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Abstract

The aim of this work is to study a dynamic problem that consti-
tutes a unified approach to describe some rate-depending interactions
between the boundaries of two viscoelastic bodies, including relaxed
unilateral contact, pointwise friction or adhesion conditions. The clas-
sical formulation of the problem is presented and two variational for-
mulations are given as three and four-field evolution implicit equa-
tions. Based on some approximation results and an equivalent fixed
point problem for a multivalued function, we prove the existence of
solutions to these variational evolution problems.

1 Introduction

This paper is concerned with the extension of some recent existence results
proved for a class of nonsmooth dynamic contact problems which describe
various surface interactions between the boundaries of two Kelvin-Voigt vis-
coelastic bodies. These interactions can include some relaxed unilateral con-
tact, Coulomb friction or adhesion conditions.

Existence and approximation of solutions to the quasistatic elastic prob-
lems have been studied for different contact conditions. The quasistatic uni-
lateral contact problems with local Coulomb friction have been studied in
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[T, 28, 29], adhesion laws were analyzed in [27, 9] and the normal compliance
models have been investigated by several authors, see e.g. [16] 14, B0] and
references therein.

Dynamic frictional contact problems with normal compliance laws have
been studied in [21], 16}, 17, 3, 23] and local friction laws were considered in [15]
18], 19, 12, 5, 0], for viscoelastic bodies. Dynamic frictionless problems with
adhesion have been studied in [4, 20} B2] and dynamic viscoelastic problems
coupling unilateral contact, recoverable adhesion and nonlocal friction have
been analyzed in [111 [6].

Using the Clarke subdifferential, the variational formulations of various
nonsmooth contact problems were given as hemivariational inequalities, see
[22, 23, 241, 25] and references therein.

Based on Ky Fan’s fixed point theorem, an elastic contact problem with
relaxed unilateral conditions and pointwise Coulomb friction in the static case
was studied in [26], the extension to an elastic quasistatic contact problem
was investigated in [8] and the corresponding viscoelastic dynamic case was
analyzed in [7].

This work extends the results in [7] to the case of a coefficient of friction
depending on the sliding velocity. Using new three and four-field variational
formulations, expressed as an evolution variational equation coupled with
pointwise constraints, existence and improved regularity results are estab-
lished.

The paper is organized as follows. In Section 2 the classical formulation of
the dynamic contact problem is presented and two variational formulations
are given. Section 3 is devoted to establish some auxiliary approximation
results. In Section 4 the existence of a solution is proved for an equivalent
fixed point problem by using the Ky Fan’s theorem.

2 Classical and variational formulations

We consider two viscoelastic bodies, characterized by a Kelvin-Voigt con-
stitutive law, which occupy the reference domains Q% of R? with Lipschitz
boundaries I'* = 00Q%, a = 1,2. Let I'f;, I'% and I'¢ be three open disjoint
sufficiently smooth parts of I'* such that ['* = fg UF? Ufg and, to simplify
the estimates, meas(I'%,) > 0, a = 1,2. We assume the small deformation
hypothesis and we use Cartesian coordinates representations.

Let y*(x*,t) denote the position at time ¢ € [0,7T], where 0 < T <
400, of the material point represented by the Cartesian coordinates x® =
(¢, z9, x%) in the reference configuration Q¢ and u®(x*,t) = y“(x*,t) —
denote the displacement vector of & at time ¢, with the Cartesian coordi-



nates u® = (uf, uy,ug).

Let € = (55 (u®)), and 6 = (%), be the infinitesimal strain tensor and
the stress tensor, respectively, corresponding to 2%, a =1, 2.

Assume that the displacements u® = 0 on I'¢ x (0,7), a = 1,2, and
that the densities of both bodies are equal to 1. Let f, = (f, f3) and
Fo = (F3, F3) denote the given body forces in Q' UQ? and tractions on I'k, U
2, respectively. The initial displacements and velocities of the bodies are
denoted by ug = (u}, ud), u; = (u],u?) and the usual summation convention
will be used for ¢, 5, k, [ =1,2,3.

Suppose that the solids can be in contact between the potential contact
surfaces T'¢; and T'Z which can be parametrized by two C* functions, ¢!, ¢?,
defined on an open and bounded subset = of R?, such that ©!(£) — ©?(€) >
0 V& € = and each T'% is the graph of p* on = that is I'% = { (£, ¢*(€)) €
R3; £ €2}, a=1, 2, see e.g. [2]. Define the initial normalized gap between
the two contact surfaces by

i) — 2O =) i}

— VE e =
14+ [Ve!(§)]
Let n® denote the unit outward normal vector to I'*, o = 1, 2. We in-
troduce the following notations for the normal and tangential components

of a displacement field v®, of the relative displacement corresponding to
v := (v!,v?) and of the stress vector *n®, respectively, on I'%, o =1, 2:

(§,1) = v (& ™ (€), 1), V(& 1) = v(&,1) - n(§),

un (€, 1) = vn(€,t) + vR (€, 1), [on](€,t) = on(Et) — go(E),

Vg, 1) = (&, 1) — (&, N (E), vr(E,t) = vr(6, 1) — Vi (€, 1),

o (& 1) = (a%(& I (€)) - n*(§), a7(&1) = a(§, H)n(§) — of (&, t)n (&),

for all ¢ € = and for all ¢ € [0,T]. Let g:= —[ux]| = gy — upy — ui be the
gap corresponding to the solution u := (u!, u?).

Let A” = (Agy,), B® = (Bf;,) denote the components of the elasticity
tensor and the viscosity tensor corresponding to 2%, respectively, satisfying

,Ua

the following classical symmetry and ellipticity conditions: Cf,, = C;; =
mig € L(Q?), Vi, g, k1 = 1,2,3, Jaca > 0 such that CZymijmi >
Oco T Ti5 V1 = (Tij) Verlfylng Ciajkl = A%kl’ c* = A or Cio;'kl = B%‘kla

C*=B* Vi, j, k,1=1,2,3, a=1,2.
Let x, & : R? = R be two mappings with x lower semicontinuous and &
upper semicontinuous, satisfying the following conditions:

£(s) <E(s) and 0 ¢ (k(s),R(s)) Vs € R? (1)
Jry > 0 such that max(|s(s)|, [F(s)|) < ro Vs € R2 (2)

3



Let p:Zx R?® — R, be a bounded function such that for a.e. £ € =
w(&,+) is Lipschitz continuous with the Lipschitz constant independent of &,
and for every v € R® p(-,v) is measurable.

Consider the following dynamic viscoelastic contact problem with Coulomb
friction.

Problem P,: Find u = (u!,u?) such that u(0) = ug, ©(0) = u; and, for
all t € (0,7),

u* —dive*(u®,u) = f{ in Q% (3)
o (u*, %) = A%(u”) + B%%(u”) in Q% (4)
u*=0on I'f, o*n®=f5 on I'}, a=1,2, (5)
o'n' +0’n? =0 in =, (6)
K([un], in) < on < E([un], dy) in Z, (7)
lor| < p(ir)|ony] in Z and (8)
ar #0 = o = —plar)loy| =5,

||

where % = o%(u®, "), a = 1,2, oy := ok, o7 := ok and p is the sliding

velocity dependent coefficient of friction. Different choices for k,  will give
various contact and friction conditions, see e.g. [7].
To give the variational formulations, we adopt the following notations:

H*(Q%) := H(Q*R?), a=1,2, H® := H°(Q') x H*(Q?),
(v, W) g5 = (V' W) g @y me @) + (V% W) g (@2) o (22)
Vo= (v,v?)) e H’ Vw= (w!,w?) € H°, VseR,

H = H° = [2(Q;R?) x L*(Q%R?), V := V! x V2 where
Ve={v*c H'(Q);v*=0 ae on ¢}, a=1,2.

(H, |.|) and (V, ||.||) are Hilbert spaces with the associated inner products
denoted by (.,.) and by (.,.), respectively.
Define Zp = = x (0,7 and the closed convex cones L2 (Z), L% (Zr) as

follows:
L3(E):={6 € L*(E); 0 >0 ae. in =},

L:(Zr):={neLl*Er);n>0 ae in Zg}.
Let a, b be two bilinear, continuous and symmetric mappings defined by
a(v,w) = a (V' W) + a2(v2, w?), b(v, w) = b (v, w') + (0%, w?)
Vo = (v!,v?), w= (w!,w?) € H', where, for a=1,2,

a® (v, w*) = A% (v?)-e(w®) dx, b*(v*, w?) :/ B (v)-e(w”) dx.

Qo

@
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As meas(I'y)) > 0 and the components of A%, B* « = 1,2, satisfy the
ellipticity conditions, by Korn’s inequality it follows that a and b are V-
elliptic in the following sense:

Ima, my >0 a(v,v) > m, ||v|]?, bv,v)>my|v|> YoeV. (9)

Assume £ € W0, T; IX(Q% RY), f3 € WH(0,T; [T B)), o =
1,2, ug, w1 €'V, go € L7 (Z), and define the following mapping:

fEWISO.THY, (f0) = Sosy [ f100 adm+z/ f3

a=1,2

Vo= (v, v?) e H, Vte[0,T)

Assume the following compatibility conditions: [ugy]| < 0, E([uon]) = 0 a.e.
in = and 3p, € H such that

(P, v) + a(ug, v) + b(uy,v) = (f(0),v) VveV. (10)

For every ¢ = ((1,¢2) € L*(0,T; (L*(Z2))?) = (L*(Z7))?, define the following
nonempty, closed, and convex sets:

A%(Cr,G2) ={n € L*(Er)i ko (G, &) < ©(C1,¢2) ae in Ert},

n<ko
<n<Eyo((,() ae in Zp},

AL (G, G) ={n € LY(Er); 5y © (G, G2)
AL (Gr, Go) = {n € LL(Er);F- 0 (1, &) < o (C1,C2) ae in Er},
where, for each r € R, r; := max(0,7) a := max(0, —r) denote the

positive and negative parts, respectively.
Also, for every w € W1%(0,T; V), define the following nonempty and
closed sets:

Al(w) = {(n,s) € L*(Zr) x (L*(Zr))* n € A(Jwy], i),
<] < p(wr) nl, ¢-wr + plwr) n]|wr| =0 ae. in Zr},
A*(w) = {(n,s) € L*(Zr) x (L*(Zr))* ny € A% (Jwy], iw), n- € A ([wn], ),
ls| < p(wr) (04 +n-), s wr+ p(wr) (4 +n-) |wr| =0 ae in Er},
As(w) = {(n,m,¢) € (L2(ET))5§771 € ASL([@UN],U'JN)a N2 € Ag([wN],wN),
sl < p(wr) (m +m2), - wr + p(wr) (m + ne2) |wr| =0 ae in =}

Since meas(Z) < oo and k, E satisfy (2), it follows that for all ¢ €
L*(0,T; (L*(2))?) the sets A°(¢), A%(¢) and A% (¢) are bounded in norm in
L2(0,T; L*(Z))=L*(Zr) by Ry = ro(meas(Z))"/2T and are bounded in norm
in L>(0,T; L>*(Z)) by 7.



As the coefficient of friction p is a bounded function, it follows also that
for all w € W'2(0,T; V) the sets A'(w), A*(w), and A*(w) are bounded
in norm. Thus, there exists R; > 0 such that A*(w) C Dy x D; for
all w € Wh2(0,T;V), where Dy = {(n1,1m2) € (L*(Z1))% Imllrzzy) <
Ro, [m2llr2zr) < Ro} and Dy = {s € (L*(Z7))*; lIs|lz2zr)e < I}

A first variational formulation of the problem P. is the following.

Problem P!: Find uw € C'([0,T); H) " W'*(0,T; V), XA € L*(Er), v €
(L*(Z7))?, such that u(0) = ug, @(0) = u;, (A7) € A'(u), and

(w(T),v(T)) — /0 (w,v)dt +/O {a(u,v) + b(u,v)} dt

—/0 {()\avN)LQ(E) + (’)’,’UT)(LQ(E))s}dt :/0 <f,’l)> dt+ (ul,v(O)) (11)
Vo € L=(0,T;V)NWY(0,T; H).

where (-, -)z2(z) and (-, -)(z2(z))s denote the inner products of the correspond-
ing spaces.

The formal equivalence between the variational problem P! and the clas-
sical problem ([3)—(8) can be easily proved by using Green’s formula and an
integration by parts, where the Lagrange multipliers A, v satisfy the relations
A= ON, Y = OrT.

The sets A((1,¢2), A%(Cr,¢) and A%((, () have the following useful
properties, see [7].

Lemma 2.1. Let (¢1, () € (LA(2))? and (n1,1m2) € AS(G, &) x A (G, G).
Then mny = 0 a.e. in Zp and there exists n € A°((y, (o) such that ny = n,
N_ =19 a.e in Zp.

Since A € A%([un], uy) if and only if (A, A_) € (A ([un], an) X A2 ([un], @n),
from the previous lemma it follows that the variational problem P! is clearly
equivalent with the following problem denoted by P2, in the sense that it has
the same solutions u, « as the problem P! and the solutions \;, \y satisfy
the relation A = A\ — Ay, where A is a solution of Pvl.

Problem P?: Find w € CY([0,T]; H)NW2(0,T; V), (A1, A2) € (L*(Zr))?,



~ € (L*(Z7))3, such that u(0) = ug, 4(0) = uy, (A1, Xa2,v) € A*(u), and
(w(T),v(T)) — /0 (w,v)dt + /0 {a(u,v) + b(w,v)}dt

/ [ = oy o) r2tm) + (7> 01) paeys } db = / (Fv) di + (g, v(0)) (12)
Vo € Lo0,T; V)N W20, T; H).

The existence of solutions to problem P? will be established by using an
equivalent fixed point problem which will be presented in the following sec-

tion.

3 A fixed point problem formulation

By an immediate application of Theorem 3.2 proved in [10] and using similar
arguments to those that enabled to prove Lemma 3.2 in [7], one obtains the
following existence and uniqueness result.

Lemma 3.1. For each (ny,n2) € (WH>(0,T; L*(2)))?, ¢ € (WH>(0,T; L*(2)))?

with 11(0) = 12(0) = 0, ¢(0) = 0, there exists a unique solution u = Uy, y, <)

of the following evolution variational equation: find w € W?%2(0,T; H) N

Wh2(0,T; V), such that w(0) = wug, (0) = wy, and for almost allt € (0,T)
(t,v) + a(u,v) + b(w,v) — (1 — Mo, UN)Lz(E)

13
—(s,v7) 2@ = (f,v) Vv eV. (13)

We shall also use the following estimate result.

Lemma 3.2. Let (n1,72), (01,02) € (WH>(0,T; L*(Z)))? such that n(0) =
772(0) = 51(0) = (52(0) = O, S1,S2 € (Wl,oo(o)T; LQ(E>>>3 such that §172<0) =
0, and let Wy, nyc1)s W5, 60,60) bE the corresponding solutions of . Then
there exists a constant Cy > 0, independent of (n1,m2), (1,92), and §1, a2,
such that for all t € [0,T

|u(771,7727§1)< ) U (51,82,62) ( )| + ||u (n1,m2, Cl)(t) - u(51,527§2)(t)”2
/ i) — o | 07

< OO / { 771 T2 — 51 + 527 u(m 72,61)N — (51 02 §2)N)L2( =)

+(§1 S2, U (771,772,€1)T (51 02 §2)T) 2= )3} dr.

(14)
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PTOOf' Let (7717 772)7 (517 62) S (Wl,oo(o) T7 L2(E)))2 €1,62 € (Wl,oo(o) T7 LQ(E)))3
with w1 = wy, n,61), U2 = U, 6,6,) the corresponding solutions of
which exist according to Lemma [3.1] Taking in each equation v = 4; — uo,
for a.e. 7 € (0,7) it follows that

(’lll — 'l':l,g,’l'l,l — UQ) + a(u1 — U2, ’l:l,l — ’UQ) -+ b(u1 — ’l:l,g, ’l:l,l — UQ)

= (771 — 12 — 01 + 02, Uy N — Z'LQN)LZ(E) + (Cl — Go, Ui — u2T>(L2(E))3-

Since the solutions w;, wy verify the same initial conditions and a is sym-
metric, by integrating over (0,t) it follows that for all ¢t € [0,7]

1, . . 1 b . .
5"11,1(15) — ’U/Q(t)|2 + 5&('11;1(75) — ’U,Q(t), ’Uq(t) — ’U,Q(t)) + / b(u1 — U2, U1 — ’U,Q) dr
0
t
= / {1 —mo = 01 + 02, N — an) 2(z) + (S1 — S2, Wir — Uar) (12(=))3 } AT
0
Using the V-ellipticity of a and b, the estimate follows. O

The following compactness theorem proved in [31] will be used several
times in this paper.

Theorem 3.3. Let X, U andY be three Banach spaces such that X C U C Y
with compact embedding from X into U.

(i) Let F be bounded in LP(0,T;X), where 1 < p < oo, and OF /Ot :=
{f; f € F} be bounded in L'(0,T;Y). Then F is relatively compact in
LP(0,T;U).

(i1) Let F be bounded in L>(0,T; X) and OF /Ot be bounded in L"(0,T;Y),
where r > 1. Then F is relatively compact in C([0,T];U).

AsD(0,T; L*(Z)) is dense in L(0, T; L*(Z)), it follows that for every (ny,m2) €
(L2(Z7))? and every ¢ € (L*(Zr))?, there exist (nf,n%), in (L2 (Er))*N
(Whe(0,T; L*(Z)))?, (") in (WH(0, T'; L*(E)))? such that 57 (0) = 03 (0) =
0, ¢"(0) = 0, for all n € N, 5 — ny, n¥ — 19 in L*(Z7), and ¢" — < in
(L*(Er))°.

Theorem 3.4. Under the assumptions of Section 2, for every (ni,m2) €
(L2(Z7))? and every ¢ € (L*(Zr))?, let (n},n5)n be a sequence in (L3 (Er))?
N(WLe(0,T; L*(=2)))? and (¢"), be a sequence in (W>°(0,T; L*(Z)))? such
that 17 (0) = 15(0) = 0, ¢"(0) = 0, for all n € N, nf — m, 03 — 7
in L*(Zr), and ¢" — < in (L*(27))*. Let wgpneny be the solution of
corresponding to (ny,n3,s"), for every n € N. Then (g yncny)n is
strongly convergent in C*([0,T); H) N WY2(0,T; V), its limit, denoted by

8



U = Uy, nee), 15 ndependent of the chosen sequences weakly converging to
(n1,m2,§) with the same properties as (n},ny,s") and is a solution of the
following evolution variational equation: w(0) = up, w(0) = uq,

(u(T),'v(T))—/O (u,v) dt+/0 {a(u,v) + b(u,v)}dt

T T

—/ {(m = m2,0n)2(z) + (S, V1) (12(z))3 } dt = / (f,v)dt + (uy,v(0)) (15)

0 0
Vo € L=(0,T;V)NWY(0,T; H).
Proof. Assume (m,m2) € (L3(Er))%, ¢ € (L*(Er))%, (nf',m3) € (L3(Er))* N
(Whe(0,T; L*(E)))%, ¢" € (Wh(0,T; L*(Z)))? such that n7'(0) = 75(0) =
0, foralln € N, " — ny, ny — ny in L*(Z7), and ¢" — ¢ in (LQ(_T)) Then,
by Lemma[3.1], for every n € N there exists a unique solution of the following
variational equation: find w, := W yp ey € W>2(0,T; H) NW2(0,T; V),
such that u,(0) = wg, ©,(0) = u, and for almost all ¢t € (0,7T)
(ﬂ’m ’U) + a('u,n, ’U) + b(um ’U) - (77711 - 7];7 UN)L2(E)

— (", vr) 2@z = (fiv) Yo e V. (16)

For v = 4,,, and integrating over (0,t) with ¢t € (0,T], we derive

t t ¢
/ (T, Up) dT +/ a(y, ) dr +/ b(ty,, w,) dr
0 0 0

t t

t
- / (1 — 1 )2y b — / (6", o) 2y s dr = / (F i) dr
0 0 0

and so for every ¢t € (0,7] we have

1. 5 1 Lo
é\un(tﬂ +§a(un(t),un(t))+/0 b(ty,, y,) dr

t t
I/(n?—n§7unN)La(a)dr+/(c W) (12(2))2 AT
0 0

b 1 1
o [ dr S+ atun, wo)
0

By the relations @, we obtain
L. M L
Sl () + <O + mb/ | dr
2 2 0
t
< kl/ Ut lze) + 191 2@ + 16" [ w2@pe) 1 wall dr
0

t

. 1 M,
[ 1Al dr + Sl +
0

Vn e N, Vvt € (0,77,



where k; is a positive constant independent of n and M, is a positive conti-
nuity constant of a.

Since the sequences (7}, 75),, (¢"), are bounded in (L*(Z7))?, (L*(Z7))3,
respectively, by Young’s inequality it follows that there exists a positive con-
stant C, depending only on a, b, f, ug, uy, k1, the bounds of (1}, n%), and
(6™)n, such that the following estimates hold:

VneN, |u, (@) < Cy, flun(t) < Gy VE€[0,T], [[tnll207v) < Cro (17)
Using (16) for v = 9, we see that for all @ € L*(0,T; H}) with H} :=
H}(QYR3) x HH Q% R3)

/OT(i'Ln,l/))dt—i—/OTa(un,¢)dt+/OTb(un7¢)dt:/DTU'ﬂ/,) di.

This relation and the estimates imply that there exists a positive con-
stant Cy having the same properties as C and satisfying the estimate

Vn eN, ||an||L2(o,T;H51) < Oy, (18)

where Hy' := Hy ' (Q4R?) x Hy H(Q2R?).
From , , it follows that there exist a subsequence (wy, ) and u
such that

W,, =" w in L>*(0,T:H), u, —*u in L>(0,T;V),

U, —u in L*(0,T;V), i, — @ in L*(0,T; Hy").
According to Theorem [3.3] with

F=(tn )y X=V, U=H"'Y =H;' p=2,

we obtain
,, — @ in L*(0,T; H"),

1
where 1 > 1> 3 so that, by the trace theorem, the last convergence implies

iy = i in (0, T (X)) = (I(En)) (19)
By Lemma [3.2] for all I, m € N and for all ¢ € [0, 77,

t
it () — o ()7 + [Jwi(t) — wpm ()] + / [ — b, ||* d7
0
t
< Co/ (= 5 — 0 + 15, N — U ) 2(z) dT (20)
0
t
+ Co/ (Cl — " wr — ﬂmT)(L2(E))3 dr.
0

10



Using the weak convergence properties of (9}),, (75)n, (6™)n, and the strong
convergence property , we can pass to limits in the previous estimates
corresponding to t = T for (u,, )r and so we obtain that (u,, ), is a Cauchy

sequence in W12(0,7; V) and
w,, — uin W40, T; V).
Now, if (wn )i is another subsequence of (), such that
Uy —*w in L0, T;H), u, —*u in L=(0,T;V),
k k
Uy — ' in L2(0,T;V), i, — i in L*(0,T; Hy").
k k
then, using the same arguments as above, we have
wy — ' in WH0,T;V)
and passing to limits in (20) with [ = nj, m = n; we obtain that v’ = u, so

that
w, — w in W0, T; V). (21)

By , the Cauchy-Schwarz inequality and the trace properties, there exists
a positive constant C5 such that for all [, m € N and for all ¢t € [0, 77,

1)~ i (O + o0) — @)1+ [ i = |7
<y /Ot 7y =1 = 1" + 05" | r2qe) lun — | r2ce) dT
+Co /Ot 1" = 6™l z2 @)l tir — Gt |l (z2(z)) dT
t
< 00/0 (s = o = 1" + 15 2@y + 18" = s llze@pe) |t — | L2 (ys dr
T
< Cz/o (I =5 = n" + 15" r2@) + Is" = ™l ze@pe) i — | dr-

Passing to limits in the previous estimates, it follows that (w,), is a Cauchy
sequence in C([0,T]; H) N C([0,T]; V') and

w, —u in C*([0,7]; H)NnC([0,T}; V). (22)

Now, let (87, 0%), be a sequence in (L2 (Z7))* N(WH>(0,T; L*(Z)))? and
(™), be a sequence in (W1(0,T; L*(Z)))? such that §7(0) = 67(0) = 0,
w"(0) = 0, for all n € N, §7 — 5y, 6% — ny in L*(E7), and w" — ¢ in

(L*(Z7))*. If w(sp sp,wny is the solution of corresponding to (07, 0%, ™),
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for every n € N, then, using similar arguments as above for the union of the
two sequences (0}, ny,¢"), and (07,05, ™), it follows that

U oy o) — w in CH([0,T]; H)NWH(0,T; V).
It remains to prove that the unique limit w of this class of approximating

sequences is a solution of . For all v € L>(0,T;V)NW40,T; H),
integrating over (0,7) in yields

T T T
/ (tn, v) + a(t,, v) dt+/ b(,, v) dt —/ (m' — m5, vN) L2(z) dt
0 . 0 9 (23)
- / (6", vr)(L2(z)s dt = / (f,v)dt
0 0

and integrating by parts the first term in implies

(un(T),v(T))—(ul,v(O))—/O (un,i))dt+/0 {a(wn, v) + bit,, v)} dt

T T
- / (0 — 2 ow) ey + (8" vr) gy} dt = / (Fooydt  (24)

Vo € L*(0,T; V)N WhH(0,T; H).
Passing to the limits by using and , it follows that u is a solution of
(). =
Let ® : (L3 (27))? x (L*(Er))® — (L3 (Er))*x (L*(2r))? \ {0} be the set-
valued mapping defined by

(I)(77177727g) = Ag(u(mmz,c)) v(7717772>§) € (L?&—(ET»z X (LQ(ET))Sa (25)

where w(;, n,<) is the solution of the variational equation (L5 which corre-
sponds to (71,72, s) by the procedure described in Theorem [3.4]

As (A1, A2,7) is a fixed point of @, i.e. (A1, A2,y) € ®(\1, Ao, ), if and
only if (w(x, x,~): A1, A2, ) is a solution of the Problem P?, we consider a new
problem, which consists in finding a fixed point of the set-valued mapping
®, called also multifunction.

4 Existence of a solution to the contact prob-
lem

We shall prove the existence of a fixed point of the multifunction ® by using
a corollary of the Ky Fan’s fixed point theorem [13], proved in [26] in the
particular case of a reflexive Banach space.

12



Definition 4.1. Let Y be a reflexive Banach space, D a weakly closed set in
Y,and F': D — 2¥\ {0} be a multivalued function. F' is called sequentially
weakly upper semicontinuous if z, — z, y, € F(z,) and y, — y imply
y € F(2).

Proposition 4.1. ([26]) Let Y be a reflexive Banach space, D a convex,
closed and bounded set in'Y, and F : D — 2P\ {0} a sequentially weakly
upper semicontinuous multivalued function such that F(z) is convex for every
z€ D. Then F has a fixed point.

Theorem 4.2. Under the assumptions of Section 2, there exists (A, A2,7y) €
(L2(Z7))* x (L*(Zr))? such that (A, X2,y) € ®(A\1, A2, 7y). For each fived
point (A, Ag,7y) of the multifunction ®, (W, o), A, Y), With X = A — Ay,
is a solution of the Problem P; and (w(x, xy~), M, A2,7Y) s a solution of the
Problem P?.

Proof. We apply Proposition toY = (L*(Z7))’ F = ® and D =
[(LZ.(E7))* N Do x [(L*(Er))* N Dil.

The set D C (L*(Z7))° is clearly convex, closed, and bounded.

Since for each w € W2(0,T; V) the set A*(w) is nonempty, closed, and
convex, it follows that ®(n;,n2,<) is a nonempty, closed, and convex subset
of D for every (m,m2,¢) € D.

In order to prove that the multifunction ® is sequentially weakly upper
semicontinuous, let (9}, n5,¢") — (n1,m2,5), (07, ny,s") € D, (67,05, ™) €
S(ny,ny,¢") VYn € N, (07,05, w0") — (01,02,70) and let us verify that
(01,09, 70) € ®(n1,1M2,5). Using the Theorem for each (n},n%,<¢"), and
the remark preceding this theorem, it follows that there exists a sequence
(1,73, <" ) such that (A7, 75) € (LL(S7))*N(WH(0, T L*(E)))?,

" e (Whee(0,T; LA(Z)))3, 77(0) = 73(0) = 0, ¢"(0) = 0, for all n € N, and

(ﬁ??ﬁéﬁz én) - (77?, ng7§n) — 0 in (LZ(ET)>5’ (26)
Ui iz em) — W o en) — 0 in CH[0,T]; H)NnW2(0,T; V), (27)

where w(gn sn ¢y is the solution of (13) corresponding to (97, 73,8"), Wiyr my n)
is the solution of corresponding to (n},ny,¢").
As (7, m3,6") = (11,72, ), by using (26), we have
(A7, 75,8") = (m,m2,6) in (L*(Er))?, and, by Theorem [B.4]
UG i) = Wi ee) 0 CH([0, T, H)NW(0,T; V), (28)

where w;, n,.) is the solution of corresponding to (11,72, §).
We adopt the following notations: w, := W o cn), UnN = Uy pp cn)N

Uy 2= U(ny,na,6)s UnN -= U(ni,m2,6)N-
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Thus, by and the triangle inequality, we obtain
u, —u, in C'([0,T); H)nW"%(0,T;V), (29)

which implies
U, = w,, U, — u, in (L*(Z7))>. (30)

Now, by Lemma [2.1} if (67,05, %") € ®(n},n3,6") = A*(w(yp pp o)) for all
n € N, then

E([unn], ttn) < 07 = 03 < F([unn], dan) ae. in Er, (31)
|wo”| < p(tnr) (67 +65) a.e. in Zp, (32)
w" - U + () (07 4+ 05) |t,r| =0 ae. in Zp, Vn € N (33)

The relations are equivalent to

/w [t ) < / (07 - 07) < / R[], ),

for every measurable subset w C Zr and for all n € N.
Passing to limits according to Fatou’s lemma, by using , the semi-

w

continuity of k and &, the relation , and the convergence property [ (6] —

5y) — /(51 — d3), we obtain

[ sdeion) < [ Gr=6) < [ wunl i),

for every measurable subset w C =7, which implies
5([u,7N],unN) S (51 — 52 S E([UUN],{L”N) a.e. in ET. (34)

The relation is equivalent to

[0 < [ ntia) 67+ 33,
for every measurable subset w C = and for all n € N.
As (€, -) is Lipschitz continuous with the Lipschitz constant independent
of &, by using it is easy to see that

Unp — Uy i (L*(27))%, p(tnr) — p(i,r) in L*(Z7), (35)

14



so that passing to limits we obtain

/ |lzo| < liminf/ || < lim/,u('unT) (07 + 05) = /,u('[l,nT) (01 + 02).

Thus

1< [t 61+,

for every measurable subset w C =7, which implies
|| < p(t,r) (01 + 02) ae. in Ep. (36)
Now, we consider the relation which is equivalent to

for every measurable subset w C Zp and for all n € N. By we have

,U/(unT) |unT| — N(UWT) |unT’ in LI(ET)a (38)
and, by Lemma and the relations , ,
O + 05 =" 61 + b2 in L=(Z7). (39)

Passing to limits in by using and , we obtain

[t [ ) 61+ 62) | =
for every measurable subset w C Zp, which implies
™ - unT + u(unT) (51 —+ 52) |unT‘ =0. (40)
By (29), (B4), (36), (40), it follows that (&1,ds, @) € (11, 72,5), so that, by
applying Proposition [4.1], the theorem is proved.
]
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