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Abstract

The aim of this work is to study a dynamic problem that consti-
tutes a unified approach to describe some rate-depending interactions
between the boundaries of two viscoelastic bodies, including relaxed
unilateral contact, pointwise friction or adhesion conditions. The clas-
sical formulation of the problem is presented and two variational for-
mulations are given as three and four-field evolution implicit equa-
tions. Based on some approximation results and an equivalent fixed
point problem for a multivalued function, we prove the existence of
solutions to these variational evolution problems.

1 Introduction

This paper is concerned with the extension of some recent existence results
proved for a class of nonsmooth dynamic contact problems which describe
various surface interactions between the boundaries of two Kelvin-Voigt vis-
coelastic bodies. These interactions can include some relaxed unilateral con-
tact, Coulomb friction or adhesion conditions.

Existence and approximation of solutions to the quasistatic elastic prob-
lems have been studied for different contact conditions. The quasistatic uni-
lateral contact problems with local Coulomb friction have been studied in
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[1, 28, 29], adhesion laws were analyzed in [27, 9] and the normal compliance
models have been investigated by several authors, see e.g. [16, 14, 30] and
references therein.

Dynamic frictional contact problems with normal compliance laws have
been studied in [21, 16, 17, 3, 23] and local friction laws were considered in [15,
18, 19, 12, 5, 10], for viscoelastic bodies. Dynamic frictionless problems with
adhesion have been studied in [4, 20, 32] and dynamic viscoelastic problems
coupling unilateral contact, recoverable adhesion and nonlocal friction have
been analyzed in [11, 6].

Using the Clarke subdifferential, the variational formulations of various
nonsmooth contact problems were given as hemivariational inequalities, see
[22, 23, 24, 25] and references therein.

Based on Ky Fan’s fixed point theorem, an elastic contact problem with
relaxed unilateral conditions and pointwise Coulomb friction in the static case
was studied in [26], the extension to an elastic quasistatic contact problem
was investigated in [8] and the corresponding viscoelastic dynamic case was
analyzed in [7].

This work extends the results in [7] to the case of a coefficient of friction
depending on the sliding velocity. Using new three and four-field variational
formulations, expressed as an evolution variational equation coupled with
pointwise constraints, existence and improved regularity results are estab-
lished.

The paper is organized as follows. In Section 2 the classical formulation of
the dynamic contact problem is presented and two variational formulations
are given. Section 3 is devoted to establish some auxiliary approximation
results. In Section 4 the existence of a solution is proved for an equivalent
fixed point problem by using the Ky Fan’s theorem.

2 Classical and variational formulations

We consider two viscoelastic bodies, characterized by a Kelvin-Voigt con-
stitutive law, which occupy the reference domains Ωα of R3 with Lipschitz
boundaries Γα = ∂Ωα, α = 1, 2. Let ΓαU , ΓαF and ΓαC be three open disjoint
sufficiently smooth parts of Γα such that Γα = Γ

α

U ∪Γ
α

F ∪Γ
α

C and, to simplify
the estimates, meas(ΓαU) > 0, α = 1, 2. We assume the small deformation
hypothesis and we use Cartesian coordinates representations.

Let yα(xα, t) denote the position at time t ∈ [0, T ], where 0 < T <
+∞, of the material point represented by the Cartesian coordinates xα =
(xα1 , x

α
2 , x

α
3 ) in the reference configuration Ωα, and uα(xα, t) = yα(xα, t)−xα

denote the displacement vector of xα at time t, with the Cartesian coordi-
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nates uα = (uα1 , u
α
2 , u

α
3 ).

Let εα = (εij (uα)), and σα =
(
σαij
)
, be the infinitesimal strain tensor and

the stress tensor, respectively, corresponding to Ωα, α = 1, 2.
Assume that the displacements uα = 0 on ΓαU × (0, T ), α = 1, 2, and

that the densities of both bodies are equal to 1. Let f 1 = (f 1
1,f

2
1) and

f 2 = (f 1
2,f

2
2) denote the given body forces in Ω1 ∪Ω2 and tractions on Γ1

F ∪
Γ2
F , respectively. The initial displacements and velocities of the bodies are

denoted by u0 = (u1
0,u

2
0), u1 = (u1

1,u
2
1) and the usual summation convention

will be used for i, j, k, l = 1, 2, 3.
Suppose that the solids can be in contact between the potential contact

surfaces Γ1
C and Γ2

C which can be parametrized by two C1 functions, ϕ1, ϕ2,
defined on an open and bounded subset Ξ of R2, such that ϕ1(ξ)− ϕ2(ξ) ≥
0 ∀ ξ ∈ Ξ and each ΓαC is the graph of ϕα on Ξ that is ΓαC = { (ξ, ϕα(ξ)) ∈
R3 ; ξ ∈ Ξ}, α = 1, 2, see e.g. [2]. Define the initial normalized gap between
the two contact surfaces by

g0(ξ) =
ϕ1(ξ)− ϕ2(ξ)√
1 + |∇ϕ1(ξ)|2

∀ ξ ∈ Ξ.

Let nα denote the unit outward normal vector to Γα, α = 1, 2. We in-
troduce the following notations for the normal and tangential components
of a displacement field vα, of the relative displacement corresponding to
v := (v1,v2) and of the stress vector σαnα, respectively, on ΓαC , α = 1, 2:

vα(ξ, t) := vα(ξ, ϕα(ξ), t), vαN(ξ, t) := vα(ξ, t) · nα(ξ),

vN(ξ, t) := v1
N(ξ, t) + v2

N(ξ, t), [vN ](ξ, t) := vN(ξ, t)− g0(ξ),

vαT (ξ, t) := vα(ξ, t)− vαN(ξ, t)nα(ξ), vT (ξ, t) := v1
T (ξ, t)− v2

T (ξ, t),

σαN(ξ, t) := (σα(ξ, t)nα(ξ)) · nα(ξ), σαT (ξ, t) = σα(ξ, t)nα(ξ)− σαN(ξ, t)nα(ξ),

for all ξ ∈ Ξ and for all t ∈ [0, T ]. Let g := −[uN ] = g0 − u1
N − u2

N be the
gap corresponding to the solution u := (u1,u2).

Let Aα = (Aαijkl), Bα = (Bαijkl) denote the components of the elasticity
tensor and the viscosity tensor corresponding to Ωα, respectively, satisfying
the following classical symmetry and ellipticity conditions: Cαijkl = Cαjikl =
Cαklij ∈ L∞(Ωα), ∀ i, j, k, l = 1, 2, 3, ∃αCα > 0 such that Cαijklτijτkl ≥
αCα τijτij ∀ τ = (τij) verifying Cαijkl = Aαijkl, Cα = Aα or Cαijkl = Bαijkl,
Cα = Bα ∀ i, j, k, l = 1, 2, 3, α = 1, 2.

Let κ, κ : R2 → R be two mappings with κ lower semicontinuous and κ
upper semicontinuous, satisfying the following conditions:

κ(s) ≤ κ(s) and 0 /∈ (κ(s), κ(s)) ∀ s ∈ R2, (1)

∃ r0 ≥ 0 such that max(|κ(s)|, |κ(s)|) ≤ r0 ∀ s ∈ R2. (2)
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Let µ : Ξ × R3 → R+ be a bounded function such that for a.e. ξ ∈ Ξ
µ(ξ, ·) is Lipschitz continuous with the Lipschitz constant independent of ξ,
and for every v ∈ R3 µ(·,v) is measurable.

Consider the following dynamic viscoelastic contact problem with Coulomb
friction.
Problem Pc : Find u = (u1,u2) such that u(0) = u0, u̇(0) = u1 and, for
all t ∈ (0, T ),

üα − divσα(uα, u̇α) = fα1 in Ωα, (3)

σα(uα, u̇α) = Aαε(uα) + Bαε(u̇α) in Ωα, (4)

uα = 0 on ΓαU , σ
αnα = fα2 on ΓαF , α = 1, 2, (5)

σ1n1 + σ2n2 = 0 in Ξ, (6)

κ([uN ], u̇N) ≤ σN ≤ κ([uN ], u̇N) in Ξ, (7)

|σT | ≤ µ(u̇T ) |σN | in Ξ and (8)

u̇T 6= 0⇒ σT = −µ(u̇T )|σN |
u̇T
|u̇T |

,

where σα = σα(uα, u̇α), α = 1, 2, σN := σ1
N , σT := σ1

T and µ is the sliding
velocity dependent coefficient of friction. Different choices for κ, κ will give
various contact and friction conditions, see e.g. [7].

To give the variational formulations, we adopt the following notations:

Hs(Ωα) := Hs(Ωα;R3), α = 1, 2, Hs := Hs(Ω1)×Hs(Ω2),

〈v,w〉−s,s = 〈v1,w1〉H−s(Ω1)×Hs(Ω1) + 〈v2,w2〉H−s(Ω2)×Hs(Ω2)

∀ v = (v1,v2) ∈H−s, ∀w = (w1,w2) ∈Hs, ∀ s ∈ R,

H := H0 = L2(Ω1;R3)× L2(Ω2;R3), V := V 1 × V 2, where

V α = {vα ∈H1(Ωα); vα = 0 a.e. on ΓαU}, α = 1, 2.

(H , |.|) and (V , ‖.‖) are Hilbert spaces with the associated inner products
denoted by (. , .) and by 〈. , .〉, respectively.

Define ΞT = Ξ × (0, T ) and the closed convex cones L2
+(Ξ), L2

+(ΞT ) as
follows:

L2
+(Ξ) := {δ ∈ L2(Ξ); δ ≥ 0 a.e. in Ξ},

L2
+(ΞT ) := {η ∈ L2(ΞT ); η ≥ 0 a.e. in ΞT}.

Let a, b be two bilinear, continuous and symmetric mappings defined by

a(v,w) = a1(v1,w1) + a2(v2,w2), b(v,w) = b1(v1,w1) + b2(v2,w2)

∀v = (v1,v2), w = (w1,w2) ∈H1, where, for α = 1, 2,

aα(vα,wα) =

∫
Ωα

Aαε(vα) ·ε(wα) dx, bα(vα,wα) =

∫
Ωα

Bαε(vα) ·ε(wα) dx.
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As meas(ΓαU) > 0 and the components of Aα, Bα, α = 1, 2, satisfy the
ellipticity conditions, by Korn’s inequality it follows that a and b are V -
elliptic in the following sense:

∃ma, mb > 0 a(v,v) ≥ ma ‖v‖2, b(v,v) ≥ mb ‖v‖2 ∀v ∈ V . (9)

Assume fα1 ∈ W 1,∞(0, T ;L2(Ωα;Rd)), fα2 ∈ W 1,∞(0, T ;L2(ΓαF ;Rd)), α =
1, 2, u0, u1 ∈ V , g0 ∈ L2

+(Ξ), and define the following mapping:

f ∈ W 1,∞(0, T ;H1), 〈f ,v〉 =
∑

α=1,2

∫
Ωα
fα1 · vα dx+

∑
α=1,2

∫
ΓαF

fα2 · vα ds

∀v = (v1,v2) ∈H1, ∀ t ∈ [0, T ].

Assume the following compatibility conditions: [u0N ] ≤ 0, κ([u0N ]) = 0 a.e.
in Ξ and ∃p0 ∈H such that

(p0,v) + a(u0,v) + b(u1,v) = 〈f(0),v〉 ∀v ∈ V . (10)

For every ζ = (ζ1, ζ2) ∈ L2(0, T ; (L2(Ξ))2) = (L2(ΞT ))2, define the following
nonempty, closed, and convex sets:

Λ0(ζ1, ζ2) = {η ∈ L2(ΞT );κ ◦ (ζ1, ζ2) ≤ η ≤ κ ◦ (ζ1, ζ2) a.e. in ΞT },

Λ0
+(ζ1, ζ2) = {η ∈ L2

+(ΞT );κ+ ◦ (ζ1, ζ2) ≤ η ≤ κ+ ◦ (ζ1, ζ2) a.e. in ΞT },

Λ0
−(ζ1, ζ2) = {η ∈ L2

+(ΞT );κ− ◦ (ζ1, ζ2) ≤ η ≤ κ− ◦ (ζ1, ζ2) a.e. in ΞT },

where, for each r ∈ R, r+ := max(0, r) and r− := max(0,−r) denote the
positive and negative parts, respectively.

Also, for every w ∈ W 1,2(0, T ;V ), define the following nonempty and
closed sets:

Λ1(w) = {(η, ς) ∈ L2(ΞT )× (L2(ΞT ))3; η ∈ Λ0([wN ], ẇN),

|ς| ≤ µ(ẇT ) |η|, ς · ẇT + µ(ẇT ) |η| |ẇT | = 0 a.e. in ΞT },

Λ2(w) = {(η, ς) ∈ L2(ΞT )× (L2(ΞT ))3; η+ ∈ Λ0
+([wN ], ẇN), η− ∈ Λ0

−([wN ], ẇN),

|ς| ≤ µ(ẇT ) (η+ + η−), ς · ẇT + µ(ẇT ) (η+ + η−) |ẇT | = 0 a.e. in ΞT },

Λ3(w) = {(η1, η2, ς) ∈ (L2(ΞT ))5; η1 ∈ Λ0
+([wN ], ẇN), η2 ∈ Λ0

−([wN ], ẇN),

|ς| ≤ µ(ẇT ) (η1 + η2), ς · ẇT + µ(ẇT ) (η1 + η2) |ẇT | = 0 a.e. in ΞT }.

Since meas(Ξ) < ∞ and κ, κ satisfy (2), it follows that for all ζ ∈
L2(0, T ; (L2(Ξ))2) the sets Λ0(ζ), Λ0

+(ζ) and Λ0
−(ζ) are bounded in norm in

L2(0, T ;L2(Ξ))=L2(ΞT ) by R0 = r0(meas(Ξ))1/2T and are bounded in norm
in L∞(0, T ;L∞(Ξ)) by r0.
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As the coefficient of friction µ is a bounded function, it follows also that
for all w ∈ W 1,2(0, T ;V ) the sets Λ1(w), Λ2(w), and Λ3(w) are bounded
in norm. Thus, there exists R1 > 0 such that Λ3(w) ⊂ D0 × D1 for
all w ∈ W 1,2(0, T ;V ), where D0 = {(η1, η2) ∈ (L2(ΞT ))2; ‖η1‖L2(ΞT ) ≤
R0, ‖η2‖L2(ΞT ) ≤ R0} and D1 = {ς ∈ (L2(ΞT ))3; ‖ς‖(L2(ΞT ))3 ≤ R1}.

A first variational formulation of the problem Pc is the following.

Problem P 1
v : Find u ∈ C1([0, T ];H) ∩W 1,2(0, T ;V ), λ ∈ L2(ΞT ), γ ∈

(L2(ΞT ))3, such that u(0) = u0, u̇(0) = u1, (λ,γ) ∈ Λ1(u), and

(u̇(T ),v(T ))−
∫ T

0

(u̇, v̇) dt+

∫ T

0

{a(u,v) + b(u̇,v)} dt

−
∫ T

0

{(λ, vN)L2(Ξ) + (γ,vT )(L2(Ξ))3} dt =

∫ T

0

〈f ,v〉 dt+ (u1,v(0)) (11)

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H).

where (·, ·)L2(Ξ) and (·, ·)(L2(Ξ))3 denote the inner products of the correspond-
ing spaces.

The formal equivalence between the variational problem P 1
v and the clas-

sical problem (3)–(8) can be easily proved by using Green’s formula and an
integration by parts, where the Lagrange multipliers λ, γ satisfy the relations
λ = σN , γ = σT .

The sets Λ0(ζ1, ζ2), Λ0
+(ζ1, ζ2) and Λ0

−(ζ1, ζ2) have the following useful
properties, see [7].

Lemma 2.1. Let (ζ1, ζ2) ∈ (L2(Ξ))2 and (η1, η2) ∈ Λ0
+(ζ1, ζ2) × Λ0

−(ζ1, ζ2).
Then η1η2 = 0 a.e. in ΞT and there exists η ∈ Λ0(ζ1, ζ2) such that η+ = η1,
η− = η2 a.e. in ΞT .

Since λ ∈ Λ0([uN ], u̇N) if and only if (λ+, λ−) ∈ (Λ0
+([uN ], u̇N)×Λ0

−([uN ], u̇N),
from the previous lemma it follows that the variational problem P 1

v is clearly
equivalent with the following problem denoted by P 2

v , in the sense that it has
the same solutions u, γ as the problem P 1

v and the solutions λ1, λ2 satisfy
the relation λ = λ1 − λ2, where λ is a solution of P 1

v .

Problem P 2
v : Find u ∈ C1([0, T ];H)∩W 1,2(0, T ;V ), (λ1, λ2) ∈ (L2(ΞT ))2,
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γ ∈ (L2(ΞT ))3, such that u(0) = u0, u̇(0) = u1, (λ1, λ2,γ) ∈ Λ3(u), and

(u̇(T ),v(T ))−
∫ T

0

(u̇, v̇) dt+

∫ T

0

{a(u,v) + b(u̇,v)} dt

−
∫ T

0

{(λ1 − λ2, vN)L2(Ξ) + (γ,vT )(L2(Ξ))3} dt =

∫ T

0

〈f ,v〉 dt+ (u1,v(0)) (12)

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H).

The existence of solutions to problem P 2
v will be established by using an

equivalent fixed point problem which will be presented in the following sec-
tion.

3 A fixed point problem formulation

By an immediate application of Theorem 3.2 proved in [10] and using similar
arguments to those that enabled to prove Lemma 3.2 in [7], one obtains the
following existence and uniqueness result.

Lemma 3.1. For each (η1, η2) ∈ (W 1,∞(0, T ;L2(Ξ)))2, ς ∈ (W 1,∞(0, T ;L2(Ξ)))3

with η1(0) = η2(0) = 0, ς(0) = 0, there exists a unique solution u = u(η1,η2,ς)

of the following evolution variational equation: find u ∈ W 2,2(0, T ;H) ∩
W 1,2(0, T ;V ), such that u(0) = u0, u̇(0) = u1, and for almost all t ∈ (0, T )

(ü,v) + a(u,v) + b(u̇,v)− (η1 − η2, vN)L2(Ξ)

−(ς,vT )(L2(Ξ))3 = 〈f ,v〉 ∀v ∈ V .
(13)

We shall also use the following estimate result.

Lemma 3.2. Let (η1, η2), (δ1, δ2) ∈ (W 1,∞(0, T ;L2(Ξ)))2 such that η1(0) =
η2(0) = δ1(0) = δ2(0) = 0, ς1, ς2 ∈ (W 1,∞(0, T ;L2(Ξ)))3 such that ς1,2(0) =
0, and let u(η1,η2,ς1), u(δ1,δ2,ς2) be the corresponding solutions of (13). Then
there exists a constant C0 > 0, independent of (η1, η2), (δ1, δ2), and ς1, ς2,
such that for all t ∈ [0, T ]

|u̇(η1,η2,ς1)(t)− u̇(δ1,δ2,ς2)(t)|2 + ‖u(η1,η2,ς1)(t)− u(δ1,δ2,ς2)(t)‖2

+

∫ t

0

‖u̇(η1,η2,ς1) − u̇(δ1,δ2,ς2)‖2 dτ

≤ C0

∫ t

0

{(η1 − η2 − δ1 + δ2, u̇(η1,η2,ς1)N − u̇(δ1,δ2,ς2)N)L2(Ξ)

+(ς1 − ς2, u̇(η1,η2,ς1)T − u̇(δ1,δ2,ς2)T )(L2(Ξ))3} dτ.

(14)
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Proof. Let (η1, η2), (δ1, δ2) ∈ (W 1,∞(0, T ;L2(Ξ)))2 ς1, ς2 ∈ (W 1,∞(0, T ;L2(Ξ)))3

with u1 := u(η1,η2,ς1), u2 := u(δ1,δ2,ς2) the corresponding solutions of (13)
which exist according to Lemma 3.1. Taking in each equation v = u̇1 − u̇2,
for a.e. τ ∈ (0, T ) it follows that

(ü1 − ü2, u̇1 − u̇2) + a(u1 − u2, u̇1 − u̇2) + b(u̇1 − u̇2, u̇1 − u̇2)

= (η1 − η2 − δ1 + δ2, u̇1N − u̇2N)L2(Ξ) + (ς1 − ς2, u̇1T − u̇2T )(L2(Ξ))3 .

Since the solutions u1, u2 verify the same initial conditions and a is sym-
metric, by integrating over (0, t) it follows that for all t ∈ [0, T ]

1

2
|u̇1(t)− u̇2(t)|2 +

1

2
a(u1(t)− u2(t),u1(t)− u2(t)) +

∫ t

0

b(u̇1 − u̇2, u̇1 − u̇2) dτ

=

∫ t

0

{(η1 − η2 − δ1 + δ2, u̇1N − u̇2N)L2(Ξ) + (ς1 − ς2, u̇1T − u̇2T )(L2(Ξ))3} dτ.

Using the V -ellipticity of a and b, the estimate (14) follows.

The following compactness theorem proved in [31] will be used several
times in this paper.

Theorem 3.3. Let X, U and Y be three Banach spaces such that X ⊂ U ⊂ Y
with compact embedding from X into U .

(i) Let F be bounded in Lp(0, T ;X), where 1 ≤ p < ∞, and ∂F/∂t :=
{ḟ ; f ∈ F} be bounded in L1(0, T ;Y ). Then F is relatively compact in
Lp(0, T ;U).

(ii) Let F be bounded in L∞(0, T ;X) and ∂F/∂t be bounded in Lr(0, T ;Y ),
where r > 1. Then F is relatively compact in C([0, T ];U).

AsD(0, T ;L2(Ξ)) is dense in L2(0, T ;L2(Ξ)), it follows that for every (η1, η2) ∈
(L2

+(ΞT ))2 and every ς ∈ (L2(ΞT ))3, there exist (ηn1 , η
n
2 )n in (L2

+(ΞT ))2∩
(W 1,∞(0, T ;L2(Ξ)))2, (ςn)n in (W 1,∞(0, T ;L2(Ξ)))3 such that ηn1 (0) = ηn2 (0) =
0, ςn(0) = 0, for all n ∈ N, ηn1 → η1, ηn2 → η2 in L2(ΞT ), and ςn → ς in
(L2(ΞT ))3.

Theorem 3.4. Under the assumptions of Section 2, for every (η1, η2) ∈
(L2

+(ΞT ))2 and every ς ∈ (L2(ΞT ))3, let (ηn1 , η
n
2 )n be a sequence in (L2

+(ΞT ))2

∩(W 1,∞(0, T ;L2(Ξ)))2 and (ςn)n be a sequence in (W 1,∞(0, T ;L2(Ξ)))3 such
that ηn1 (0) = ηn2 (0) = 0, ςn(0) = 0, for all n ∈ N, ηn1 ⇀ η1, ηn2 ⇀ η2

in L2(ΞT ), and ςn ⇀ ς in (L2(ΞT ))3. Let u(ηn1 ,η
n
2 ,ς

n) be the solution of
(13) corresponding to (ηn1 , η

n
2 , ς

n), for every n ∈ N. Then (u(ηn1 ,η
n
2 ,ς

n))n is
strongly convergent in C1([0, T ];H) ∩ W 1,2(0, T ;V ), its limit, denoted by
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u := u(η1,η2,ς), is independent of the chosen sequences weakly converging to
(η1, η2, ς) with the same properties as (ηn1 , η

n
2 , ς

n) and is a solution of the
following evolution variational equation: u(0) = u0, u̇(0) = u1,

(u̇(T ),v(T ))−
∫ T

0

(u̇, v̇) dt+

∫ T

0

{a(u,v) + b(u̇,v)} dt

−
∫ T

0

{(η1 − η2, vN)L2(Ξ) + (ς,vT )(L2(Ξ))3} dt =

∫ T

0

〈f ,v〉 dt+ (u1,v(0)) (15)

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H).

Proof. Assume (η1, η2) ∈ (L2
+(ΞT ))2, ς ∈ (L2(ΞT ))3, (ηn1 , η

n
2 ) ∈ (L2

+(ΞT ))2 ∩
(W 1,∞(0, T ;L2(Ξ)))2, ςn ∈ (W 1,∞(0, T ;L2(Ξ)))3 such that ηn1 (0) = ηn2 (0) =
0, for all n ∈ N, ηn1 ⇀ η1, ηn2 ⇀ η2 in L2(ΞT ), and ςn ⇀ ς in (L2(ΞT ))3. Then,
by Lemma 3.1, for every n ∈ N there exists a unique solution of the following
variational equation: find un := u(ηn1 ,η

n
2 ,ς

n) ∈ W 2,2(0, T ;H) ∩W 1,2(0, T ;V ),
such that un(0) = u0, u̇n(0) = u1, and for almost all t ∈ (0, T )

(ün,v) + a(un,v) + b(u̇n,v)− (ηn1 − ηn2 , vN)L2(Ξ)

−(ςn,vT )(L2(Ξ))3 = 〈f ,v〉 ∀v ∈ V .
(16)

For v = u̇n, and integrating over (0, t) with t ∈ (0, T ], we derive∫ t

0

(ün, u̇n) dτ +

∫ t

0

a(un, u̇n) dτ +

∫ t

0

b(u̇n, u̇n) dτ

−
∫ t

0

(ηn1 − ηn2 , u̇nN)L2(Ξ) dτ −
∫ t

0

(ςn, u̇nT )(L2(Ξ))3 dτ =

∫ t

0

〈f , u̇n〉 dτ

and so for every t ∈ (0, T ] we have

1

2
|u̇n(t)|2 +

1

2
a(un(t),un(t)) +

∫ t

0

b(u̇n, u̇n) dτ

=

∫ t

0

(ηn1 − ηn2 , u̇nN)L2(Ξ) dτ +

∫ t

0

(ςn, u̇nT )(L2(Ξ))3 dτ

+

∫ t

0

〈f , u̇n〉 dτ +
1

2
|u1|2 +

1

2
a(u0,u0).

By the relations (9), we obtain

1

2
|u̇n(t)|2 +

ma

2
‖un(t)‖2 +mb

∫ t

0

‖u̇n‖2 dτ

≤ k1

∫ t

0

(‖ηn1 ‖L2(Ξ) + ‖ηn2 ‖L2(Ξ) + ‖ςn‖(L2(Ξ))3)‖u̇n‖ dτ

+

∫ t

0

‖f‖‖u̇n‖ dτ +
1

2
|u1|2 +

Ma

2
‖u0‖2 ∀n ∈ N, ∀t ∈ (0, T ],

9



where k1 is a positive constant independent of n and Ma is a positive conti-
nuity constant of a.

Since the sequences (ηn1 , η
n
2 )n, (ςn)n are bounded in (L2(ΞT ))2, (L2(ΞT ))3,

respectively, by Young’s inequality it follows that there exists a positive con-
stant C1, depending only on a, b, f , u0, u1, k1, the bounds of (ηn1 , η

n
2 )n and

(ςn)n, such that the following estimates hold:

∀n ∈ N, |u̇n(t)| ≤ C1, ‖un(t)‖ ≤ C1 ∀t ∈ [0, T ], ‖u̇n‖L2(0,T ;V ) ≤ C1. (17)

Using (16) for v = ψ, we see that for all ψ ∈ L2(0, T ;H1
0) with H1

0 :=
H1

0 (Ω1;R3)×H1
0 (Ω2;R3)∫ T

0

(ün,ψ) dt+

∫ T

0

a(un,ψ) dt+

∫ T

0

b(u̇n,ψ) dt =

∫ T

0

〈f ,ψ〉 dt.

This relation and the estimates (17) imply that there exists a positive con-
stant C2 having the same properties as C1 and satisfying the estimate

∀n ∈ N, ‖ün‖L2(0,T ;H−1
0 ) ≤ C2, (18)

where H−1
0 := H−1

0 (Ω1;R3)×H−1
0 (Ω2;R3).

From (17), (18), it follows that there exist a subsequence (unk)k and u
such that

u̇nk ⇀
∗ u̇ in L∞(0, T ;H), unk ⇀

∗ u in L∞(0, T ;V ),

u̇nk ⇀ u̇ in L2(0, T ;V ), ünk ⇀ ü in L2(0, T ;H−1
0 ).

According to Theorem 3.3 with

F = (u̇nk)k, X = V , U = H ι, Ŷ = H−1
0 , p = 2,

we obtain
u̇nk → u̇ in L2(0, T ;H ι),

where 1 > ι >
1

2
, so that, by the trace theorem, the last convergence implies

u̇nk → u̇ in L2(0, T ; (L2(Ξ))3) = (L2(ΞT ))3. (19)

By Lemma 3.2, for all l, m ∈ N and for all t ∈ [0, T ],

|u̇l(t)− u̇m(t)|2 + ‖ul(t)− um(t)‖2 +

∫ t

0

‖u̇l − u̇m‖2 dτ

≤ C0

∫ t

0

(ηl1 − ηl2 − ηm1 + ηm2 , u̇lN − u̇mN)L2(Ξ) dτ

+C0

∫ t

0

(ς l − ςm, u̇lT − u̇mT )(L2(Ξ))3 dτ.

(20)
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Using the weak convergence properties of (ηn1 )n, (ηn2 )n, (ςn)n, and the strong
convergence property (19), we can pass to limits in the previous estimates
corresponding to t = T for (unk)k and so we obtain that (unk)k is a Cauchy
sequence in W 1,2(0, T ;V ) and

unk → u in W 1,2(0, T ;V ).

Now, if (un′k)k is another subsequence of (un)n such that

u̇n′k ⇀
∗ u̇′ in L∞(0, T ;H), un′k ⇀

∗ u′ in L∞(0, T ;V ),

u̇n′k ⇀ u̇′ in L2(0, T ;V ), ün′k ⇀ ü′ in L2(0, T ;H−1
0 ).

then, using the same arguments as above, we have

un′k → u′ in W 1,2(0, T ;V )

and passing to limits in (20) with l = n′k, m = nk we obtain that u′ = u, so
that

un → u in W 1,2(0, T ;V ). (21)

By (20), the Cauchy-Schwarz inequality and the trace properties, there exists
a positive constant C3 such that for all l, m ∈ N and for all t ∈ [0, T ],

|u̇l(t)− u̇m(t)|2 + ‖ul(t)− um(t)‖2 +

∫ t

0

‖u̇l − u̇m‖2 dτ

≤ C0

∫ t

0

‖ηl1 − ηl2 − ηm1 + ηm2 ‖L2(Ξ)‖u̇lN − u̇mN‖L2(Ξ) dτ

+C0

∫ t

0

‖ς l − ςm‖(L2(Ξ))3‖u̇lT − u̇mT‖(L2(Ξ))3 dτ

≤ C0

∫ t

0

(‖ηl1 − ηl2 − ηm1 + ηm2 ‖L2(Ξ) + ‖ς l − ςm‖(L2(Ξ))3)‖u̇l − u̇m‖(L2(Ξ))3 dτ

≤ C3

∫ T

0

(‖ηl1 − ηl2 − ηm1 + ηm2 ‖L2(Ξ) + ‖ς l − ςm‖(L2(Ξ))3)‖u̇l − u̇m‖ dτ.

Passing to limits in the previous estimates, it follows that (un)n is a Cauchy
sequence in C1([0, T ];H) ∩ C([0, T ];V ) and

un → u in C1([0, T ];H) ∩ C([0, T ];V ). (22)

Now, let (δn1 , δ
n
2 )n be a sequence in (L2

+(ΞT ))2 ∩(W 1,∞(0, T ;L2(Ξ)))2 and
($n)n be a sequence in (W 1,∞(0, T ;L2(Ξ)))3 such that δn1 (0) = δn2 (0) = 0,
$n(0) = 0, for all n ∈ N, δn1 ⇀ η1, δn2 ⇀ η2 in L2(ΞT ), and $n ⇀ ς in
(L2(ΞT ))3. If u(δn1 ,δ

n
2 ,$

n) is the solution of (13) corresponding to (δn1 , δ
n
2 ,$

n),
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for every n ∈ N, then, using similar arguments as above for the union of the
two sequences (ηn1 , η

n
2 , ς

n)n and (δn1 , δ
n
2 ,$

n)n, it follows that

u(δn1 ,δ
n
2 ,$

n) → u in C1([0, T ];H) ∩W 1,2(0, T ;V ).

It remains to prove that the unique limit u of this class of approximating
sequences is a solution of (15). For all v ∈ L∞(0, T ;V ) ∩ W 1,2(0, T ;H),
integrating over (0, T ) in (16) yields∫ T

0

(ün,v) + a(un,v) dt+

∫ T

0

b(u̇n,v) dt−
∫ T

0

(ηn1 − ηn2 , vN)L2(Ξ) dt

−
∫ T

0

(ςn,vT )(L2(Ξ))3 dt =

∫ T

0

〈f ,v〉 dt
(23)

and integrating by parts the first term in (23) implies

(u̇n(T ),v(T ))− (u1,v(0))−
∫ T

0

(u̇n, v̇) dt+

∫ T

0

{a(un,v) + b(u̇n,v)} dt

−
∫ T

0

{(ηn1 − ηn2 , vN)L2(Ξ) + (ςn,vT )(L2(Ξ))3} dt =

∫ T

0

〈f ,v〉 dt (24)

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H).

Passing to the limits by using (21) and (22), it follows that u is a solution of
(15).

Let Φ : (L2
+(ΞT ))2 × (L2(ΞT ))3 → 2(L2

+(ΞT ))2×(L2(ΞT ))3 \ {∅} be the set-
valued mapping defined by

Φ(η1, η2, ς) = Λ3(u(η1,η2,ς)) ∀(η1, η2, ς) ∈ (L2
+(ΞT ))2 × (L2(ΞT ))3, (25)

where u(η1,η2,ς) is the solution of the variational equation (15) which corre-
sponds to (η1, η2, ς) by the procedure described in Theorem 3.4.

As (λ1, λ2,γ) is a fixed point of Φ, i.e. (λ1, λ2,γ) ∈ Φ(λ1, λ2,γ), if and
only if (u(λ1,λ2,γ), λ1, λ2,γ) is a solution of the Problem P 2

v , we consider a new
problem, which consists in finding a fixed point of the set-valued mapping
Φ, called also multifunction.

4 Existence of a solution to the contact prob-

lem

We shall prove the existence of a fixed point of the multifunction Φ by using
a corollary of the Ky Fan’s fixed point theorem [13], proved in [26] in the
particular case of a reflexive Banach space.

12



Definition 4.1. Let Y be a reflexive Banach space, D a weakly closed set in
Y , and F : D → 2Y \ {∅} be a multivalued function. F is called sequentially
weakly upper semicontinuous if zn ⇀ z, yn ∈ F (zn) and yn ⇀ y imply
y ∈ F (z).

Proposition 4.1. ([26]) Let Y be a reflexive Banach space, D a convex,
closed and bounded set in Y , and F : D → 2D \ {∅} a sequentially weakly
upper semicontinuous multivalued function such that F (z) is convex for every
z ∈ D. Then F has a fixed point.

Theorem 4.2. Under the assumptions of Section 2, there exists (λ1, λ2,γ) ∈
(L2

+(ΞT ))2 × (L2(ΞT ))3 such that (λ1, λ2,γ) ∈ Φ(λ1, λ2,γ). For each fixed
point (λ1, λ2,γ) of the multifunction Φ, (u(λ1,λ2,γ), λ,γ), with λ = λ1 − λ2,
is a solution of the Problem P 1

v and (u(λ1,λ2,γ), λ1, λ2,γ) is a solution of the
Problem P 2

v .

Proof. We apply Proposition 4.1 to Y = (L2(ΞT ))5, F = Φ and D =
[(L2

+(ΞT ))2 ∩D0]× [(L2(ΞT ))3 ∩D1].
The set D ⊂ (L2(ΞT ))5 is clearly convex, closed, and bounded.
Since for each w ∈ W 1,2(0, T ;V ) the set Λ3(w) is nonempty, closed, and

convex, it follows that Φ(η1, η2, ς) is a nonempty, closed, and convex subset
of D for every (η1, η2, ς) ∈ D.

In order to prove that the multifunction Φ is sequentially weakly upper
semicontinuous, let (ηn1 , η

n
2 , ς

n) ⇀ (η1, η2, ς), (ηn1 , η
n
2 , ς

n) ∈ D, (δn1 , δ
n
2 ,$

n) ∈
Φ(ηn1 , η

n
2 , ς

n) ∀n ∈ N, (δn1 , δ
n
2 ,$

n) ⇀ (δ1, δ2,$) and let us verify that
(δ1, δ2,$) ∈ Φ(η1, η2, ς). Using the Theorem 3.4 for each (ηn1 , η

n
2 , ς

n), and
the remark preceding this theorem, it follows that there exists a sequence
(η̂n1 , η̂

n
2 , ς̂

n)n such that (η̂n1 , η̂
n
2 ) ∈ (L2

+(ΞT ))2∩(W 1,∞(0, T ;L2(Ξ)))2,
ς̂n ∈ (W 1,∞(0, T ;L2(Ξ)))3, η̂n1 (0) = η̂n2 (0) = 0, ς̂n(0) = 0, for all n ∈ N, and

(η̂n1 , η̂
n
2 , ς̂

n)− (ηn1 , η
n
2 , ς

n)→ 0 in (L2(ΞT ))5, (26)

u(η̂n1 ,η̂
n
2 ,ς̂

n) − u(ηn1 ,η
n
2 ,ς

n) → 0 in C1([0, T ];H) ∩W 1,2(0, T ;V ), (27)

where u(η̂n1 ,η̂
n
2 ,ς̂

n) is the solution of (13) corresponding to (η̂n1 , η̂
n
2 , ς̂

n), u(ηn1 ,η
n
2 ,ς

n)

is the solution of (15) corresponding to (ηn1 , η
n
2 , ς

n).
As (ηn1 , η

n
2 , ς

n) ⇀ (η1, η2, ς), by using (26), we have
(η̂n1 , η̂

n
2 , ς̂

n) ⇀ (η1, η2, ς) in (L2(ΞT ))5, and, by Theorem 3.4,

u(η̂n1 ,η̂
n
2 ,ς̂

n) → u(η1,η2,ς) in C1([0, T ];H) ∩W 1,2(0, T ;V ), (28)

where u(η1,η2,ς) is the solution of (15) corresponding to (η1, η2, ς).
We adopt the following notations: un := u(ηn1 ,η

n
2 ,ς

n), unN := u(ηn1 ,η
n
2 ,ς

n)N ,
uη := u(η1,η2,ς), uηN := u(η1,η2,ς)N .
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Thus, by (27) and the triangle inequality, we obtain

un → uη in C1([0, T ];H) ∩W 1,2(0, T ;V ), (29)

which implies
un → uη, u̇n → u̇η in (L2(ΞT ))3. (30)

Now, by Lemma 2.1, if (δn1 , δ
n
2 ,$

n) ∈ Φ(ηn1 , η
n
2 , ς

n) = Λ3(u(ηn1 ,η
n
2 ,ς

n)) for all
n ∈ N, then

κ([unN ], u̇nN) ≤ δn1 − δn2 ≤ κ([unN ], u̇nN) a.e. in ΞT , (31)

|$n| ≤ µ(u̇nT ) (δn1 + δn2 ) a.e. in ΞT , (32)

$n · u̇nT + µ(u̇nT ) (δn1 + δn2 ) |u̇nT | = 0 a.e. in ΞT , ∀n ∈ N. (33)

The relations (31) are equivalent to∫
ω

κ([unN ], u̇nN) ≤
∫
ω

(δn1 − δn2 ) ≤
∫
ω

κ([unN ], u̇nN),

for every measurable subset ω ⊂ ΞT and for all n ∈ N.
Passing to limits according to Fatou’s lemma, by using (30), the semi-

continuity of κ and κ, the relation (2), and the convergence property

∫
ω

(δn1 −

δn2 )→
∫
ω

(δ1 − δ2), we obtain

∫
ω

κ([uηN ], u̇ηN) ≤
∫
ω

(δ1 − δ2) ≤
∫
ω

κ([uηN ], u̇ηN),

for every measurable subset ω ⊂ ΞT , which implies

κ([uηN ], u̇ηN) ≤ δ1 − δ2 ≤ κ([uηN ], u̇ηN) a.e. in ΞT . (34)

The relation (32) is equivalent to∫
ω

|$n| ≤
∫
ω

µ(u̇nT ) (δn1 + δn2 ),

for every measurable subset ω ⊂ ΞT and for all n ∈ N.
As µ(ξ, ·) is Lipschitz continuous with the Lipschitz constant independent

of ξ, by using (30) it is easy to see that

u̇nT → u̇ηT in (L2(ΞT ))3, µ(u̇nT )→ µ(u̇ηT ) in L2(ΞT ), (35)
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so that passing to limits we obtain∫
ω

|$| ≤ lim inf

∫
ω

|$n| ≤ lim

∫
ω

µ(u̇nT ) (δn1 + δn2 ) =

∫
ω

µ(u̇ηT ) (δ1 + δ2).

Thus ∫
ω

|$| ≤
∫
ω

µ(u̇ηT ) (δ1 + δ2),

for every measurable subset ω ⊂ ΞT , which implies

|$| ≤ µ(u̇ηT ) (δ1 + δ2) a.e. in ΞT . (36)

Now, we consider the relation (33) which is equivalent to∫
ω

$n · u̇nT +

∫
ω

µ(u̇nT ) (δn1 + δn2 ) |u̇nT | = 0, (37)

for every measurable subset ω ⊂ ΞT and for all n ∈ N. By (35) we have

µ(u̇nT ) |u̇nT | → µ(u̇ηT ) |u̇ηT | in L1(ΞT ), (38)

and, by Lemma 2.1 and the relations (2), (31),

δn1 + δn2 ⇀
∗ δ1 + δ2 in L∞(ΞT ). (39)

Passing to limits in (37) by using (38) and (39), we obtain∫
ω

$ · u̇ηT +

∫
ω

µ(u̇ηT ) (δ1 + δ2) |u̇ηT | = 0,

for every measurable subset ω ⊂ ΞT , which implies

$ · u̇ηT + µ(u̇ηT ) (δ1 + δ2) |u̇ηT | = 0. (40)

By (29), (34), (36), (40), it follows that (δ1, δ2,$) ∈ Φ(η1, η2, ς), so that, by
applying Proposition 4.1, the theorem is proved.
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