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Abstract

The aim of this work is to study a dynamic problem that consti-
tutes a unified approach to describe some rate-depending interactions
between the boundaries of two viscoelastic bodies, including relaxed
unilateral contact, pointwise friction or adhesion conditions. The clas-
sical formulation of the problem is presented and two variational for-
mulations are given as three and four-field evolution implicit equa-
tions. Based on some approximation results and an equivalent fixed
point problem for a multivalued function, we prove the existence of
solutions to these variational evolution problems.

1 Introduction

This paper is concerned with the extension of some recent existence results
proved for a class of nonsmooth dynamic contact problems which describe
various surface interactions between the boundaries of two Kelvin-Voigt vis-
coelastic bodies. These interactions can include some relaxed unilateral con-
tact, Coulomb friction or adhesion conditions.

Existence and approximation of solutions to the quasistatic elastic prob-
lems have been studied for different contact conditions. The quasistatic uni-
lateral contact problems with local Coulomb friction have been studied in
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[1, 28, 29], adhesion laws were analyzed in [27, 9] and the normal compliance
models have been investigated by several authors, see e.g. [16, 14, 30] and
references therein.

Dynamic frictional contact problems with normal compliance laws have
been studied in [21, 16, 17, 3, 23] and local friction laws were considered in [15,
18, 19, 12, 5, 10], for viscoelastic bodies. Dynamic frictionless problems with
adhesion have been studied in [4, 20, 32] and dynamic viscoelastic problems
coupling unilateral contact, recoverable adhesion and nonlocal friction have
been analyzed in [11, 6].

Using the Clarke subdifferential, the variational formulations of various
nonsmooth contact problems were given as hemivariational inequalities, see
[22, 23, 24, 25] and references therein.

Based on Ky Fan’s fixed point theorem, an elastic contact problem with
relaxed unilateral conditions and pointwise Coulomb friction in the static case
was studied in [26], the extension to an elastic quasistatic contact problem
was investigated in [8] and the corresponding viscoelastic dynamic case was
analyzed in [7].

This work extends the results in [7] to the case of a coefficient of friction
depending on the sliding velocity. Using new three and four-field variational
formulations, expressed as an evolution variational equation coupled with
pointwise constraints, existence and improved regularity results are estab-
lished.

The paper is organized as follows. In Section 2 the classical formulation of
the dynamic contact problem is presented and two variational formulations
are given. Section 3 is devoted to establish some auxiliary approximation
results. In Section 4 the existence of a solution is proved for an equivalent
fixed point problem by using the Ky Fan’s theorem.

2 Classical and variational formulations

We consider two viscoelastic bodies, characterized by a Kelvin-Voigt con-
stitutive law, which occupy the reference domains Ωα of R3 with Lipschitz
boundaries Γα = ∂Ωα, α = 1, 2. Let ΓαU , ΓαF and ΓαC be three open disjoint
sufficiently smooth parts of Γα such that Γα = Γ

α

U ∪Γ
α

F ∪Γ
α

C and, to simplify
the estimates, meas(ΓαU) > 0, α = 1, 2. We assume the small deformation
hypothesis and we use Cartesian coordinates representations.

Let yα(xα, t) denote the position at time t ∈ [0, T ], where 0 < T <
+∞, of the material point represented by the Cartesian coordinates xα =
(xα1 , x

α
2 , x

α
3 ) in the reference configuration Ωα, and uα(xα, t) = yα(xα, t)−xα

denote the displacement vector of xα at time t, with the Cartesian coordi-
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nates uα = (uα1 , u
α
2 , u

α
3 ).

Let εα = (εij (uα)), and σα =
(
σαij
)
, be the infinitesimal strain tensor and

the stress tensor, respectively, corresponding to Ωα, α = 1, 2.
Assume that the displacements uα = 0 on ΓαU × (0, T ), α = 1, 2, and

that the densities of both bodies are equal to 1. Let f 1 = (f 1
1,f

2
1) and

f 2 = (f 1
2,f

2
2) denote the given body forces in Ω1 ∪Ω2 and tractions on Γ1

F ∪
Γ2
F , respectively. The initial displacements and velocities of the bodies are

denoted by u0 = (u1
0,u

2
0), u1 = (u1

1,u
2
1) and the usual summation convention

will be used for i, j, k, l = 1, 2, 3.
Suppose that the solids can be in contact between the potential contact

surfaces Γ1
C and Γ2

C which can be parametrized by two C1 functions, ϕ1, ϕ2,
defined on an open and bounded subset Ξ of R2, such that ϕ1(ξ)− ϕ2(ξ) ≥
0 ∀ ξ ∈ Ξ and each ΓαC is the graph of ϕα on Ξ that is ΓαC = { (ξ, ϕα(ξ)) ∈
R3 ; ξ ∈ Ξ}, α = 1, 2, see e.g. [2]. Define the initial normalized gap between
the two contact surfaces by

g0(ξ) =
ϕ1(ξ)− ϕ2(ξ)√
1 + |∇ϕ1(ξ)|2

∀ ξ ∈ Ξ.

Let nα denote the unit outward normal vector to Γα, α = 1, 2. We in-
troduce the following notations for the normal and tangential components
of a displacement field vα, of the relative displacement corresponding to
v := (v1,v2) and of the stress vector σαnα, respectively, on ΓαC , α = 1, 2:

vα(ξ, t) := vα(ξ, ϕα(ξ), t), vαN(ξ, t) := vα(ξ, t) · nα(ξ),

vN(ξ, t) := v1
N(ξ, t) + v2

N(ξ, t), [vN ](ξ, t) := vN(ξ, t)− g0(ξ),

vαT (ξ, t) := vα(ξ, t)− vαN(ξ, t)nα(ξ), vT (ξ, t) := v1
T (ξ, t)− v2

T (ξ, t),

σαN(ξ, t) := (σα(ξ, t)nα(ξ)) · nα(ξ), σαT (ξ, t) = σα(ξ, t)nα(ξ)− σαN(ξ, t)nα(ξ),

for all ξ ∈ Ξ and for all t ∈ [0, T ]. Let g := −[uN ] = g0 − u1
N − u2

N be the
gap corresponding to the solution u := (u1,u2).

Let Aα = (Aαijkl), Bα = (Bαijkl) denote the components of the elasticity
tensor and the viscosity tensor corresponding to Ωα, respectively, satisfying
the following classical symmetry and ellipticity conditions: Cαijkl = Cαjikl =
Cαklij ∈ L∞(Ωα), ∀ i, j, k, l = 1, 2, 3, ∃αCα > 0 such that Cαijklτijτkl ≥
αCα τijτij ∀ τ = (τij) verifying Cαijkl = Aαijkl, Cα = Aα or Cαijkl = Bαijkl,
Cα = Bα ∀ i, j, k, l = 1, 2, 3, α = 1, 2.

Let κ, κ : R2 → R be two mappings with κ lower semicontinuous and κ
upper semicontinuous, satisfying the following conditions:

κ(s) ≤ κ(s) and 0 /∈ (κ(s), κ(s)) ∀ s ∈ R2, (1)

∃ r0 ≥ 0 such that max(|κ(s)|, |κ(s)|) ≤ r0 ∀ s ∈ R2. (2)
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Let µ : Ξ × R3 → R+ be a bounded function such that for a.e. ξ ∈ Ξ
µ(ξ, ·) is Lipschitz continuous with the Lipschitz constant independent of ξ,
and for every v ∈ R3 µ(·,v) is measurable.

Consider the following dynamic viscoelastic contact problem with Coulomb
friction.
Problem Pc : Find u = (u1,u2) such that u(0) = u0, u̇(0) = u1 and, for
all t ∈ (0, T ),

üα − divσα(uα, u̇α) = fα1 in Ωα, (3)

σα(uα, u̇α) = Aαε(uα) + Bαε(u̇α) in Ωα, (4)

uα = 0 on ΓαU , σ
αnα = fα2 on ΓαF , α = 1, 2, (5)

σ1n1 + σ2n2 = 0 in Ξ, (6)

κ([uN ], u̇N) ≤ σN ≤ κ([uN ], u̇N) in Ξ, (7)

|σT | ≤ µ(u̇T ) |σN | in Ξ and (8)

u̇T 6= 0⇒ σT = −µ(u̇T )|σN |
u̇T
|u̇T |

,

where σα = σα(uα, u̇α), α = 1, 2, σN := σ1
N , σT := σ1

T and µ is the sliding
velocity dependent coefficient of friction. Different choices for κ, κ will give
various contact and friction conditions, see e.g. [7].

To give the variational formulations, we adopt the following notations:

Hs(Ωα) := Hs(Ωα;R3), α = 1, 2, Hs := Hs(Ω1)×Hs(Ω2),

〈v,w〉−s,s = 〈v1,w1〉H−s(Ω1)×Hs(Ω1) + 〈v2,w2〉H−s(Ω2)×Hs(Ω2)

∀ v = (v1,v2) ∈H−s, ∀w = (w1,w2) ∈Hs, ∀ s ∈ R,

H := H0 = L2(Ω1;R3)× L2(Ω2;R3), V := V 1 × V 2, where

V α = {vα ∈H1(Ωα); vα = 0 a.e. on ΓαU}, α = 1, 2.

(H , |.|) and (V , ‖.‖) are Hilbert spaces with the associated inner products
denoted by (. , .) and by 〈. , .〉, respectively.

Define ΞT = Ξ × (0, T ) and the closed convex cones L2
+(Ξ), L2

+(ΞT ) as
follows:

L2
+(Ξ) := {δ ∈ L2(Ξ); δ ≥ 0 a.e. in Ξ},

L2
+(ΞT ) := {η ∈ L2(ΞT ); η ≥ 0 a.e. in ΞT}.

Let a, b be two bilinear, continuous and symmetric mappings defined by

a(v,w) = a1(v1,w1) + a2(v2,w2), b(v,w) = b1(v1,w1) + b2(v2,w2)

∀v = (v1,v2), w = (w1,w2) ∈H1, where, for α = 1, 2,

aα(vα,wα) =

∫
Ωα

Aαε(vα) ·ε(wα) dx, bα(vα,wα) =

∫
Ωα

Bαε(vα) ·ε(wα) dx.
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As meas(ΓαU) > 0 and the components of Aα, Bα, α = 1, 2, satisfy the
ellipticity conditions, by Korn’s inequality it follows that a and b are V -
elliptic in the following sense:

∃ma, mb > 0 a(v,v) ≥ ma ‖v‖2, b(v,v) ≥ mb ‖v‖2 ∀v ∈ V . (9)

Assume fα1 ∈ W 1,∞(0, T ;L2(Ωα;Rd)), fα2 ∈ W 1,∞(0, T ;L2(ΓαF ;Rd)), α =
1, 2, u0, u1 ∈ V , g0 ∈ L2

+(Ξ), and define the following mapping:

f ∈ W 1,∞(0, T ;H1), 〈f ,v〉 =
∑

α=1,2

∫
Ωα
fα1 · vα dx+

∑
α=1,2

∫
ΓαF

fα2 · vα ds

∀v = (v1,v2) ∈H1, ∀ t ∈ [0, T ].

Assume the following compatibility conditions: [u0N ] ≤ 0, κ([u0N ]) = 0 a.e.
in Ξ and ∃p0 ∈H such that

(p0,v) + a(u0,v) + b(u1,v) = 〈f(0),v〉 ∀v ∈ V . (10)

For every ζ = (ζ1, ζ2) ∈ L2(0, T ; (L2(Ξ))2) = (L2(ΞT ))2, define the following
nonempty, closed, and convex sets:

Λ0(ζ1, ζ2) = {η ∈ L2(ΞT );κ ◦ (ζ1, ζ2) ≤ η ≤ κ ◦ (ζ1, ζ2) a.e. in ΞT },

Λ0
+(ζ1, ζ2) = {η ∈ L2

+(ΞT );κ+ ◦ (ζ1, ζ2) ≤ η ≤ κ+ ◦ (ζ1, ζ2) a.e. in ΞT },

Λ0
−(ζ1, ζ2) = {η ∈ L2

+(ΞT );κ− ◦ (ζ1, ζ2) ≤ η ≤ κ− ◦ (ζ1, ζ2) a.e. in ΞT },

where, for each r ∈ R, r+ := max(0, r) and r− := max(0,−r) denote the
positive and negative parts, respectively.

Also, for every w ∈ W 1,2(0, T ;V ), define the following nonempty and
closed sets:

Λ1(w) = {(η, ς) ∈ L2(ΞT )× (L2(ΞT ))3; η ∈ Λ0([wN ], ẇN),

|ς| ≤ µ(ẇT ) |η|, ς · ẇT + µ(ẇT ) |η| |ẇT | = 0 a.e. in ΞT },

Λ2(w) = {(η, ς) ∈ L2(ΞT )× (L2(ΞT ))3; η+ ∈ Λ0
+([wN ], ẇN), η− ∈ Λ0

−([wN ], ẇN),

|ς| ≤ µ(ẇT ) (η+ + η−), ς · ẇT + µ(ẇT ) (η+ + η−) |ẇT | = 0 a.e. in ΞT },

Λ3(w) = {(η1, η2, ς) ∈ (L2(ΞT ))5; η1 ∈ Λ0
+([wN ], ẇN), η2 ∈ Λ0

−([wN ], ẇN),

|ς| ≤ µ(ẇT ) (η1 + η2), ς · ẇT + µ(ẇT ) (η1 + η2) |ẇT | = 0 a.e. in ΞT }.

Since meas(Ξ) < ∞ and κ, κ satisfy (2), it follows that for all ζ ∈
L2(0, T ; (L2(Ξ))2) the sets Λ0(ζ), Λ0

+(ζ) and Λ0
−(ζ) are bounded in norm in

L2(0, T ;L2(Ξ))=L2(ΞT ) by R0 = r0(meas(Ξ))1/2T and are bounded in norm
in L∞(0, T ;L∞(Ξ)) by r0.
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As the coefficient of friction µ is a bounded function, it follows also that
for all w ∈ W 1,2(0, T ;V ) the sets Λ1(w), Λ2(w), and Λ3(w) are bounded
in norm. Thus, there exists R1 > 0 such that Λ3(w) ⊂ D0 × D1 for
all w ∈ W 1,2(0, T ;V ), where D0 = {(η1, η2) ∈ (L2(ΞT ))2; ‖η1‖L2(ΞT ) ≤
R0, ‖η2‖L2(ΞT ) ≤ R0} and D1 = {ς ∈ (L2(ΞT ))3; ‖ς‖(L2(ΞT ))3 ≤ R1}.

A first variational formulation of the problem Pc is the following.

Problem P 1
v : Find u ∈ C1([0, T ];H) ∩W 1,2(0, T ;V ), λ ∈ L2(ΞT ), γ ∈

(L2(ΞT ))3, such that u(0) = u0, u̇(0) = u1, (λ,γ) ∈ Λ1(u), and

(u̇(T ),v(T ))−
∫ T

0

(u̇, v̇) dt+

∫ T

0

{a(u,v) + b(u̇,v)} dt

−
∫ T

0

{(λ, vN)L2(Ξ) + (γ,vT )(L2(Ξ))3} dt =

∫ T

0

〈f ,v〉 dt+ (u1,v(0)) (11)

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H).

where (·, ·)L2(Ξ) and (·, ·)(L2(Ξ))3 denote the inner products of the correspond-
ing spaces.

The formal equivalence between the variational problem P 1
v and the clas-

sical problem (3)–(8) can be easily proved by using Green’s formula and an
integration by parts, where the Lagrange multipliers λ, γ satisfy the relations
λ = σN , γ = σT .

The sets Λ0(ζ1, ζ2), Λ0
+(ζ1, ζ2) and Λ0

−(ζ1, ζ2) have the following useful
properties, see [7].

Lemma 2.1. Let (ζ1, ζ2) ∈ (L2(Ξ))2 and (η1, η2) ∈ Λ0
+(ζ1, ζ2) × Λ0

−(ζ1, ζ2).
Then η1η2 = 0 a.e. in ΞT and there exists η ∈ Λ0(ζ1, ζ2) such that η+ = η1,
η− = η2 a.e. in ΞT .

Since λ ∈ Λ0([uN ], u̇N) if and only if (λ+, λ−) ∈ (Λ0
+([uN ], u̇N)×Λ0

−([uN ], u̇N),
from the previous lemma it follows that the variational problem P 1

v is clearly
equivalent with the following problem denoted by P 2

v , in the sense that it has
the same solutions u, γ as the problem P 1

v and the solutions λ1, λ2 satisfy
the relation λ = λ1 − λ2, where λ is a solution of P 1

v .

Problem P 2
v : Find u ∈ C1([0, T ];H)∩W 1,2(0, T ;V ), (λ1, λ2) ∈ (L2(ΞT ))2,
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γ ∈ (L2(ΞT ))3, such that u(0) = u0, u̇(0) = u1, (λ1, λ2,γ) ∈ Λ3(u), and

(u̇(T ),v(T ))−
∫ T

0

(u̇, v̇) dt+

∫ T

0

{a(u,v) + b(u̇,v)} dt

−
∫ T

0

{(λ1 − λ2, vN)L2(Ξ) + (γ,vT )(L2(Ξ))3} dt =

∫ T

0

〈f ,v〉 dt+ (u1,v(0)) (12)

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H).

The existence of solutions to problem P 2
v will be established by using an

equivalent fixed point problem which will be presented in the following sec-
tion.

3 A fixed point problem formulation

By an immediate application of Theorem 3.2 proved in [10] and using similar
arguments to those that enabled to prove Lemma 3.2 in [7], one obtains the
following existence and uniqueness result.

Lemma 3.1. For each (η1, η2) ∈ (W 1,∞(0, T ;L2(Ξ)))2, ς ∈ (W 1,∞(0, T ;L2(Ξ)))3

with η1(0) = η2(0) = 0, ς(0) = 0, there exists a unique solution u = u(η1,η2,ς)

of the following evolution variational equation: find u ∈ W 2,2(0, T ;H) ∩
W 1,2(0, T ;V ), such that u(0) = u0, u̇(0) = u1, and for almost all t ∈ (0, T )

(ü,v) + a(u,v) + b(u̇,v)− (η1 − η2, vN)L2(Ξ)

−(ς,vT )(L2(Ξ))3 = 〈f ,v〉 ∀v ∈ V .
(13)

We shall also use the following estimate result.

Lemma 3.2. Let (η1, η2), (δ1, δ2) ∈ (W 1,∞(0, T ;L2(Ξ)))2 such that η1(0) =
η2(0) = δ1(0) = δ2(0) = 0, ς1, ς2 ∈ (W 1,∞(0, T ;L2(Ξ)))3 such that ς1,2(0) =
0, and let u(η1,η2,ς1), u(δ1,δ2,ς2) be the corresponding solutions of (13). Then
there exists a constant C0 > 0, independent of (η1, η2), (δ1, δ2), and ς1, ς2,
such that for all t ∈ [0, T ]

|u̇(η1,η2,ς1)(t)− u̇(δ1,δ2,ς2)(t)|2 + ‖u(η1,η2,ς1)(t)− u(δ1,δ2,ς2)(t)‖2

+

∫ t

0

‖u̇(η1,η2,ς1) − u̇(δ1,δ2,ς2)‖2 dτ

≤ C0

∫ t

0

{(η1 − η2 − δ1 + δ2, u̇(η1,η2,ς1)N − u̇(δ1,δ2,ς2)N)L2(Ξ)

+(ς1 − ς2, u̇(η1,η2,ς1)T − u̇(δ1,δ2,ς2)T )(L2(Ξ))3} dτ.

(14)
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Proof. Let (η1, η2), (δ1, δ2) ∈ (W 1,∞(0, T ;L2(Ξ)))2 ς1, ς2 ∈ (W 1,∞(0, T ;L2(Ξ)))3

with u1 := u(η1,η2,ς1), u2 := u(δ1,δ2,ς2) the corresponding solutions of (13)
which exist according to Lemma 3.1. Taking in each equation v = u̇1 − u̇2,
for a.e. τ ∈ (0, T ) it follows that

(ü1 − ü2, u̇1 − u̇2) + a(u1 − u2, u̇1 − u̇2) + b(u̇1 − u̇2, u̇1 − u̇2)

= (η1 − η2 − δ1 + δ2, u̇1N − u̇2N)L2(Ξ) + (ς1 − ς2, u̇1T − u̇2T )(L2(Ξ))3 .

Since the solutions u1, u2 verify the same initial conditions and a is sym-
metric, by integrating over (0, t) it follows that for all t ∈ [0, T ]

1

2
|u̇1(t)− u̇2(t)|2 +

1

2
a(u1(t)− u2(t),u1(t)− u2(t)) +

∫ t

0

b(u̇1 − u̇2, u̇1 − u̇2) dτ

=

∫ t

0

{(η1 − η2 − δ1 + δ2, u̇1N − u̇2N)L2(Ξ) + (ς1 − ς2, u̇1T − u̇2T )(L2(Ξ))3} dτ.

Using the V -ellipticity of a and b, the estimate (14) follows.

The following compactness theorem proved in [31] will be used several
times in this paper.

Theorem 3.3. Let X, U and Y be three Banach spaces such that X ⊂ U ⊂ Y
with compact embedding from X into U .

(i) Let F be bounded in Lp(0, T ;X), where 1 ≤ p < ∞, and ∂F/∂t :=
{ḟ ; f ∈ F} be bounded in L1(0, T ;Y ). Then F is relatively compact in
Lp(0, T ;U).

(ii) Let F be bounded in L∞(0, T ;X) and ∂F/∂t be bounded in Lr(0, T ;Y ),
where r > 1. Then F is relatively compact in C([0, T ];U).

AsD(0, T ;L2(Ξ)) is dense in L2(0, T ;L2(Ξ)), it follows that for every (η1, η2) ∈
(L2

+(ΞT ))2 and every ς ∈ (L2(ΞT ))3, there exist (ηn1 , η
n
2 )n in (L2

+(ΞT ))2∩
(W 1,∞(0, T ;L2(Ξ)))2, (ςn)n in (W 1,∞(0, T ;L2(Ξ)))3 such that ηn1 (0) = ηn2 (0) =
0, ςn(0) = 0, for all n ∈ N, ηn1 → η1, ηn2 → η2 in L2(ΞT ), and ςn → ς in
(L2(ΞT ))3.

Theorem 3.4. Under the assumptions of Section 2, for every (η1, η2) ∈
(L2

+(ΞT ))2 and every ς ∈ (L2(ΞT ))3, let (ηn1 , η
n
2 )n be a sequence in (L2

+(ΞT ))2

∩(W 1,∞(0, T ;L2(Ξ)))2 and (ςn)n be a sequence in (W 1,∞(0, T ;L2(Ξ)))3 such
that ηn1 (0) = ηn2 (0) = 0, ςn(0) = 0, for all n ∈ N, ηn1 ⇀ η1, ηn2 ⇀ η2

in L2(ΞT ), and ςn ⇀ ς in (L2(ΞT ))3. Let u(ηn1 ,η
n
2 ,ς

n) be the solution of
(13) corresponding to (ηn1 , η

n
2 , ς

n), for every n ∈ N. Then (u(ηn1 ,η
n
2 ,ς

n))n is
strongly convergent in C1([0, T ];H) ∩ W 1,2(0, T ;V ), its limit, denoted by
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u := u(η1,η2,ς), is independent of the chosen sequences weakly converging to
(η1, η2, ς) with the same properties as (ηn1 , η

n
2 , ς

n) and is a solution of the
following evolution variational equation: u(0) = u0, u̇(0) = u1,

(u̇(T ),v(T ))−
∫ T

0

(u̇, v̇) dt+

∫ T

0

{a(u,v) + b(u̇,v)} dt

−
∫ T

0

{(η1 − η2, vN)L2(Ξ) + (ς,vT )(L2(Ξ))3} dt =

∫ T

0

〈f ,v〉 dt+ (u1,v(0)) (15)

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H).

Proof. Assume (η1, η2) ∈ (L2
+(ΞT ))2, ς ∈ (L2(ΞT ))3, (ηn1 , η

n
2 ) ∈ (L2

+(ΞT ))2 ∩
(W 1,∞(0, T ;L2(Ξ)))2, ςn ∈ (W 1,∞(0, T ;L2(Ξ)))3 such that ηn1 (0) = ηn2 (0) =
0, for all n ∈ N, ηn1 ⇀ η1, ηn2 ⇀ η2 in L2(ΞT ), and ςn ⇀ ς in (L2(ΞT ))3. Then,
by Lemma 3.1, for every n ∈ N there exists a unique solution of the following
variational equation: find un := u(ηn1 ,η

n
2 ,ς

n) ∈ W 2,2(0, T ;H) ∩W 1,2(0, T ;V ),
such that un(0) = u0, u̇n(0) = u1, and for almost all t ∈ (0, T )

(ün,v) + a(un,v) + b(u̇n,v)− (ηn1 − ηn2 , vN)L2(Ξ)

−(ςn,vT )(L2(Ξ))3 = 〈f ,v〉 ∀v ∈ V .
(16)

For v = u̇n, and integrating over (0, t) with t ∈ (0, T ], we derive∫ t

0

(ün, u̇n) dτ +

∫ t

0

a(un, u̇n) dτ +

∫ t

0

b(u̇n, u̇n) dτ

−
∫ t

0

(ηn1 − ηn2 , u̇nN)L2(Ξ) dτ −
∫ t

0

(ςn, u̇nT )(L2(Ξ))3 dτ =

∫ t

0

〈f , u̇n〉 dτ

and so for every t ∈ (0, T ] we have

1

2
|u̇n(t)|2 +

1

2
a(un(t),un(t)) +

∫ t

0

b(u̇n, u̇n) dτ

=

∫ t

0

(ηn1 − ηn2 , u̇nN)L2(Ξ) dτ +

∫ t

0

(ςn, u̇nT )(L2(Ξ))3 dτ

+

∫ t

0

〈f , u̇n〉 dτ +
1

2
|u1|2 +

1

2
a(u0,u0).

By the relations (9), we obtain

1

2
|u̇n(t)|2 +

ma

2
‖un(t)‖2 +mb

∫ t

0

‖u̇n‖2 dτ

≤ k1

∫ t

0

(‖ηn1 ‖L2(Ξ) + ‖ηn2 ‖L2(Ξ) + ‖ςn‖(L2(Ξ))3)‖u̇n‖ dτ

+

∫ t

0

‖f‖‖u̇n‖ dτ +
1

2
|u1|2 +

Ma

2
‖u0‖2 ∀n ∈ N, ∀t ∈ (0, T ],

9



where k1 is a positive constant independent of n and Ma is a positive conti-
nuity constant of a.

Since the sequences (ηn1 , η
n
2 )n, (ςn)n are bounded in (L2(ΞT ))2, (L2(ΞT ))3,

respectively, by Young’s inequality it follows that there exists a positive con-
stant C1, depending only on a, b, f , u0, u1, k1, the bounds of (ηn1 , η

n
2 )n and

(ςn)n, such that the following estimates hold:

∀n ∈ N, |u̇n(t)| ≤ C1, ‖un(t)‖ ≤ C1 ∀t ∈ [0, T ], ‖u̇n‖L2(0,T ;V ) ≤ C1. (17)

Using (16) for v = ψ, we see that for all ψ ∈ L2(0, T ;H1
0) with H1

0 :=
H1

0 (Ω1;R3)×H1
0 (Ω2;R3)∫ T

0

(ün,ψ) dt+

∫ T

0

a(un,ψ) dt+

∫ T

0

b(u̇n,ψ) dt =

∫ T

0

〈f ,ψ〉 dt.

This relation and the estimates (17) imply that there exists a positive con-
stant C2 having the same properties as C1 and satisfying the estimate

∀n ∈ N, ‖ün‖L2(0,T ;H−1
0 ) ≤ C2, (18)

where H−1
0 := H−1

0 (Ω1;R3)×H−1
0 (Ω2;R3).

From (17), (18), it follows that there exist a subsequence (unk)k and u
such that

u̇nk ⇀
∗ u̇ in L∞(0, T ;H), unk ⇀

∗ u in L∞(0, T ;V ),

u̇nk ⇀ u̇ in L2(0, T ;V ), ünk ⇀ ü in L2(0, T ;H−1
0 ).

According to Theorem 3.3 with

F = (u̇nk)k, X = V , U = H ι, Ŷ = H−1
0 , p = 2,

we obtain
u̇nk → u̇ in L2(0, T ;H ι),

where 1 > ι >
1

2
, so that, by the trace theorem, the last convergence implies

u̇nk → u̇ in L2(0, T ; (L2(Ξ))3) = (L2(ΞT ))3. (19)

By Lemma 3.2, for all l, m ∈ N and for all t ∈ [0, T ],

|u̇l(t)− u̇m(t)|2 + ‖ul(t)− um(t)‖2 +

∫ t

0

‖u̇l − u̇m‖2 dτ

≤ C0

∫ t

0

(ηl1 − ηl2 − ηm1 + ηm2 , u̇lN − u̇mN)L2(Ξ) dτ

+C0

∫ t

0

(ς l − ςm, u̇lT − u̇mT )(L2(Ξ))3 dτ.

(20)

10



Using the weak convergence properties of (ηn1 )n, (ηn2 )n, (ςn)n, and the strong
convergence property (19), we can pass to limits in the previous estimates
corresponding to t = T for (unk)k and so we obtain that (unk)k is a Cauchy
sequence in W 1,2(0, T ;V ) and

unk → u in W 1,2(0, T ;V ).

Now, if (un′k)k is another subsequence of (un)n such that

u̇n′k ⇀
∗ u̇′ in L∞(0, T ;H), un′k ⇀

∗ u′ in L∞(0, T ;V ),

u̇n′k ⇀ u̇′ in L2(0, T ;V ), ün′k ⇀ ü′ in L2(0, T ;H−1
0 ).

then, using the same arguments as above, we have

un′k → u′ in W 1,2(0, T ;V )

and passing to limits in (20) with l = n′k, m = nk we obtain that u′ = u, so
that

un → u in W 1,2(0, T ;V ). (21)

By (20), the Cauchy-Schwarz inequality and the trace properties, there exists
a positive constant C3 such that for all l, m ∈ N and for all t ∈ [0, T ],

|u̇l(t)− u̇m(t)|2 + ‖ul(t)− um(t)‖2 +

∫ t

0

‖u̇l − u̇m‖2 dτ

≤ C0

∫ t

0

‖ηl1 − ηl2 − ηm1 + ηm2 ‖L2(Ξ)‖u̇lN − u̇mN‖L2(Ξ) dτ

+C0

∫ t

0

‖ς l − ςm‖(L2(Ξ))3‖u̇lT − u̇mT‖(L2(Ξ))3 dτ

≤ C0

∫ t

0

(‖ηl1 − ηl2 − ηm1 + ηm2 ‖L2(Ξ) + ‖ς l − ςm‖(L2(Ξ))3)‖u̇l − u̇m‖(L2(Ξ))3 dτ

≤ C3

∫ T

0

(‖ηl1 − ηl2 − ηm1 + ηm2 ‖L2(Ξ) + ‖ς l − ςm‖(L2(Ξ))3)‖u̇l − u̇m‖ dτ.

Passing to limits in the previous estimates, it follows that (un)n is a Cauchy
sequence in C1([0, T ];H) ∩ C([0, T ];V ) and

un → u in C1([0, T ];H) ∩ C([0, T ];V ). (22)

Now, let (δn1 , δ
n
2 )n be a sequence in (L2

+(ΞT ))2 ∩(W 1,∞(0, T ;L2(Ξ)))2 and
($n)n be a sequence in (W 1,∞(0, T ;L2(Ξ)))3 such that δn1 (0) = δn2 (0) = 0,
$n(0) = 0, for all n ∈ N, δn1 ⇀ η1, δn2 ⇀ η2 in L2(ΞT ), and $n ⇀ ς in
(L2(ΞT ))3. If u(δn1 ,δ

n
2 ,$

n) is the solution of (13) corresponding to (δn1 , δ
n
2 ,$

n),
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for every n ∈ N, then, using similar arguments as above for the union of the
two sequences (ηn1 , η

n
2 , ς

n)n and (δn1 , δ
n
2 ,$

n)n, it follows that

u(δn1 ,δ
n
2 ,$

n) → u in C1([0, T ];H) ∩W 1,2(0, T ;V ).

It remains to prove that the unique limit u of this class of approximating
sequences is a solution of (15). For all v ∈ L∞(0, T ;V ) ∩ W 1,2(0, T ;H),
integrating over (0, T ) in (16) yields∫ T

0

(ün,v) + a(un,v) dt+

∫ T

0

b(u̇n,v) dt−
∫ T

0

(ηn1 − ηn2 , vN)L2(Ξ) dt

−
∫ T

0

(ςn,vT )(L2(Ξ))3 dt =

∫ T

0

〈f ,v〉 dt
(23)

and integrating by parts the first term in (23) implies

(u̇n(T ),v(T ))− (u1,v(0))−
∫ T

0

(u̇n, v̇) dt+

∫ T

0

{a(un,v) + b(u̇n,v)} dt

−
∫ T

0

{(ηn1 − ηn2 , vN)L2(Ξ) + (ςn,vT )(L2(Ξ))3} dt =

∫ T

0

〈f ,v〉 dt (24)

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H).

Passing to the limits by using (21) and (22), it follows that u is a solution of
(15).

Let Φ : (L2
+(ΞT ))2 × (L2(ΞT ))3 → 2(L2

+(ΞT ))2×(L2(ΞT ))3 \ {∅} be the set-
valued mapping defined by

Φ(η1, η2, ς) = Λ3(u(η1,η2,ς)) ∀(η1, η2, ς) ∈ (L2
+(ΞT ))2 × (L2(ΞT ))3, (25)

where u(η1,η2,ς) is the solution of the variational equation (15) which corre-
sponds to (η1, η2, ς) by the procedure described in Theorem 3.4.

As (λ1, λ2,γ) is a fixed point of Φ, i.e. (λ1, λ2,γ) ∈ Φ(λ1, λ2,γ), if and
only if (u(λ1,λ2,γ), λ1, λ2,γ) is a solution of the Problem P 2

v , we consider a new
problem, which consists in finding a fixed point of the set-valued mapping
Φ, called also multifunction.

4 Existence of a solution to the contact prob-

lem

We shall prove the existence of a fixed point of the multifunction Φ by using
a corollary of the Ky Fan’s fixed point theorem [13], proved in [26] in the
particular case of a reflexive Banach space.

12



Definition 4.1. Let Y be a reflexive Banach space, D a weakly closed set in
Y , and F : D → 2Y \ {∅} be a multivalued function. F is called sequentially
weakly upper semicontinuous if zn ⇀ z, yn ∈ F (zn) and yn ⇀ y imply
y ∈ F (z).

Proposition 4.1. ([26]) Let Y be a reflexive Banach space, D a convex,
closed and bounded set in Y , and F : D → 2D \ {∅} a sequentially weakly
upper semicontinuous multivalued function such that F (z) is convex for every
z ∈ D. Then F has a fixed point.

Theorem 4.2. Under the assumptions of Section 2, there exists (λ1, λ2,γ) ∈
(L2

+(ΞT ))2 × (L2(ΞT ))3 such that (λ1, λ2,γ) ∈ Φ(λ1, λ2,γ). For each fixed
point (λ1, λ2,γ) of the multifunction Φ, (u(λ1,λ2,γ), λ,γ), with λ = λ1 − λ2,
is a solution of the Problem P 1

v and (u(λ1,λ2,γ), λ1, λ2,γ) is a solution of the
Problem P 2

v .

Proof. We apply Proposition 4.1 to Y = (L2(ΞT ))5, F = Φ and D =
[(L2

+(ΞT ))2 ∩D0]× [(L2(ΞT ))3 ∩D1].
The set D ⊂ (L2(ΞT ))5 is clearly convex, closed, and bounded.
Since for each w ∈ W 1,2(0, T ;V ) the set Λ3(w) is nonempty, closed, and

convex, it follows that Φ(η1, η2, ς) is a nonempty, closed, and convex subset
of D for every (η1, η2, ς) ∈ D.

In order to prove that the multifunction Φ is sequentially weakly upper
semicontinuous, let (ηn1 , η

n
2 , ς

n) ⇀ (η1, η2, ς), (ηn1 , η
n
2 , ς

n) ∈ D, (δn1 , δ
n
2 ,$

n) ∈
Φ(ηn1 , η

n
2 , ς

n) ∀n ∈ N, (δn1 , δ
n
2 ,$

n) ⇀ (δ1, δ2,$) and let us verify that
(δ1, δ2,$) ∈ Φ(η1, η2, ς). Using the Theorem 3.4 for each (ηn1 , η

n
2 , ς

n), and
the remark preceding this theorem, it follows that there exists a sequence
(η̂n1 , η̂

n
2 , ς̂

n)n such that (η̂n1 , η̂
n
2 ) ∈ (L2

+(ΞT ))2∩(W 1,∞(0, T ;L2(Ξ)))2,
ς̂n ∈ (W 1,∞(0, T ;L2(Ξ)))3, η̂n1 (0) = η̂n2 (0) = 0, ς̂n(0) = 0, for all n ∈ N, and

(η̂n1 , η̂
n
2 , ς̂

n)− (ηn1 , η
n
2 , ς

n)→ 0 in (L2(ΞT ))5, (26)

u(η̂n1 ,η̂
n
2 ,ς̂

n) − u(ηn1 ,η
n
2 ,ς

n) → 0 in C1([0, T ];H) ∩W 1,2(0, T ;V ), (27)

where u(η̂n1 ,η̂
n
2 ,ς̂

n) is the solution of (13) corresponding to (η̂n1 , η̂
n
2 , ς̂

n), u(ηn1 ,η
n
2 ,ς

n)

is the solution of (15) corresponding to (ηn1 , η
n
2 , ς

n).
As (ηn1 , η

n
2 , ς

n) ⇀ (η1, η2, ς), by using (26), we have
(η̂n1 , η̂

n
2 , ς̂

n) ⇀ (η1, η2, ς) in (L2(ΞT ))5, and, by Theorem 3.4,

u(η̂n1 ,η̂
n
2 ,ς̂

n) → u(η1,η2,ς) in C1([0, T ];H) ∩W 1,2(0, T ;V ), (28)

where u(η1,η2,ς) is the solution of (15) corresponding to (η1, η2, ς).
We adopt the following notations: un := u(ηn1 ,η

n
2 ,ς

n), unN := u(ηn1 ,η
n
2 ,ς

n)N ,
uη := u(η1,η2,ς), uηN := u(η1,η2,ς)N .
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Thus, by (27) and the triangle inequality, we obtain

un → uη in C1([0, T ];H) ∩W 1,2(0, T ;V ), (29)

which implies
un → uη, u̇n → u̇η in (L2(ΞT ))3. (30)

Now, by Lemma 2.1, if (δn1 , δ
n
2 ,$

n) ∈ Φ(ηn1 , η
n
2 , ς

n) = Λ3(u(ηn1 ,η
n
2 ,ς

n)) for all
n ∈ N, then

κ([unN ], u̇nN) ≤ δn1 − δn2 ≤ κ([unN ], u̇nN) a.e. in ΞT , (31)

|$n| ≤ µ(u̇nT ) (δn1 + δn2 ) a.e. in ΞT , (32)

$n · u̇nT + µ(u̇nT ) (δn1 + δn2 ) |u̇nT | = 0 a.e. in ΞT , ∀n ∈ N. (33)

The relations (31) are equivalent to∫
ω

κ([unN ], u̇nN) ≤
∫
ω

(δn1 − δn2 ) ≤
∫
ω

κ([unN ], u̇nN),

for every measurable subset ω ⊂ ΞT and for all n ∈ N.
Passing to limits according to Fatou’s lemma, by using (30), the semi-

continuity of κ and κ, the relation (2), and the convergence property

∫
ω

(δn1 −

δn2 )→
∫
ω

(δ1 − δ2), we obtain

∫
ω

κ([uηN ], u̇ηN) ≤
∫
ω

(δ1 − δ2) ≤
∫
ω

κ([uηN ], u̇ηN),

for every measurable subset ω ⊂ ΞT , which implies

κ([uηN ], u̇ηN) ≤ δ1 − δ2 ≤ κ([uηN ], u̇ηN) a.e. in ΞT . (34)

The relation (32) is equivalent to∫
ω

|$n| ≤
∫
ω

µ(u̇nT ) (δn1 + δn2 ),

for every measurable subset ω ⊂ ΞT and for all n ∈ N.
As µ(ξ, ·) is Lipschitz continuous with the Lipschitz constant independent

of ξ, by using (30) it is easy to see that

u̇nT → u̇ηT in (L2(ΞT ))3, µ(u̇nT )→ µ(u̇ηT ) in L2(ΞT ), (35)
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so that passing to limits we obtain∫
ω

|$| ≤ lim inf

∫
ω

|$n| ≤ lim

∫
ω

µ(u̇nT ) (δn1 + δn2 ) =

∫
ω

µ(u̇ηT ) (δ1 + δ2).

Thus ∫
ω

|$| ≤
∫
ω

µ(u̇ηT ) (δ1 + δ2),

for every measurable subset ω ⊂ ΞT , which implies

|$| ≤ µ(u̇ηT ) (δ1 + δ2) a.e. in ΞT . (36)

Now, we consider the relation (33) which is equivalent to∫
ω

$n · u̇nT +

∫
ω

µ(u̇nT ) (δn1 + δn2 ) |u̇nT | = 0, (37)

for every measurable subset ω ⊂ ΞT and for all n ∈ N. By (35) we have

µ(u̇nT ) |u̇nT | → µ(u̇ηT ) |u̇ηT | in L1(ΞT ), (38)

and, by Lemma 2.1 and the relations (2), (31),

δn1 + δn2 ⇀
∗ δ1 + δ2 in L∞(ΞT ). (39)

Passing to limits in (37) by using (38) and (39), we obtain∫
ω

$ · u̇ηT +

∫
ω

µ(u̇ηT ) (δ1 + δ2) |u̇ηT | = 0,

for every measurable subset ω ⊂ ΞT , which implies

$ · u̇ηT + µ(u̇ηT ) (δ1 + δ2) |u̇ηT | = 0. (40)

By (29), (34), (36), (40), it follows that (δ1, δ2,$) ∈ Φ(η1, η2, ς), so that, by
applying Proposition 4.1, the theorem is proved.
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