on the estimate of
H (rs/r

fid
s ) and DA(rfid

s /rs), largely determined from the modelling of
the BAO peak. We follow the same procedure adopted in Section 6.2.
We model the clustering wedges in the separation range 50 < s <

150 and fix the values of f, �s, ��, and �⊥ to those measured in the
mocks (Table 3). In particular, for the RecL sample, we set f = �s

= 0 after having verified that the effective removal of RSD in the
reconstructed data.

In the likelihood analysis, we use the covariance matrix estimated
from the mocks, as described in Section 4.3. We note here that,

although eFAM reconstruction is rather insensitive to the background
cosmology (Nusser & Colberg 1998), a mismatch between the
fiducial and correct values of the cosmological parameters may
generate spurious peculiar velocities and residual anisotropies in the
reconstructed 2PCF of the SDSS-DR12 galaxies. We search for such
anisotropies by comparing the two clustering wedges and proceed
with the likelihood analysis only after having excluded their presence.

We illustrate the results of our analysis in Fig. 9 and 10. Top panel
of Fig. 9 shows the SDSS-DR12 parallel and perpendicular wedge as
measured in redshift-space before eFAM reconstruction. The bottom
panel shows the same quantities measured after the reconstruction.
Red-triangles and blue-dots show ξ � and ξ⊥, respectively, multiplied
by the square of the spatial separation, s2. The error-bars are the 1σ

uncertainties estimated from the mocks, which corresponds to the
diagonal elements of the covariance matrix. The BAO peak is clearly
seen in all measurements. To highlight its statistical significance,
we over-plot the best-fitting models (equation 13) represented by
continuous and dashed, solid curves. Dotted and dot-dashed curves
show the best fit clustering wedge model with no BAO feature in it,
obtained using the no-wiggle power spectrum Pnw of Eisenstein &
Hu (1998).

As expected, in redshift-space (top panel) ξ � and ξ⊥ are signifi-
cantly different from each other because of RSD. In the RecL sample
(bottom panel), the two wedges are in good agreement, confirming
the efficiency of the eFAM at recovering the real-space correlation
function and thus justifying our decision to set f =�s = 0 in the model
fitting. From the plots, it is also evident that the eFAM reconstruction
increases the amplitude and the sharpness of the acoustic peak.

The results of the likelihood analysis corroborate and quantify this
visual impression. Fig. 11 show the two-dimensional marginalized
maximum likelihood of the dilation parameters α⊥, α� surfaces
before (left-hand panel) and after eFAM reconstruction (right-hand
panel). Solid surfaces show the likelihood of models that include the
BAO peak while transparent surfaces depict the case in which no
acoustic feature is included in the model. The comparison between
the amplitudes of the peaks in the solid and transparent likelihood
surfaces is a proxy of the significance of the BAO peak detection.

Before reconstruction, non-linear RSD undermine the agreement
with the fiducial model yielding a modest maximum in the likelihood.
Alongside, the limited prominence of the acoustic feature legitimates
the model without acoustic oscillations. For eight free-fitting param-
eters, the maximum �χ2 between the two surfaces translates into a
2.1σ BAO detection. After reconstruction, the accurate modelling of
both RSD and non-linear clustering favours the fiducial template
against the no-wiggle model rising the significance of the BAO
detection to 4.4σ .

Let us now focus on the estimate of the two parameters H and DA

derived from the dilation parameters. Equations (7, 8) Fig. 10 shows
the probability contours level of the bi-variate Gaussian that best fits
the marginalized likelihood. Contours and shaded areas represent the
1, 2, and 3σ confidence levels of the Gaussian before (blue) and after
(yellow) eFAM reconstructions. Best-fitting values are shown with

MNRAS 503, 540–556 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/540/6132252 by C
N

R
S user on 05 M

ay 2023



550 E. Sarpa et al.

Table 3. Best fit versus separation range. Median values and variance of α⊥, α�, σα⊥ , and σα‖ estimated from clustering wedges in different separation ranges.

fitting range sample 〈α⊥〉 − 1 S〈α⊥〉 〈σα⊥〉 S〈σα⊥ 〉 〈α�〉 − 1 S〈α‖ 〉 〈σα‖ 〉 S〈σα‖ 〉

[50, 150]h−1Mpc Obs 0.002 0.036 0.031 +0.017 − 0.017 0.081 0.053 +0.067
− 0.004 − 0.005

RecL − 0.002 0.024 0.024 +0.013 − 0.010 0.056 0.049 +0.032
− 0.002 − 0.006

[40, 150]h−1Mpc Obs 0.002 0.035 0.032 +0.024 − 0.026 0.088 0.054 +0.061
− 0.004 − 0.004

RecL − 0.002 0.025 0.027 +0.007 − 0.011 0.051 0.043 +0.030
− 0.004 − 0.004

[25, 150]h−1Mpc Obs 0.004 0.036 0.033 +0.017 − 0.032 0.091 0.059 +0.065
− 0.004 − 0.007

RecL 0.000 0.023 0.026 +0.013 − 0.010 0.053 0.048 +0.030
− 0.003 − 0.004

Figure 6. Best fit α� an α⊥ values estimated from the clustering wedges in
the range s = [50, 150]h−1Mpc measured in in each MD-Patchy mocks (dots)
for the Obs (Top) and RecL (Bottom) cases. The histograms on the top and on
the right part of the panels show the one-dimensional distribution functions of
α⊥ and α�, respectively. Elliptical contours and blue-shaded areas are drawn
at the 68, 95, and 99 per cent confidence level of the best-fitting Gaussian
bivariate, centered at the starred symbol.Grey-dashed lines show the expected
α⊥ = 1 and α� = 1 values.

Figure 7. Error on the perpendicular (top) and parallel (bottom) dilation
parameters, σα⊥ (top panel) and σα‖ , before and after eFAM-reconstruction
estimated from the clustering wedges. Each dot shows the results from each
mock catalog. Shaded areas contain 68, 95, and 99 of the points. The average
value of the distribution is represented by a starred symbol. Histograms depict
the 1D marginalized distribution of both errors, before (histogram on top) and
after (histogram on the side) eFAM reconstruction. Dotted lines show the case
in which reconstruction gives no improvement.
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Figure 8. Modelling the clustering wedges in a single mock realization. Left panels: parallel (red-dashed lines) and perpendicular (blue-solid lines) clustering
wedges multiplied by the square of the spatial separation s. Shaded areas represent the standard deviation. Central and Right panels: marginalized 1-dimensional
probability distribution of Pα⊥ and Pα‖ , respectively. Top panels: Results obtained from the Obs sample. Top panels: Results obtained from the RecL sample.
Solid-black vertical lines mark the median values of the 1-dimentional P while dashed-grey lines demote the best-fitting values.

Figure 9. Clustering wedges of the BOSS-DR12 Combined Sample before
(top-panel), and after eFAM reconstruction (bottom-panel). Open blue circles
show the measured perpendicular wedge. Open red triangles show the parallel
wedge. The error-bars are the square root of diagonal of the covariance matrix
estimated from the mocks. Best fit clustering wedges models are also shown
with black continuous curves. Solid and dashed curves show the best fit
model that include the BAO feature. Dot and dot-dashed curves are best-
fitting models with no acoustic peak.

Figure 10. Marginalized likelihood contours for DArfid
s /rs) and H (rs/r

fid
s )

from the clustering wedges analysis of the SDSS-DR12 Combined Sample
in the range 0.2 < z < 0.55. Parameters are estimated at the effective redshift
z = 0.38. Contours and shaded areas show 1, 2, and 3σ probability contours
of a best-fitting Gaussian bi-variate. Blue contours: results before eFAM
reconstruction. Yellow contours: results after eFAM reconstruction. Large
blue and star symbols show the best-fitting values for the two cases.

a blue circle and yellow star, respectively. In the likelihood analysis,
the two parameters H (rs/r

fid
s ) and DA(rfid

s /rs), are measured at the
redshift of the sample z = 0.38. The corresponding fiducial values
are Hfid = 83(km/s)−1(Mpc)−1 and Dfid

A = 1098Mpc.
Table 4 quantifies these considerations. The best-fitting value of

DA is shifted by ∼3.5 per cent, comparably to what is seen in the
analysis of the mock catalogues (Table 3. There, the effect of eFAM
was to increase the magnitude of α�, bringing it into an agreement
with the expected value. We thus assume that, similarly, eFAM
successfully removes systematic errors on α�, and hence on DA,
from the real data set too. In support of this hypothesis, we note
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Figure 11. Two-dimensional marginalized maximum likelihood surfaces of α⊥, α�, before (left) and after (right) eFAM reconstruction. Solid surfaces describe
the best-fitting model including the acoustic feature, while transparent surfaces depict the best-fitting model without BAO (Eisenstein & Hu 1998).

Table 4. Fit results from the SDSS-DR12 combined
sample.

sample DA(0.38)(rfid
s /rs) H (0.38)(rs/r

fid
s )

(Mpc) (km s−1 Mpc−1)

Obs 1129 ± 40 82 ± 4
RecL 1090 ± 29 83 ± 3

that Ross17 (see Table 3 in Alam et al. (2017) where DM = DA(1 −
z)) found H (rs/r

fid
s) = (81 ± 2) (km s−1 Mpc−1) and DA(r s

s /rs) =
(1096 ± 17) Mpc in their post-reconstruction analysis, which are
in best agreement with our post-reconstruction measurements. On
top of this, eFAM also reduces random errors. Relative errors on
DA decrease from σDA/DA  3.5 per cent, to  2.6 per cent and
statistical uncertainties on H decrease from σ H/H  5 per cent to
 3.6 per cent. We further discuss the amplitudes of the parameters
uncertainties in Section 8.

8 D I S C U S S I O N A N D C O N C L U S I O N S

In this study, we have applied the eFAM reconstruction algorithm to
a subset of the SDSS-DR12 combined sample of galaxies aiming
at assessing the performances of eFAM when applied to a real
data set characterized by specific selection effects and observational
uncertainties.

This work is the follow-up of the study conducted in Sarpa et al.
(2019). There, we have appraised the performance of eFAM using a
somewhat idealized, simulated data sets with O(106) objects, similar
in size to that of current and future spectroscopic redshift surveys. The
results of our past analysis have shown that the first implementation
of eFAM was indeed able to successfully reconstruct the real-space
positions and velocities of each object at any epochs, and specifically
at both the observed redshift and at a back-in-time epoch in which
density fluctuations were still evolving in the linear regime. Urged by
the rising need for accurate reconstruction techniques able to enhance
the signal-to-noise of the acoustic feature in the two-point correlation
function, we have focused or study on the BAO scale. Despite being
of high scientific interest, the application of eFAM to the mere study
of the BAO scale is a bit of a limitation. Indeed, eFAM is a non-
perturbative, non-linear technique designed to describe non-linear
self-gravitating systems, and thus it is able to extract information
from scales much smaller than the BAO one.

In the current study, we have repeated the original analysis using
a real data set and a suite of realistic simulated catalogues. We chose

the SDSS-DR12 combined sample for three reasons. First of all,
its size and characteristics are representative of the state-of-the-art
surveys as well as next-generation, wide surveys such as DESI or
Euclid. Second, reconstruction techniques based on the Zel’dovich
approximation have been already applied to this data set, mainly to
extract scientific information from the position and the amplitude
of the BAO peak in the two-point correlation function, providing us
with a reference for our results. When performing the comparison,
we must keep in mind that this constitutes a specific test, limited to
quasi-linear scales, where eFAM is supposed to perform just as well
as Zel’dovich-based reconstruction algorithms. Third, our choice was
encouraged by the public availability of a sufficiently large number
of realistic mock catalogues mimicking its clustering properties. A
large number of mocks is crucial to both calibrate our reconstruction
technique to the specific characteristics of the survey and to estimate
errors and their covariance.

To perform this analysis, we modified the eFAM algorithm to be
able to deal with all the specific properties of real data sets that are
not necessarily present in simulated catalogues. The first one is the
galaxy bias. The first implementation of eFAM implicitly assumes
that all the mass in the system is associated with discrete, visible
objects that maintain their identity when traced back in time. Nusser
et al. (1991) have proposed a method to modify this assumption to
include the linear bias. Here, we adopted an alternative approach. We
associated with each galaxy a statistical weigh accounting for both the
clustered dark matter component located at the galaxy position and
the smooth dark component filling the survey volume. The inclusion
of the smooth dark matter field is crucial to match the average mass
density within the survey with the cosmic mean and hence to avoid
the observed system to be seen as a local under-density. Although
we did not perform specific tests to evaluate the goodness of this
approach, we did not find any evidence of detectable systematic
errors introduced by this biasing scheme in any of the validation
tests we performed.

The second aspect we considered in the new implementation of
eFAM is the gravitational influence of the unknown mass distribution
lying outside the volume of the survey. The problem is general. The
lack of clustering information outside the survey volume prevents
us to fully reproduce the bulk motions within the survey, while the
gravitational potential estimated from a finite and possibly anisoropic
volume induces deceptive tidal fields in the proximity of the edges
of the survey. In Sarpa et al. (2019), we were able to minimize
those effects by considering a spherical geometry and discarding
from the post-reconstruction analysis all the objects lying in the

MNRAS 503, 540–556 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/540/6132252 by C
N

R
S user on 05 M

ay 2023



eFAM: application to SDSS-DR12 combined sample 553

proximity of the spherical surface. However, real surveys are often
characterized by more complicated geometry, hence modelling the
influence of external matter distribution for real data sets is a serious
problem. We proposed here a solution consisting of a two-step
procedure. First, we modelled the tidal field and assess their impact
under the assumption of a homogeneous isotropic mass distribution
outside the sample. Second, as in our original work, we defined a
buffer region near the survey’s edges. Objects in the buffer region
are accounted for in the eFAM reconstruction but excluded from
scientific analyses. We run several dedicated tests to validate this
procedure and chose the size and shape of the buffer region such
as to optimize the compromise between a meaningful statistical
sampling and systematic uncertainties induced by tidal effects. We
proceeded as follows. eFAM is supposed to displace objects from
their observed redshift to their back-in-time real-space position.
When it does it successfully, it removes all the anisotropies in the
two-point correlation function due to RSD. In our tests, we found
that an imperfect removal of tidal effects would manifest itself as a
non-zero quadrupole moment on scales larger than the BAO peak.
One can then enlarge the buffer region until this spurious signal is
completely removed. The availability of realistic mock catalogues is
obviously of paramount importance to calibrate the procedure. It is
worth stressing that tidal field will become an even more relevant
issue with the advent of next-generation wide surveys. Indeed, to
minimize evolution effects, typical sub-samples used for scientific
analyses will have a depth along the radial direction much shorter
than the their transverse size. The impact of the tidal field will thus
play an important role in optimizing the shape and the volume of the
sample to be analyzed.

A distinctive trait of eFAM reconstruction is its ability to recon-
struct the full orbit of the mass tracers, as opposed to solely provide
their positions at some fixed early epoch. We can thus use eFAM
to recover the real-space positions of objects at the observed and
high redshift, alike, effectively modelling both redshift distortions
and non-linear evolution. This is done by assuming a value for the
linear growth rate f. The success of the reconstruction can be then
assessed by searching for residual anisotropy in the real-space two-
point correlation function of the galaxies. Our tests on the mock
reveal a remarkably accurate modelling of RSD. The values of f and
�s in the real-space 2PCF measured at the redshift of the sample are
consistent with zero. Besides, the eFAM reconstruction reduces by 65
per cent the damping of the acoustic oscillations due to late-time non-
linear clustering, ��, ⊥. Having successfully removed RSD, we can
set the parameters f and �s equal to zero when modelling the 2PCF
of galaxies at their back-in-time reconstructed positions, effectively
decreasing the number of free parameters in the fit. Furthermore,
we found no need to include the additional shape parameters B0, 2

used in Ross17 to fit the 2PCF. As a result, the back-in-time eFAM
reconstructed two-point correlation function can be well fit with
an 11-parameter model over the range [50, 150]h−1Mpc, to be
compared with the 15-parameter model used to fit the measured
2-point correlation function in redshift-space.

A final, positive characteristic of eFAM worth stressing is its non-
linear nature which allows us to push the analyses down to scales
that are not accessible to Zel’dovich-based reconstructions. This fact
is already evident from the wide separation range, [50, 150]h−1Mpc,
used in our analysis. However, our validation tests show that one can
safely push the analysis down to separations as small as 25h−1Mpc
without introducing systematic errors. Strictly speaking, in this work
we only checked this to be true for the estimate of the dilation
parameters. However, the visual inspections of the clustering wedges
reveal no obvious departures from model predictions on those scales.

In fact, we found that RSD are successfully removed and models fit
the reconstructed 2PCF up to 180h−1Mpc.

We conclude by summarizing the main results of our analysis:

(i) The tests performed with 400 SDSS-DR12 mock catalogs
show that eFAM successfully reconstruct the real-space position of
galaxies at the mean redshift of the sample, z = 0.38. As a result,
redshift-space distortions are removed from the two-point correlation
signal in the separation range [50, 180]h−1Mpc. On larger scales,
we detect non-zero quadrupole moments that we attribute to the
gravitational pull of the inhomogeneous mass distribution outside
the survey volume. The impact of these external tidal field can be
reduced by excluding objects near the edge of the survey. The size
of this exclusion region should be set by compromising between
number of objects and range of separation to be used in the clustering
analysis. Ultimately it depends on the volume, shape, and redshift of
the sample. The lower bound in separation, set to 50h−1Mpc, simply
represents a conservative choice. In fact, we showed that it can be
safely reduced to 25h−1Mpc without compromising our ability to
estimate the dilation parameters, α⊥, �, and, therefore, the values of
H and DA.

(ii) eFAM reconstruction allows us to increase the precision of
both α⊥, � by ∼3 per cent. This is a significant reduction which,
however, is smaller in magnitude than the one obtained by Ross17
using the Zel’dovich approximation to perform the back-in-time
reconstruction. This is somewhat surprising since one would expect,
based on the results of Sarpa et al. (2019), which the quality of
the eFAM reconstruction should be higher than that of Zel’dovich
approximation. Part of this discrepancy can be explained by the
very nature of the analysis. Here, we are focusing on the α⊥, �

parameters that are mainly determined by the reconstruction quality
of the BAO peak, and we do not eFAM to perform significantly
better than Zel’dovich on these scales. However, we do not expect
worse performances either, especially considering that the number
of free parameters used in our model for the reconstructed 2PCF is
smaller than the one employed in Ross17. We believe that the larger
eFAM uncertainty, that are estimated from the mock catalogs, reflect
the fewer catalogs (400) and reduced volume (north galactic cap)
used to evaluate the covariance matrix with respect to that (1000,
both north and south caps) used by Ross17. To corroborate this
hypothesis, we notice that Kazin et al. (2013) performed a similar
analysis estimating the values of the dilation parameters and their
uncertainties using 600 rather than 1000 mocks. The uncertainties
presented in their work, σ H/H = 5.8 per cent and σDA/DA = 3.1
per cent (see Table 3), are overestimated with respect Ross17 and
comparable with ours.

(iii) From the clustering wedges of the back-in-time reconstructed
position of the SDSS-DR12 galaxies, we have estimated the Hubble
parameter and the angular diameter distance at the effective redshift
of the sample, normalized to their values in the fiducial cosmological
model. We found DA(rfid

s /rs) = 1090 ± 29 Mpc and H (rs/r
fid
s ) =

83 ± 3(km s−1 Mpc−1). The eFAM reconstruction significantly re-
duces the error in these estimates by 35 and 39 per cent, respectively,
compared to the case in which the analysis is carried out in redshift-
space, i.e. before reconstruction. These results are in good agreement
with those of previous, similar analyses performed on the same data
sets (Ross17,Vargas-Magaña et al. (2018)).

The results presented in this work show that eFAM can be
successfully applied to current and future spectroscopic data sets
with O(106) objects. The enhancement of the clustering signal-to-
noise at the BAO peak is comparable to that obtained by the popular
reconstruction techniques that assume Zel’dovich approximation.
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However, eFAM also succeeds in recovering the correlation signal
well into non-linear regime, as demonstrated by its ability to recover
the correct shape and amplitude of the galaxy-galaxy correlation
function down to separation as small as 25h−1Mpc. We conclude
that eFAM provides a back-in-time reconstruction method that, can
be regarded as a complementary tool to extract scientific information
from the numerous small-scale modes that cannot be accessed by
standard reconstruction techniques.
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A P P E N D I X A : C O R R E C T I O N FO R S U RV E Y
GEOMETRY: ACCURACY TEST

To asses the validity of the procedure described above, we applied
eFAM on a uniform random catalogue with same sky-coverage and
redshift proportions of the SDSS-DR12 survey. Fig. A1 depicts the
reconstructed velocity field obtained neglecting the external contribu-
tion (top panel) and including the correction for the survey geometry
(bottom panel). As expected, in the first case the velocity field is
dominated by a spurious coherent bulk-flow generated by the non-
spherical symmetry of the survey. Adopting the correct estimation
for φex, the reconstructed velocity field is instead characterized by
almost vanishing and randomly oriented peculiar velocities. This
illustrates the efficiency of the correction in erasing the spurious
motions and, more importantly, reassuring from the presence of
additional systematics.
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Figure A1. 2D velocity map for the BOSS-like random distribution. Top
panel velocity field reconstructed without correcting the external tidal field;
the bulk-flow induced by the shape of the survey is dominant. Bottom panel:
velocity field reconstructed including the external tidal field; the geometrical
bulk flow is successfully removed.

Figure A2. Probability distribution function of two components of the re-
constructed peculiar velocities for the BOSS-like random distribution. Before
accounting for the external tidal field (top-right) the velocity distribution is
characterized by a strong velocity dispersion of about ∼1400 km/s, describing
the spurious in-fall of particles induced by the survey geometry. With the
inclusion of the external field (bottom-left) the rms of the velocities is of
about ∼140 km/s, proving the efficiency of the method in removing the
bulk-flow.

A more quantitative description of the efficiency of the correction
is provided by Fig. A2, which illustrates the PDF of two components
of the peculiar velocities. Before applying the correction (blue), the
reconstructed PDF is characterized by a wide dispersion accounting
for the artificial in-fall of particles and, for the Vz component, by
a spurious bulk flow component. With the new method, the rms of
the velocities is reduced by 90 per cent and the bulk flow removed,
proving the efficacy of the method.

The improvement in the velocity reconstruction due to the external
field correction can be more quantitatively assessed through the
velocity-velocity comparison illustrated in Fig. A3. Before applying
the geometrical correction (left panel), the reconstructed velocities
are completely uncorrelated with the ‘true’ ones, showing high-

Figure A3. Accuracy tests for eFAM velocity reconstruction applied on
a non-spherically symmetric survey. ‘True’ versus reconstructed peculiar
velocities for one Cartesian component before (left) and after (right) including
the external tidal field computed from a random distribution (results are
similar for other components). Along every Cartesian direction, a perfect
reconstruction would give a linear regression VNbody = mVeFAM + q with
slope m = 1 , no residual bulk velocity (q = 0), and no scatter (solid line).
The reconstructed peculiar velocities before including the tidal field are not
correlated with the true ones, having a significantly larger velocity dispersion
with respect to the N-body velocities. After including the external tidal field,
the reconstructed peculiar velocities are instead well-correlated with the true
ones.

velocity tails which don’t find correspondence in the N-body field.
The correlation is efficiently restored after including the external
field (right panel), yielding a precise reconstruction.

A P P E N D I X B: V E L O C I T Y C H A L L E N G E : EFA M
VERSUS ZEL’DOVI CH-LI KE
R E C O N S T RU C T I O N

To further assess the goodness of eFAM reconstruction compared to
the commonly adopted Zel’dovich approximation (ZA), we run an
additional, more demanding, test in which we go beyond summary
two-point statistics and compare true versus reconstructed velocities
on an object-by-object basis. More precisely, we first run eFAM and
minimize the action with respect to the full set of orbital coefficients,
Ci,n. Then we repeat the same exercise but minimize with respect to
the subset C1,n, having set Cj,n = 0 for i �= j. Since this corresponds
to imposing straight line orbits, we dubbed this reconstruction ZA,
as opposed to eFAM. We stress that this is not the same as the
Zel’dovich approach routinely used for BAO peak reconstructions,
mainly because in our case we do not smooth the underlying density
field. To run this test, we consider a mock galaxy catalogue extracted
from the publicly available Magneticum hydrodynamical simulation
(Hirschmann et al. 2014; Ragagnin et al. 2017). To match the number
density of the SDSS galaxies considered in this work ,we have
analysed the z = 0 snapshot of the box2b/hr catalog and selected
all objects with stellar-mass above 3.7 × 1010 h−1Msun. Redshift-
space distortions have been simulated by adding the velocity-induced
Doppler shift to the cosmological redshift of each galaxy. The results
of these tests are summarized in Fig. B1. The scatter plot in the
upper left-hand panel compares the modulus of the ZA-reconstructed
velocities to that of the N-body ones. The bottom left panel illustrates
the eFAM reconstructed case. Clearly, the ZA-like reconstruction
severely overestimates the magnitude of the velocity. We believe
that this is the result of having forced objects along straight orbits
without smoothing the density field (or without softening the force
on conveniently large scales). The largest discrepancies, with ZA
velocities as large as ∼5000 km/s, occur for objects in high-density
regions. On the contrary, eFAM performs significantly better. The
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Figure B1. Peculiar velocity reconstruction; Zel’dovich-like approximation
versus eFAM. Left-hand panel: individual dots show a point-by-point com-
parison between the amplitudes of the reconstructed and N-body peculiar
velocity vectors. Black-dashed diagonal line shows the case of unbiased
reconstruction, |VZA, eFAM| = |Vtrue|. Right: Cumulative probability distri-
bution function of the cosine angle between the reconstructed and N-body
velocity vectors, μ. The vertical, black-dashed line is drawn fr reference at
the mismatch angle 45◦s. Top: Zel’dovich like approximation. Bottom panel:
full eFAM.

bottom left-hand panel shows no obvious bias in the reconstructed
velocities, except fr the presence of a few outliers, corresponding
to objects with large velocities, presumably in high-density regions
too, that eFAM is not able to reproduce. Panels on the right focus
on the direction of the velocity vectors. They show the cumulative
distribution function of the cosine angle μ between the reconstructed
and the N-body velocity; μ = 1 being the case of perfect alignment.
The eFAM distribution features a sharp peak at μ = 1 and shows
that in 42 per cent of the cases the alignment between the vectors
is worse than 45◦. On the contrary, in the ZA case this percentage
increase to 64 per cent.

We conclude that without a properly tailored, initial smoothing
step, the ZA-like method performs poorly in reconstructing veloc-
ities, especially when compared to eFAM that, on the contrary,
does not seem to introduce any significant bias in the velocity
model.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 503, 540–556 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/540/6132252 by C
N

R
S user on 05 M

ay 2023


