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We use density estimation likelihood-free inference, Λ cold dark matter simulations of ∼2M galaxy
pairs, and data from Gaia and the Hubble Space Telescope to infer the sum of the masses of the Milky Way
and Andromeda (M31) galaxies, the two main components of the local group. This method overcomes
most of the approximations of the traditional timing argument, makes the writing of a theoretical likelihood
unnecessary, and allows the nonlinear modeling of observational errors that take into account correla-
tions in the data and non-Gaussian distributions. We obtain an M200 mass estimate MMWþM31 ¼
4.6þ2.3

−1.8 × 1012 M⊙ (68% C.L.), in agreement with previous estimates both for the sum of the two masses
and for the individual masses. This result is not only one of the most reliable estimates of the sum of the two
masses to date, but is also an illustration of likelihood-free inference in a problem with only one parameter
and only three data points.

DOI: 10.1103/PhysRevD.103.023009

I. INTRODUCTION

Likelihood-free inference (LFI) has emerged as a very
promising technique for inferring parameters from data,
particularly in cosmology. It provides parameter posterior
probability estimation without requiring the calculation of
an analytic likelihood (i.e., the probability of the data being
observed given the parameters). LFI uses forward simu-
lations in place of an analytic likelihood function. Writing a
likelihood for cosmological observables can be extremely
complex, often requiring the solution of Boltzmann equa-
tions, as well as approximations for highly nonlinear
processes such as structure formation and baryonic feed-
back. While simulations have their own limitations and are
computationally expensive, the quality and efficiency of
cosmological simulations are constantly increasing, and
they are likely to soon far surpass the accuracy or robust-
ness of any likelihood function.
This is a rapidly growing topic in cosmology, due to the

emergence of novel methods for likelihood-free inference
[see e.g., [1,2]], with applications to data sets such as the
joint light curve (JLA) and Pantheon supernova datasets
[3,4], and the Dark Energy Survey science verification
data [5], among others [6–8]. There are, therefore, many

applications for which LFI could improve the robustness of
parameter inference using cosmological data. In this work
we perform a LFI-based parameter estimation of the sum of
masses of the MilkyWay and M31. The likelihood function
for this problem requires significant simplifications, but
forward simulations can be obtained easily.
The Milky Way and Andromeda are the main compo-

nents of the Local Group, which includes tens of smaller
galaxies. We define MMWþM31 as the sum of the MW and
M31 masses. Estimating MMWþM31 remains an elusive and
complex problem in astrophysics. As the mass of each of
theMilkyWay andM31 is knownonly towithin a factor of 2,
it is important to constrain the sum of their masses. The
traditional approach is to use the so-called timing argument
(TA) [9]. The timing argument estimates MMWþM31 using
Newtonian dynamics integrated from the big bang. This
integration is an extremely simplified version of a very
complex problem. Therefore, alternative methods that do not
rely on the same approximations become extremely useful.
In this work, we use the multidark Planck (MDPL)

simulation [10–12], combined with data from the Hubble
Space Telescope [HST, [13] and Gaia [14], to estimate
MMWþM31. A similar data set was previously used in [15] to
obtain a point estimate ofMMWþM31 using Artificial Neural
Networks (ANN) in conjunction with the TA. In contrast,
our work uses density estimation likelihood-free inference*pablo.lemos.18@ucl.ac.uk
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[DELFI [2,16–18]], using the PYDELFI package [19],
combined with more recent data. While the result is
important on its own, this paper also illustrates the
fundamental methodology of DELFI in a problem that is
statistically simple but physically complex.
The structure of the paper is as follows: Sec. II reviews

and describes previous estimates of MMWþM31. Section III
describes the basics of LFI, and the particular techniques
used in this work. Section IV and Sec. V describe the
simulations and data, respectively, used in this work.
Section VI shows our results, and conclusions are presented
in Sec. VII.

II. PREVIOUS ESTIMATES

A first approach to estimatingMMWþM31 from dynamics,
known as TA, is based on the simple idea that MWandM31
are point masses approaching each other on a radial orbit
that obeys

̈r ¼ −
GMMWþM31

r2
þ 1

3
Λr; ð1Þ

where MMWþM31 is the sum of the masses of the two
galaxies [9,20], and where the Λ term, which represents a
form of dark energy, was added in later studies [21,22]. It
was also extended for modified gravity models [23]. Since
we know the present-day distance r between MWand M31
and their relative radial velocity vr, and if we assume the
age of the universe and Λ, we can infer the massMMWþM31.
The analysis can be extended to cover the case of nonzero
tangential vt velocity [e.g., [15,24]]. The pros and cons of
the timing argument are well known. It is a simple model
which assumes only two point mass bodies; this ignores,
for example, the tidal forces due to neighboring galaxy
haloes in the local group and the extended cosmic web
around it. While the timing argument model does not
capture the complexity of the cosmic structure and resulting
cosmic variance, it gives a somewhat surprisingly good
estimate forMMWþM31. As shown below, it can also serve to
test the sensitivity of the results to parameters such as the
cosmological constant Λ and the Hubble constant H0, in
case simulations are not available for different values of
these parameters.

A second approach is to consider the dynamics of all the
galaxies in the local group using the least action principle
[25], as, for example, was implemented in [26]. In this
approach all members of the local group appear in the
model, but as a result the derived masses are correlated, and
the error bars should be interpreted accordingly. A third
approach is to use N-body simulations of the local universe,
assuming a cosmological model such asΛCDM [15,27,28].
In this paper we apply this third method, but using the
DELFI method (this provides significant improvements
over other methods, as discussed in the following section).
Representative results for MMWþM31 from previous

works are given in Table I. Throughout the paper we quote
68% credible intervals.

III. LIKELIHOOD-FREE INFERENCE

In Bayesian statistics we often face the following
problem: given observed dataDobs, and a theoretical model
I with a set of parameters θ, calculate the probability of the
parameters given the data. In other words, we want to
calculate the posterior distribution P ≡ pðθjDobs; IÞ; here
p is a probability (for a model with discrete parameters) or a
probability density (for continuous parameters). We do so
using Bayes’ theorem:

pðθjDobs; IÞ ¼
pðDobsjθ; IÞpðθjIÞ

pðDobsjIÞ
⇔ P ¼ L × Π

Z
ð2Þ

where L is called the likelihood, Π the prior, and Z the
Bayesian evidence. The Bayesian evidence acts as an
overall normalization in parameter estimation, and can
therefore be ignored for this task. Thus, given a choice of
prior distribution and a likelihood function, we can estimate
the posterior distribution. However, obtaining a likelihood
function is not always easy. The likelihood function
provides a probability of measuring the data as a function
of the parameter values, and often requires approximations
both in the statistics and in the theoretical modeling.
Likelihood-free inference is an alternative method for

calculating the posterior distribution; in this method we do
not formally write down a likelihood function. Instead, we
use forward simulations of the model to generate samples
of the data and parameters. In the simplest version of LFI,

TABLE I. Estimates ofMMWþM31 from previous work. The third column shows the data used, with r in Mpc and vr, vt in km s−1. The
fourth column shows MMWþM31 in units of 1012 M⊙. Note that Gaussian approximations have been used to convert the reported
confidence levels to 68% confidence levels in some cases.

Reference Method Assumed (r, vr, vt) MMWþM31

Li & White (2008) [27] TA calibrated on Sims (0.784, 130, 0) 5.27þ2.48
−0.91

Gonzalez & Kravtsov (2014) [28] Sims (0.783, 109.3, 0) 4.2þ2.1
−1.2

McLeod et al. (2017) [15] TAþ Λ ð0.77� 0.04; 109.4� 4.4; 17� 17Þ 4.7þ0.7þ2.9
−0.6−1.8

McLeod et al. (2017) [15] Simsþ ANNþ Shear ð0.77� 0.04; 109.4� 4.4; 17� 17Þ 4.9þ0.8þ1.7
−0.8−1.3

Phelps et al. (2013) [26] Least Action (0.79, 119, 0) 6.0� 0.5
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we select only the forward simulations that are the most
similar to the observed data, rejecting the rest. This method
is known as approximate Bayesian computation [ABC,
[29]]; it relies on choices of a distance metric (to measure
similarity between simulated and observed data) and of a
maximum distance parameter ϵ (used to accept or rejected
simulations).
In this work, we will use a version of LFI called density

estimation likelihood-free inference (DELFI). In this
approach, we use all existing forward simulations to learn
a conditional density distribution of the data1 d given
the parameters θ, using a density estimation algorithm.
Examples of density estimation algorithms are kernel
density estimation [KDE, [30–32]], mixture models, mix-
ture density networks [33,34], and masked autoregressive
flows [35]. We use the package PYDELFI, and estimate the
likelihood function from the forward simulations using
Gaussian mixture density networks (GMDN) and masked
autoregressive flows (MAF). In this sense, the name
likelihood-free inference is perhaps misleading: the infer-
ence is not likelihood-free, we simply avoid writing a
likelihood and instead model it using forward simulations.
A more accurate name for the method could therefore be
explicit-likelihood-free. A more extended discussion of our
choice of density estimation algorithms and conditional
distribution is presented in the Appendix A.
DELFI has several advantages over the simpler ABC

approach to LFI: it does not rely on a choice of a distance
parameter ϵ (although admittedly the choice of basis in
parameter space can change the implicit distance metric of
the density estimator) and it uses all available forward
simulations to build the conditional distribution, making it
far more efficient.
While relatively new, likelihood-free inference has

already been applied to several problems in astrophysics
[e.g., [5,36–41]]. However, most applications involving
LFI suffer from the curse of dimensionality: there can be
hundreds, thousands, or even millions of observables (such
as ∼2000 multipoles in cosmic microwave background
surveys, or 500 redshift and angular bins in cosmic shear
analyses), and it is impossible to perform density estima-
tion. Some form of data compression is therefore usually
needed [42–44]. Similarly, due to the high dimensionality
and complexity of these parameter spaces, efficient meth-
ods to generate the simulations (so as to minimize the
number needed) have been developed [2,45,46]. However,
our MMWþM31 problem has only three data points and one
parameter of interest, making it an extremely simple
application of the method from the statistical point of
view; it illustrates all necessary techniques, and does not
require data compression.

To summarize, the steps that we will follow are
(i) Generate a large number of simulations of systems

similar to the one of interest. The simulations used in
this work are described in Sec. IV.

(ii) Use a density estimator, in our case GMDN and
MAF as part of the PYDELFI package, to obtain the
sampling distribution for any data realization
pðdjθ; IÞ.

(iii) Evaluate this distribution at the observed data
(which will be described in Sec. V) to obtain the
likelihood function for our observed data realiza-
tion: pðd ¼ Dobsjθ; IÞ.

(iv) From a prior distribution and the likelihood, and
using Bayes’ theorem [Eq. (2)], get a posterior
distribution pðθjDobs; IÞ.

IV. SIMULATIONS

We use the publicly available MDPL simulation. This is
an N-body simulation of a periodic box with side length
Lbox ¼ 1 Gpc h−1, populated with 20483 dark matter
particles. Such a simulation achieves a mass resolution
of 8.7 × 109 M⊙ h−1 and a Plummer equivalent gravita-
tional softening of 7 kpc. The simulation was run with the
ART code and assumed a ΛCDM power spectrum of
fluctuations with ΩΛ ¼ 0.73, Ωb ¼ 0.047, Ωm ¼ 0.27,
σ8 ¼ 8.2 and H0 ¼ 100 h km s−1Mpc−1, with h ¼ 0.7.
Haloes are identified with the AHF halo finder [47].

AHF identifies local overdensities in the density field as
possible halo centres. The local potential minimum is
computed for each density peak and the particles that
are gravitationally bound are identified. Haloes with more
than 20 particles are recorded in the halo catalogue. The
AHF catalogue includes some 11,960,882 dark matter
haloes.
The halo catalogue is then searched for pairs of galaxies

as follows. We first identify those haloes in the mass2 range
5 × 1010 < M=M⊙h−1 < 5 × 1013. For each such halo, we
find all haloes (irrespective of mass) within ∼4 Mpc and
sort these by distance. If the closest of these is within the
mass range ½5 × 1010; 5 × 1013� and is separated by more
than 500 kpc but less than 1500 kpc, the two haloes are
considered a potential pair. The partner is then examined
to ensure that the pair is isolated (namely that there is no
other halo with a mass >5 × 1010 and closer to either pair
member than the pair separation). If this is the case then the
pair is kept for the analysis described here. In this way,
1,094,839 pairs are found (as opposed to the 30,190 pairs
used in [15]).
We believe the criteria used to select the halo pairs in this

work are not very restrictive and any cuts lie well outside

1Note that we use the letter d to refer to the data space used in
DELFI to learn conditional distributions, and we useDobs to refer
to the observed data.

2Henceforth, all masses are defined as M200, the total mass
enclosed in the largest sphere surrounding them with an enclosed
mean density over 200 times the critical value [27].
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the realistic limits for the actual MW-M31 system. Though
these selections are unrestrictive, we note that including
more pairs does improve the density estimation, as DELFI
can use all the available simulated data, and not only those
that are close to the observation.

V. DATA

We use three observations to constrain MMWþM31: the
distance to M31, and the radial and tangential components
of its velocity. While the TA requires other observables,
such as the age of the Universe t0 and the cosmological
constant Λ, in our approach these are already included in
the simulations at fixed values. We discuss below how
uncertainties in cosmological parameters affect the esti-
mated mass.
For the distance to M31, we adopt the commonly used

value r ¼ 770� 40 kpc [48–51]. For thevelocity, we follow
the results of [[52] henceforthVdM19]. The radial velocity in
the galactocentric rest frame is vr ¼ −109.4� 4.4 km s−1

[53] from HST observations. The tangential velocity is
slightly more cumbersome. VdM19 report the following
value for components of the tangential velocity of M31 from
a combination of Gaia DR2 and HST:

μ ¼ ð10� 11;−16� 11Þ μ as yr−1; ð3Þ

already in the galactocentric frame, i.e., after correcting for
the solar reflex motion. VdM19 uses the distance to M31 to
convert this to kms−1. They then use a method described in
[54] to correct for the fact that taking the norm of the two
components leads to a “bias” in the reported tangential
velocity.3 However, in this work, we take a different
approach, illustrated in Fig. 1 for each simulation, we
scatter the value of each component of the tangential velocity
for the simulation according the observational error of each
components shown in Eq. (3). By doing this, we are putting
the observational errors in the simulated measurements,
instead attempting to “debias” the tangential velocity sum-
mary statistic. We convert to km s−1 using the value of the
distance for that sample, to account for the covariance
between r and vt. We take as the observed value the norm
of the two observed components, vt ¼ 72 km s−1.While this
differs from thevalue reported inVdM19, this shouldnot be a
problem, as long as the way in which we calculate the
tangential velocity in simulations and observations is con-
sistent, and we use a summary statistic that extracts all the
available information (which the norm of the components
does). Furthermore, Appendix C shows that our results do
not significantly change if we repeat the analysis using a
purely radial motion (vt ¼ 0).
This approach takes into account both the non-Gaussian

errors in vt and the correlation of vt with the errors in the

distance measurement (these have not been accounted for
in previous estimates of MMWþM31).

VI. RESULTS

A. Overview

Having discussed the method, the simulations, and the
data, we have everything we need to perform LFI using
DELFI. We have three data points d ¼ fr; vr; vtg and one
parameter θ ¼ M. The process is illustrated in Figs. 2
and 3, and consists of the following:
(1) Left panel of Fig. 2: We generate a large number of

forward simulations, as discussed in Sec. IV. In-
creasing the number of simulations will increase the
accuracy of the density estimation, and of the
resulting posterior. Reference [2] demonstrates an
active learning scheme with PYDELFI, providing
criteria to run new simulations based on discrepan-
cies between the density estimates in the neural
density estimator ensemble. However, due to our
initial large number of simulations, we had no need
to run such extra simulations on-the-fly.

(2) Right panel of Fig. 2: The observational errors are
introduced as scatter in the forward simulations.
More specifically, we displace the simulations by a
number sampled from the error model presented in
Sec. V. Note how in Fig. 2 this step does not affect
the mass. This is because the mass in this problem is

FIG. 1. An illustration of our non-Gaussian error modelling for
the tangential velocity. The plot was obtained taking the compo-
nents of the tangential velocity for a randomly chosen simulation
(with fixedM), scattering a large number of times by the errors of
Eq. (3), and calculating the norm for each sample. The black
dashed line shows the norm of the components for the tangential
velocity of the simulation without measurement error.3We will discuss this supposed bias in a future publication.
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part of the parameters θ, not the data, as it is our goal
to obtain a posterior distribution for the mass.

(3) We use density estimation to get the conditional
density distribution pðdjθ; IÞ, as shown in Fig. 3.
While it might seem counterintuitive to learn the
likelihood instead of directly learning the posterior,
this allows us to then sample from a chosen prior,
instead of being limited to the prior that is implicit in
the simulations. This is discussed in more detail in
Appendix A.
There are several algorithms that can be used to

get a conditional probability distribution from sam-
ples. In this work we use GMDN and MAF4 (as part
of the PYDELFI package).

(4) Finally, we evaluate this conditional density distri-
bution at the observed data

Dobs ¼ fr ¼ 0.77 Mpc;

vr ¼ −109.3 km s−1; vt ¼ 72 km s−1g; ð4Þ

as discussed in Sec. V. This way, we get the
likelihood function:

L≡ pðd ¼ Dobsjθ; IÞ: ð5Þ

FIG. 2. Illustration of DELFI for the estimation of MMWþM31. The left panel is a scatter plot of the simulations described in Sec. IV.
The right panel adds the observational errors by scattering the simulations.

FIG. 3. Conditional distribution pðdjθ; IÞ density estimate from
the points shown in the right panel of Fig. 2. The 2D subplots in
the left column show the probabilities of the data d ¼ fr; vr; vtg
conditional on the parameter θ ¼ M (which has been given a
uniform distribution), while the remaining 2D subplots have been
marginalized over this uniform distribution. By evaluating this
function at the observed data points d ¼ fr; vr; vtg we obtain the
likelihood function. The points were sampled using the nested
sampling [55] code POLYCHORD [56,57]. Note that the one
dimensional distribution on M is flat by construction, as this
is the parameter, and the distributions on r and vr appear to be
“cut” because of the selection criteria described in Sec. IV.

4Note that while this work uses GMDN and MAF for density
estimation, Fig. 3 uses KDE instead. This is because the plots
were generated using the code ANESTHETIC [58], which uses
KDE to plot smooth probability distributions. KDE is appropriate
in this case, as ANESTHETIC only plots the one- and two-dimen-
sional posterior distributions, whereas in this work we are trying
to learn the full 4D distribution. ANESTHETIC uses the FASTKDE
implementation [59,60].
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Through this process we obtain a likelihood function,
without ever having to write a theory or use a Gaussian
approximation. While this process is limited by the number
and accuracy of the available simulations, it has a big
advantage over likelihood-based problems that use simplify-
ing approximations to make the likelihoodmore tractable, or
easier to compute. The calculation of MMWþM31 is a good
example: the likelihood-based approach relies on the TA and
data modeling approximations, which we know oversimpli-
fies the problem. Instead, using DELFI, we can account for
the complex nonlinear evolution of the system through our
N-body simulation.

B. Density estimation validation

For the density estimation, with PYDELFI we use a
combination of two GMDNs (with four and five
Gaussian components) and two MAFs (with three and
four components). The GMDNs have two layers with fifty
components each, while the MAFs have thirty components
on each of the two hidden layers. For a more robust density
estimation we stack the results weighted by each density
estimation’s relative likelihood, as described in [2].
We hold back 10,000 simulations from the training set to

be used for validating the likelihood that we have learned
through the simulations. Each validation simulation has a
“true” mass, position and velocity, and we can use these to
estimate how well our likelihood works. The results from
this validation are shown in Fig. 4. We also perform a
quartile test, finding that 95.485% of the simulations fall
within the 2σ predicted posterior, as expected.

C. Prior distribution

As previously discussed, we have the freedom to choose
a suitable prior distribution (this is because we have used
the simulations to learn a likelihood function, instead of
directly learning the posterior distribution). The left panel
of Fig. 8 shows four priors relevant to this study.
Uninformative priors in this case could be either a flat
prior or a logarithmic prior. In addition, in this problem
Press-Schechter theory [61] supplies us with a physically-
motivated prior. The Press-Schechter formalism predicts
the number of virialized objects with a given mass. While
this would be a fully correct prior only if the MWand M31
formed a single halo, it can provide a good prior distribu-
tion for the problem.5 We calculate the Press-Schechter
prior using the code COLOSSUS [62], [63] and the Tinker
mass function [64]. Finally, the prior shown as a black
dashed line is the one that would have been in use if we
have learned the posterior directly from the simulations
(when learning the posterior directly, we still have a prior,
we simply lose the freedom to choose it). In this work, we

adopt the Press-Schechter prior, which as shown in Fig. 8 is
virtually equivalent to a flat prior in logM. The effect of
using different priors in our results will be discussed in
Appendix B.
Once we have obtained a likelihood function and prior,

we can get a posterior using Bayes’ theorem Eq. (2). We
can describe this posterior by sampling from it using an
algorithm such as Markov chain Monte Carlo (MCMC) or
nested sampling [55]. However, in our case, a “brute-force”
approach is more practical (because the posterior is only

FIG. 4. Validation plot for our density estimation. We use
10,000 simulations that have not be used for training. For all
these, we use r, vr and vt to estimate a mass, and compare with
the true mass. The top figure plots predicted vs true mass, while
the bottom plot shows the residuals. The bars show the 68% CL
obtained using the method described in this paper.

5The local group is a bound system but not a virialized system,
so placing it in the Press-Schechter mass function works as an
approximation.
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one-dimensional): we simply calculate the posterior on a
grid of mass values.
Our result using the Press-Schechter prior is shown in

Fig. 5 (solid blue). Our peak and 68% confidence levels are
MMWþM31 ¼ 4.6þ2.3

−1.8 × 1012 M⊙, in good agreement with
[15] (also shown in Fig. 5) but with improved error bars.

D. Results discussion

Our result is compared to previous results in Fig. 7. We
see that all other estimates considered in this work are
within the 68% confidence interval of our posterior in the
mass, despite the different methods used. We notice that the
least action result of [26]) obtains tighter constraints than
our method; however, our result is the first one to fully
account for the distribution of the observed errors in a
robust (and Bayesian) manner. Other results use Gaussian
approximations for observational errors, or neglect them
completely, and therefore our result is the most accurate
estimate of MMWþM31 to date. This framework also allows
for more accurate estimates, in particular accounting for the
presence of M33 and the LMC in the local group. This will
be explored in future work.
The simulation was run using one particular set of

cosmological parameters but in reality these parameters
are uncertain and we should marginalize over them. This is
infeasible for us, as we have a pre-run set of simulations
with fixed cosmological parameters, but we can estimate
the size of the effect by reference to the timing argu-
ment (TA).

The TA uses the same observational constraints as does
thiswork, and like thiswork is based onmodeling/simulating
the trajectories of galaxies similar to those in the MWþ
M31 system; as a result the TA should have similar
sensitivities to cosmological parameters as this work. The
TA sensitivities can be estimated by numerically differ-
entiating themass estimation algorithmdescribed in [22].We
parametrize this algorithm using h and ΩΛ (from which Λ
and the age of the universe may be derived, the latter
assuming Ωm þ ΩΛ ¼ 1). We find ∂MMWþM31=∂ΩΛ ¼
−2.4 × 1012 M⊙ and ∂MMWþM31=∂h ¼ 7.4 × 1012 M⊙.
Multiplying these sensitivities by uncertainties on cosmo-
logical parameters (ΔΩΛ ¼ 0.006 and Δh ¼ 0.004 [65])
yields uncertainties on the mass estimate that are immaterial
compared to the uncertainty implied by the posterior width,
and hencewill be ignored. This conclusion continues to hold
even if we assume a larger uncertainty on h reflecting the
current tension between early- and late-Universe measure-
ments of this parameter. For example, a change in h of 0.066
induces a change in the TAMMWþM31 of 0.49 × 1012 M⊙ (in
agreement with [23]); adding this in quadrature to the
uncertainty implied by the posterior width yields only a
marginal increase in total uncertainty (from 2.3 × 1012 M⊙
to 2.35 × 1012 M⊙). This calculation illustrates that in a
simulation-based approach it is important to have a bench-
mark analytical model, to gauge if parameters not explored
by the simulations are relevant and if extra simulations are
needed.
Finally, we can compare our results with separate

estimates of the masses of the Milky Way and M31.

FIG. 5. The posterior onMMWþM31 obtained in this work (solid
blue) compared to the timing argument result of [15] that includes
Λ and the tangential velocity from [52] (dashed orange). While
our peak is lower, the posteriors are fully consistent.

FIG. 6. A comparison of the estimates of the separate masses of
M31, the MW, and their sum, the latter from this work. The plot
shows the small discrepancy between separate estimates of the
individual masses of the MW and M31 and this work.
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There are several values in the literature for the separate
masses of each galaxy, in some cases discrepant. Given this
discrepancy, we take a number of estimates of each mass
obtained through different methods, and assume that the
true value is contained within the ranges of the different
estimates, as done in [66]. While conservative, this method
should provide with ranges that contain the true mass of
each galaxy, and allow us to combine estimates in tension.
Through this method, we get the following:

(i) MMW ∈ ð1.0; 2.2Þ × 1012 M⊙, from [67–72]
(ii) MM31 ∈ ð0.6; 2.0Þ × 1012 M⊙, from [67,73–75]
Combining these two measurements yields MMWþM31 ∈

ð1.6; 4.2Þ × 1012 M⊙. This is slightly lower than our result,

but still in agreement, as illustrated in Fig. 6. We can see in
Fig. 7 that all estimates of the sum of themasses based on the
relative distance andvelocity of thebodies (TA,ANNandour
approach) obtain slightly larger values than the sum of the
separate masses. A possible explanation for this could be the
fact that all these approaches ignore the effect of other bodies
such as the LMC and M33 in the observed velocities, which
could bias the sum of the masses to higher values [76]. The
effect of the LMC and M33 in our posterior mass will be
explored in future work.

VII. CONCLUSIONS

In this work we have used density estimation likelihood-
free inference with forward-modelling to estimate the pos-
terior distribution for sum of the masses of the Milky Way
and M31 using observations of the distance and velocity to
M31. We obtain a mass MMWþM31 ¼ 4.6þ2.3

−1.8 × 1012 M⊙
(M200). Our method overcomes the several approximations
of the traditional timing argument, accounts for non-
Gaussian sources of observational measurement error, and
uses a physically motivated prior; this makes it the most
reliable estimate of MMWþM31 mass to date.
The sensitivity analysis performed in this study illustrates

that in any simulation-based approach it is important to have
a benchmark analytical (or semianalytical) model, to assess
how to cover the parameter space of required simulations.
This works serves not only to obtain state-of-the-art

estimates of the MMWþM31; by applying likelihood-free
inference to a problem that is physically rich and complex
yet statistically simple (thanks to its low dimensionality),
we can illustrate how the method works, what different
choices need to be made, and what challenges need to be
tackled. The ability to robustly infer MMWþM31 without
requiring an analytic theory or a likelihood demonstrates
the potential of likelihood-free inference methods in
astronomy and cosmology.
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APPENDIX A: DENSITY ESTIMATORS

One of the key elements of DELFI is the estimation of a
probability distribution from samples. This corresponds to
going from Fig. 2 (right panel) to Fig. 3. The density
estimation problem arises in many fields (for example

FIG. 7. Comparison of this work with previous estimates of the
MMWþM31, shown as best fit and 68% confidence intervals. The
result of this work is shown at the bottom; it is the first to account
fully for the observational errors, and to not rely on the
approximation of the TA.
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image analysis [77,78]) and several algorithms have been
developed to address it. In this section, we review some of
the most popular density estimation methods in the context
of LFI. For an overview of neural density estimation in the
context of LFI we recommend [2].
Density estimation algorithms that rely on there being

samples near the point of interest, such as spline or kernel
density estimation (KDE), struggle in high dimensional
spaces due to the sparsity of the sampling. They are very
useful, however, for estimating low dimensional PDFs,
which is why they are often used for plotting marginalized
posterior distributions. Public codes such as GetDist [79],
CHAINCONSUMER [80] or ANESTHETIC [58] use KDE to
generate plots of marginalized posterior distributions.
A mixture model (MM) represents a PDF p as a

weighted sum of component distributions:

pðyÞ ¼
XN
c¼1

αcDðy;ΦcÞ: ðA1Þ

Here N is the number of components in the mixture while
D is some family of distributions described by parameters
Φ; the weights fαcg and parameters fΦcg are fit to
observed or training data. A common choice is the
Gaussian mixture model (GMM), in which each compo-
nent distribution is Gaussian: Dðy;ΦcÞ ¼ N ðy; μc; σcÞ.
GMMs can successfully represent a large number of

PDFs. In addition, they have the advantage that the weights
and parameters fαc; μc; σcg can be easily fit to the data
using the expectation-maximization algorithm [81]. There
are, however, some issues with GMMs: they are sensitive to
the choice of N, and they have problems fitting certain
features (such as the sharp edges that can arise when flat
priors are used).
In the context of LFI we are interested in modeling a

conditional distribution pðyjxÞ (for example in our case p is
the conditional likelihood, forwhich y ¼ d andx ¼ θ). Such
conditional distributions can be modeled by mixture density
networks (MDNs) [33,34]. As with MMs, they model the
PDF as a weighted sum of component distributions, but now
the weights and parameters describing the components are
themselves (possibly nonlinear) functions of x:

pðyjxÞ ¼
XN
c¼1

αcðxÞDcðy;ΦcðxÞÞ: ðA2Þ

Again, a common choice is the Gaussian MDN (GMDN),
in which each component is Gaussian: Dðy;ΦcðxÞÞ ¼
N ðy; μcðxÞ; σcðxÞÞ.
The functions fαcðxÞ; μcðxÞ; σcðxÞg can be modeled by

a neural network with a set of weights; these weights are
then fit to the data. As with GMMs, GMDNs require
specification of the number N of mixture components to be
used; however, this dependence is much smaller than in the
case of GMMs (as GMDNs can fit complex distributions
using only a small number of components).

We finish by describing masked autoregressive flows
(MAFs), which have recently emerged as a powerful
density estimation method [35,45]. They do not rely on
a choice of number of components, and have the advantage
of providing simple tests of the goodness of fit to the
samples.
Here is the motivation for masking as a strategy for

density estimation. Consider training a neural network NN
to mimic; one can imagine training a parrot, for example.
The trainer speaks (¼input signal), and rewards the bird if
its output matches this training input. If NN has sufficient
complexity then it will learn to mimic the input. Now repeat
the process but with a bird with covered (¼masked) ears.
The bird cannot hear the input, but nevertheless receives the
training reward if its output matches the input. Now the bird
can only “play the percentages”; it learns the optimal
strategy, which is to output a weighted average of the input
signals (weighted by their frequency of usage by the
trainer). In this way the masked parrot learns the probability
distribution of the input signal i.e., has become a density
estimator.
That was the one-dimensional case. The two dimen-

sional case needs two parrots. The first is trained on signal
x1, which it cannot hear, with the result that it learns pðx1Þ.
The second is trained on x2, which it cannot hear, but it is
allowed to hear x1. As a result it learns pðx2jx1Þ. Thus
between them they learn pðx1Þpðx2jx1Þ ¼ pðx1; x2Þ as
desired. The multidimensional case is similar. This strategy
is called an autoregressive autoencoder. Note that it treats
the coordinates asymmetrically.
The conditional distributions pðxijx1;…; xi−1Þ learned

by NN are typically modeled as Gaussian. Consider
generating samples from the estimated probability distri-
bution p; for each sample we need we a set of n random
unit normals (i.e., a draw from Nð0; IÞ), which we trans-
form to get samples from p—call this transform T. The
details of T come from the means and standard deviations
of the conditional distributions, which can be obtained from
n evaluations of NN. However, importantly, the inverse
mapping T−1 can be found with just one evaluation of NN.
This is the idea of the masked autoencoder for distribution
estimation (MADE) algorithm [82].
Now apply T−1 to the training data D. The resulting

“pulled-back” data T−1ðDÞ will ideally be a set of samples
from Nð0; IÞ and its deviation from this ideal gives a direct
measure of how imperfect is our modeling of p. We can then
use the pulled-back data as the training data for yet another
MADE process, and so on through several iterations.
Between iterations we permute the coordinate axes, thereby
symmetrising how we treat them. With sufficient iterations,
themultiply-pulled-back training data approachesNð0; IÞ; at
this point the algorithm has an easy-to-evaluate mapping
betweenp andNð0; IÞ, which suffices for doing calculations.
This is the masked autoregressive flows (MAF) algo-
rithm [35,45].
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APPENDIX B: DEPENDENCE ON PRIORS

In this Appendix, we explore how the posterior distri-
bution of MMWþM31 (as shown in Fig. 5 and discussed in
Sec. VI) depends on our choice of prior. We consider the
four different priors illustrated in Fig. 8:

(i) A flat prior in the mass;
(ii) A logarithmic prior in the mass;
(iii) A prior based on the Press-Schechter distribution (as

adopted in this work);
(iv) A prior distribution matching the distribution of

masses in the simulation.
In our case the second and third choices are virtually the

same (as shown in the left panel of Fig. 8), and sowe omit the
‘logarithmic in mass’ prior when examining how the priors
affect our results. The posteriors obtained when using the
remaining three priors are shown in the right panel of Fig. 8,
and we see that our result is essentially independent of our
choice of prior, be it the Press-Schechter prior, a flat
prior on the mass (MLGðFlat priorÞ ¼ 5.0þ2.7

−1.7 × 1012 M⊙)
or the prior from the simulation distribution.
(MLGðSimulationDistributionÞ ¼ 4.3� 1.7 × 1012 M⊙)

APPENDIX C: DEPENDENCE ON TANGENTIAL
VELOCITY

Imagine a 2-dimensional velocity vector V ¼ ðVx; VyÞ.
If Vx, Vy are uncorrelated, normally distributed with zero
mean and equal variance σ, then the overall speed

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

x þ V2
yÞ

q
will be characterized by the Rayleigh

distribution [83], with mean V̄ ¼ σ
ffiffiffiffiffiffiffiffi
π=2

p
, rather than

naively zero. Similarly, nonzero measurements of Vx, Vy

with error bars will result in a distribution function with a

mean that is not V̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

x þ V2
yÞ

q
. In our analysis we pay

attention to this via the forward modeling approach,
starting with simulated ðVx; VyÞ and propagating their
impact on the final posterior for MMWþM31.
While distance and radial velocity have been measured

in numerous occasions using different methods, observa-
tions of the tangential velocity are far more scarce [52–54].
Their work treats the effect of converting measurements of
two components of the tangential velocity into a modulus in

FIG. 8. On the left, a comparison of four possible priors: a flat prior in the mass (blue), a flat prior in the logarithm of the mass (red), a
physically motivated Press-Schechter prior (orange), and the prior from the distribution of the simulations (dashed black). On the right,
the corresponding posterior obtained from each prior. Note that we did not show the posterior for the flat prior in the logarithm of the
mass, as this is equivalent to the Press-Schechter prior.

FIG. 9. The posterior on MMWþM31 for different values of the
tangential velocity: vt ¼ 72 km s−1 as used in this work (solid
blue), and a purely radial motion vt ¼ 0 (dashed red).
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a novel way. We check the robustness of our approach in
this section. We do so by comparing the main result of the
paper to the case of no tangential velocity. As shown in

Fig. 9, our posterior on the mass does not depend strongly
on the tangential velocity. Therefore, we are confident on
the accuracy of our posterior in the mass.
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