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ABSTRACT
Machine learning techniques have significantly changed our lives.
They helped improving our everyday routines, but they also demon-
strated to be an extremely helpful tool for more advanced and com-
plex applications. However, the implications of hardware security
problems under a massive diffusion of machine learning techniques
are still to be completely understood. This paper first highlights
novel applications of machine learning for hardware security, such
as evaluation of post quantum cryptography hardware and extrac-
tion of physically unclonable functions from neural networks. Later,
practical model extraction attack based on electromagnetic side-
channel measurements are demonstrated followed by a discussion
of strategies to protect proprietary models by watermarking them.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; • Computing methodologies→ Neural networks.
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1 INTRODUCTION
The use of machine learning (ML) and its ability to solve complex
problems has improved many applications in domains such as im-
age classification, natural language processing, computer vision,
and bio-informatics. These developments have stimulated a range
of advancements and triggered new paradigms. One example is
“edge ML”, which focuses on deployment and use of optimized ML
models on edge devices like Internet of things (IoT). The edge based
deployment of ML models generates fresh opportunities to explore,
but also raises new security concerns which must be systematically
investigated. The focus of this paper is to highlight new opportuni-
ties and challenges when considering ML and hardware security.

ML has long been used in network and system security for de-
tecting intrusions, anomalies and malware [25]. In the context of
hardware security, the major applications of ML are its use for
security evaluation of cipher implementations against side-channel
attacks [15] and model-building attacks against PUFs [16]. With
recent developments in machine learning algorithms new appli-
cations have come to light which include, but not limited to, eval-
uation of protected implementation against side-channel attacks,
finding new fault attacks [27], security aware design flow [18] etc.
However, with edge based deployment of ML models recent works
have shown new security threats like model extraction based on
side-channel [5, 10], label misclassification by fault injection [7] and
so on. In this paper, we take a deeper look into the dual interplay
between machine learning and hardware security.

The first part of the paper highlights novel applications of ma-
chine learning for hardware security. The first application caters
to the side-channel security evaluation of a high-profile post quan-
tum cryptography algorithm, currently under standardization by
NIST [20]. The algorithms are novel and their hardware imple-
mentations lack security analysis. The use of deep learning for
thorough security evaluation of these algorithms’ implementations
can help gain confidence into their security. We show that a deep-
learning based side-channel attack can extract the secret key from
side-channel leakage while classical attacks cannot. Moreover, we
identify that ML generalization can negate the effect of potential
countermeasures. Further, with deployment of ML in IoT there
arises a need for strong authentication mechanisms, preferably
with a hardware root of trust. While standard hardware like mem-
ory or delay chains possess PUF-like properties, the complex nature
of neural network can also be used to extract such properties from
neural network structure. Identifying intrinsic features of neural
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networks can enable several new possibilities like binding neural
network to a particular device for preventing illegal cloning.

The second part of the paper investigates threats to ML arising
from deployment on edge hardware. The ML models deployed
on edge devices are generally trained using expensive resources
and training data. The optimized models, which are proprietary in
nature, are then deployed on edge devices for efficient inference task.
Successful attacks allowing complete recovery of these proprietary
models have been shown previously using side-channel attacks [5,
10]. Moreover, leakage of the model can also leak information on
sensitive training data. We demonstrate practical EM side-channel
measurement based model recovery attack on Binarized Neural
networks (BNN) running on FPGA. The attacks are shown to be
possible even for optimized hardware generated using high-level
synthesis flow [21] and can target structures like the convolution
layers for weight extraction. Further, we discuss the potential of
watermarking in protecting these models from IP theft. In particular,
we lay focus on techniques developed specifically to watermark ML
hardware allowing deep embedding of the model fingerprinting
capabilities at design time.

The rest of the paper is organized as follows. Section 2 proposes
a novel ML based method for evaluation of post quantum crypto-
graphic processors against side-channel. Section 3 investigates PUF
properties in neural network as compared to classical PUFs. Section
4 reports practical model recovery attack on BNN models deployed
on FPGA. Section 5 provides a study of potential countermeasures
against such attacks. Finally, conclusions are drawn in Section 6.

2 DEEP LEARNING ATTACKS ON
POST-QUANTUM HARDWARE

This section presents a side-channel security evaluation using ML
and compares it to classical techniques. Specifically, we are evaluat-
ing FrodoKEM, a post-quantum key encapsulation mechanism [20].
Such algorithms are envisioned for use in HTTP/TLS protocols
and, unlike existing solutions, provide theoretical security against
quantum computer attacks. The United States National Institute
of Standards and Technology (NIST) is currently working towards
standardizing post-quantum algorithms for future use, and Frodo is
a remaining candidate in the last round of this process [23], making
it a high-profile target. But the hardware implementations of these
algorithms do leak information through side-channels. In the scope
of this work, we are interested in the power consumption-based
side-channel leakage.

Although ML-based side-channel attacks exist, they have pri-
marily focused on the leakage of AES, which is a symmetric-key
encryption algorithm [13, 14, 17, 24]. The typical goal in such works
is to reduce the number of tests/measurements needed to extract
the fixed secret key, i.e., the system is already broken but the effort
needed will be reduced with a better attack. Since we are evaluating
a key encapsulation mechanism, the stark contrast in our scenario
is that the key changes after each execution. This limits the ad-
versary to a single power measurement. Hence, an improvement
in side-channel analysis can result in breaking a system that is
otherwise considered secure.

Prior side-channel attacks on FrodoKEM (or its predecessor)
have adapted the classical horizontal Differential Power Analysis

Figure 1: (top)Dummycycle is inserted between time step 51-
75 and subsequent sub-traces are shifted (bottom) Random
jitter is added to the regular device operation.

(DPA) [4], which then got extended with the template attacks [6].
Most recently, a machine learning framework has quantified the ad-
vantages over classical techniques [3]. But all these efforts assume
that there is no countermeasure against physical side-channel anal-
ysis. This has been a reasonable assumption since the single-trace
challenge of the attacks would motivate defenders to skip counter-
measures to save cost. However, given these attacks, countermea-
sures will arguably appear soon. And the first countermeasures will
be simpler ones, that again, aims at minimizing cost. It is, therefore,
critical to evaluate if side-channel leakage would still be captured
with ML-based attacks in the presence of such countermeasures.

To that end, we emulate and test two defenses: dummy state inser-
tion and clock jitter-based hiding. The effects of these two defenses
are shown in Figure 1. While the dummy state insertion randomly
injects an averaged trace into the computations, jitter-based hiding
causes shifts in the temporal domain. Both attacks desynchronize
the alignment of sub-traces (i.e., computations) within the single
power measurement. Therefore, they reduce the effectiveness of
classical attacks. The premise of deep learning based attacks is to
understand the transformations introduced by the countermeasures
and to automatically apply signal processing or alignment needed
to negate those effects.

We apply the convolutional neural network based classifier de-
fined as in [3] and compare it with horizontal DPA and template
attacks. All attacks target a row of matrix multiplications in hard-
ware that computes 16 multiplications in parallel. The results, sum-
marized in Figure 2, indeed validate the premise of deep learning
attacks. While the success rate of the horizontal DPA and template
attacks respectively drop to 8% and 9%, the deep-learning attack still
achieves a 100% success rate. The effort in ML profiling, however, is
increased—the profiling has to be performed with the countermea-
sures switched on to learn their effect. But surprisingly, the number
of measurements needed to train a successful attack remains the
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Figure 2: Comparison of SCA defenses using all available
sub-traces (i.e., 84 sub-traces) of Frodo.

Figure 3: Confusion matrix for (left) dummy cycle insertion
and (right) random jitter insertion with 84 sub-traces.

same. The confusion matrix in Figure 3 presents the details of the
ML attack results. As is clear from the confusion matrix none of
the sub-keys are mispredicted, which indicates that the trained
CNN model can learn both the countermeasures effectively. The
loss of performance of traditional approaches in the presence of
the countermeasures makes ML-based side channel attacks an at-
tractive prospect for an adversary and urges designers to explore
more advanced protections.

3 PHYSICALLY UNCLONABLE FUNCTIONS
EXTRACTED FROM EMBEDDED NEURAL
NETWORKS

Neural Networks (NNs) have emerged as a major computing par-
adigm. They are composed of a large number of interconnected
processing elements (neurons) working together to solve specific
problems, and are configured for a specific application through
learning, which is performed by adjusting the strength of synaptic
connections between neurons. NNs tend to become ubiquitous in
our lives today. They are (or will be in the near future) present in
many applications, including IoT and smart sensors. Since these
applications are built on strongly interconnected objects, security
and trust have to be guaranteed. To this end, an IoT object should
have strict rules to access the network, such as authentication pro-
tocols. Physically Unclonable Functions (PUFs) have emerged as
cryptographic primitives used to implement low-cost device au-
thentication and secure secret key generation [28]. PUFs are built

based on an input-output generation process. The inputs are play-
ing the role of challenges to the PUFs and the outputs are their
responses to these challenges. According to the generated number
of Challenge-Response Pairs (CRPs), a PUF can be classified as a
weak PUF, when a single device can generate a small number of
CRPs, or a strong PUF when a single device can generate a large
number of CRPs such as to prevent an exhaustive analysis. While
weak PUFs are used for generating fingerprints and secret keys,
strong PUFs are used for device authentication.

Existing strong PUF solutions use dedicated hardware and they
are less mature than the well-established SRAM-based weak PUFs.
Several solutions exist to transform a weak PUF into a strong PUF
([2], [31]). They exploit the embedded SRAM to generate the weak
PUF and the existing hardware/software components (e.g., an AES
crypto core) to expand the number of CRPs while guaranteeing
the properties of a PUF (i.e., unclonability, uniqueness, uniformity,
bit-aliasing and reliability). Following the same idea, in this work
we explore the possibility of re-using an existing NN to generate
a strong PUF. We assume that the NN runs on a system with an
embedded SRAM. The idea of this work is to use the NN in two
regimes: the computation, where the synaptic weights are loaded
in the SRAM, and the strong PUF generation, where the SRAM is
powered-on without performing any write operation, thus reaching
its random state (this translates to random weight values) and
the network’s inputs are used as challenges, while its outputs as
response. We define the latter behavior as NNPUF.

The NNPUF solution could be in principle implemented on any
NN, but as a proof of concept we focused on the Multilayer Per-
ceptron (MLP). It is a feed-forward NN built of several layers of
fully connected neurons; each neuron is behaving like a percep-
tron. For this case study, several network topologies have been
considered, with one or two hidden layers of different sizes. All
neurons in hidden layers use the sigmoid as activation function,
while the neurons in the output layer use softmax. Three precisions
have been considered for the encoding of the synaptic weights: 8
bits, 16 bits and 32 bits. The output of the NN is translated into a
single-bit digital response by the following convention: assuming
𝑛 outputs of the NN, if the maximum output corresponds to the
first 𝑛/2 outputs, then the PUF response is considered to be logic 1,
otherwise 0. In order to assess the quality of the proposed solution,
we have simulated the considered NN configurations by randomly
generating the values of the synaptic weights. The assessment has
been performed by calculating the well-known metrics for PUFs:
Uniformity (i.e., the 0s and 1s in a binary response must be uni-
formly distributed); Uniqueness (i.e., each generated response has
to be unique over the set of responses); Bit-Aliasing (i.e., the 0s and
1s for the same challenge in multiple devices must be uniformly
distributed); Reliability (i.e., the responses should be stable in time).

Experiments have been conducted on 1000 devices by simulating
10K CRPs, for various PUF topologies. One topology is expressed as:
[IL HL OL], where IL is the number of NN inputs, HL is the number
of neurons in the hidden layers, and OL is the number of outputs.
Table 1 shows the values of uniformity, bit aliasing and reliability we
obtained for three topologies and three precisions of the synaptic
weights encoding. The uniqueness (not included in the table) was
100% for all experiments. To evaluate the reliability of the NNPUF,
we assumed instability of the SRAM memory (i.e., modifications in
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Table 1: Quality evaluation of the NNPUF.

NNPUF nBits Unif. BA Rel.
[100 80 2] 8 97.6% 97.5% 45%-100%

16 98.1% 97.9%
32 97.8% 97.7%

[100 80 40 2] 8 98.8% 98.2% 40%-100%
16 99.1% 98.7%
32 98.5% 98.3%

[784 100 10] 8 98.1% 97.9% 43%-100%
16 98.3% 98.1%
32 97.8% 97.5%

Figure 4: NNPUF Reliability vs SRAM PUF Reliability

the values of the synaptic weights). We applied the same challenges
to the NNPUF and we repeated the experiments 1000 times with
slightly different SRAM content. Figure 4 shows the dependency
of the NNPUF reliability on the SRAM PUF reliability. It can be
seen that zero-bit error rate SRAM PUF (as for instance the one
proposed in [30]) is required for reliable NNPUF. This shortcoming
is observed on most strong PUFs built on weak PUFs.

4 MODEL EXTRACTION ATTACK ON
PRACTICAL BNN HARDWARE USING EM
SIDE-CHANNEL INFORMATION

This section presents a method for electromagnetic (EM) side-
channel analysis to recover the layer structure and parameters
of practical ‘ized Neural Network (BNN) hardware generated with
GUINNESS [21], and synthesized with commercial high-level syn-
thesis tool Vivado HLS. The hardware is implemented on a Xilinx
Zynq chip mounted on Digilent Zedboard. We show how the lay-
ers can be identified from a single EM trace measured during the
network’s evaluation, and we demonstrate how an attacker may
use side-channel attacks to recover the weights used in the layers.

Attacks against BNNs have been reported in recent years [10,
32]. Dubey et al. [10] demonstrated an attack on the adder-tree
function of the authors’ custom BNN hardware. In [32], the authors
recovered the architecture of a targeted BNN through analysis
of EM emanations from the data bus of the BNN accelerator and
built substitute models using this information. Such attacks have

Figure 5: EM measurement of the target BNN evaluation (a),
with part of the measurement identifying the end of a layer
(b), and part of measurement identifying a pooling layer (c).

encouraged recent works to look into neural networks structure
with side-channel countermeasures [11].

Our contributions here are as follows. Firstly, we target a prac-
tical BNN hardware generated through a common high-level syn-
thesis tool, and show that the overall structure of BNN can be
identified by the corresponding EM emanations. In addition, we
target the convolution layers, and demonstrate that the weight
values convolved in the layers are revealed by EM side-channel
attacks with actual experiments, where a Langer-EMV near-field
probe and a Keysight DSOS404A oscilloscope are used to measure
EM emanations directly from the targeted Zynq chip.

4.1 Architecture extraction
The architecture of the targeted BNN can be deduced from a visual
inspection of the EM measurement of the FPGA chip during an
evaluation of the network. Figure 5 (a) shows the overall trace of
the BNN hardware evaluation we target. Example of a boundary
between layers that can be found with visual analysis is shown
with a red line. The portion is magnified in Figure 5 (b). Between
layers, there is a single clock cycle state during which no data
is processed. This causes the amplitude of the EM emanations to
drop significantly during the clock cycle, and allows the attacker
to easily deduce the timing between layers. Similarly, max-pooling
can be optimized to bitwise OR gates in hardware implementations
of BNNs, which greatly reduces the EM emanations during the
processing of the layer. Figure 5 (c) shows an example of a pooling
layer between convolution layers, and how it can be identified
in the EM measurement using this knowledge. These techniques
allow the attacker to recover the BNN structure. Figure 6 shows the
result of a fixed vs. random t-test using datasets consisting of single
random pixel images, all-zero images, and their corresponding EM
traces. Using the peaks from the t-test, the attacker can identify
the Points-of-Interest (POI) in the processing, which contain the
weights the attacker wishes to recover.

4.2 Weight extraction
We employ Correlation EM Analysis (CEMA) to perform the weight
recovery. Convolution functions of BNNs generally utilize a tem-
porary register where the result of adding intermediate values is



Machine Learning and Hardware security: Challenges and Opportunities ICCAD ’20, November 2–5, 2020, Virtual Event, USA

0.0 0.5 1.0 1.5 2.0 2.5
Sample 1e7

−5

0

5

t-v
al
ue

Figure 6: Result of fixed vs. random t-test. Peaks show the
timings where the pixel value is convolved with the secret
weights. The area of interest is shown with red lines.
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Figure 7: Measurements to Disclosure (MTD) results for
two consecutive weights. The correct and incorrect weight
guesses are shown with red lines and black lines .

stored after it is updated with the input with the secret weight ap-
plied to it. Measurements to Disclosure (MTD) result of the CEMA
in Figure 7 shows that we were successful in retrieving weights ap-
plied to the inputs of the first layer. This result implies that an attack
using the value change in the temporary register of the convolution
algorithm can be exploited to recover the secret weights, and that
the first recovered weight can be used to calculate the subsequent
value of the temporary register, which allows to recover the next
weight, and so on.

5 PROTECTIONS AGAINST ATTACKS ON
MACHINE LEARNING HARDWARE

While machine-learning hardware is subject to all the threats faced
by security-critical circuits in general, there are several threats
specific to ML. Most notably, companies are investing significant
efforts to design and train NNs and other ML implementations, and
want to protect their architecture and weights against extraction
attacks adversaries with physical access to devices (see previous
section for an example). Special watermarking and fingerprinting
techniques have been devised for ML hardware, rather than for gen-
eral circuits; these techniques and attacks targeting them published
so far are reviewed in this section.

Watermarking aims at proving the authorship. In the context of
artificial intelligence protection, watermarking follows two main
approaches. In the first, the protection technique is embedded into
the model modifying directly the weights within the model. Since
this alters directly the process of feature extraction, we call this
method feature-based. The second approach embeds the watermark
by training selected inputs to be classified using specific labels,
similar to adversarial training. Since it is activated by selected
inputs, we call this watermarking method trigger-based.

Uchida et al. [29] were the first proposing to use digital water-
marking for protecting deep NN (DNN) models. To embed a water-
mark (a binary string),they introduce a bias into the distribution of
weights. The verification (watermark read-out) is done projecting
the means of the weight of the internal layers. The main limitation
of this approach is the required access to internal layers to carry out
the verification (“white box” verification). Adi et al. [1] proposed
to embed the watermark using over-parametrization. Their water-
mark is embedded during training, and can be verified without
access to internal layers of the model (thus called “black box”) but
requires the involvement of a third party to guarantee the security
of the verification process.

Zhang et al. [33] proposed to train the network to produce spe-
cific predictions when selected patterns are used as inputs. The
verification is carried out by presenting the patterns used for the
training the watermark to the model and to compare the answers
with the expected ones. A passport-based approach was presented
by Fan et al. [12]. To make it dependent from the passport, the
passport is included during the design and training of the network.
Once the passport is used: the verification step occurs by consider-
ing two aspects, the behaviour of the DNN when selected inputs
are applied, and the performance of the model. Observing unex-
pected performance is an indication that a wrong passport is used.
This approach requires access to the internal state, but the authors
propose to use it in combination with black box approaches.

Merrer et al. [19] proposed watermarking based on adversarial
attacks: add small perturbation to several original samples with the
goal of classifying them incorrectly, and use the model with cor-
rected labels as watermark. Ownership verification can be carried
out by measuring the gap between the classification of adversarial
examples. Complete frameworks for watermarking have been pro-
posed by by Rouhani et al. [26], where the watermark is embedded
in the probability density distribution of the activation sets for dif-
ferent layers of the neural network, and by Chen et al. [8]—here, the
(binary) watermark is embedded using an encoding schema that
splits all the classes belonging to a specific task into two groups.

A strategic adversary who knows about the existence of protec-
tions may desire to inactivate or remove them. Among the attacks
against watermarking techniques are watermark removal([26], [9]),
query modification [22] that makes ineffective the verification pro-
cess by altering the used query and ambiguity attacks [12], that
aim at creating doubts about the ownership of an IP by embedding
several forged watermarks into the DNN.

When weight and architecture extraction is carried out using
power analysis, it can be counteracted with approaches similar
to the ones used to mitigate key recovery power analysis attacks
against cryptographic implementations. One can distinguish be-
tween hiding (removing the correlation between the computed data
and the power consumption of the device) and masking (breaking
the link between the data processed by the algorithm and the data
processed by the device). Based on these general principles, coun-
termeasures have to be adapted to machine learning models and
algorithms. To date, this topic has been addressed only by a limited
amount of works, including a fully masked neural network [11]
and a combination of hiding and masking [10] for side-channel
mitigation. We believe that this is a promising direction for future
research.
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6 CONCLUSIONS
The relationship between machine learning and hardware security
is threefold: ML can help an adversary to attack a (hardware-based)
system; it can be deployed to defend the same system against adver-
saries; and finally, the ML circuitry itself can be the target of attacks.
In this paper, we brought several examples of ML circuitry on both
the “good” and the “evil” side in the ongoing cat-and-mouse game
of security. The intersection between ML and hardware security is
an arena of ongoing research, and we expect that many new and in-
teresting results will be discovered by experts from both disciplines
working together in the near future.
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