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The aim of this work is to study a dynamic problem that constitutes a unified approach to describe some rate-depending interactions between the boundaries of two viscoelastic bodies, including relaxed unilateral contact, pointwise friction or adhesion conditions. The classical formulation of the problem is presented and two variational formulations are given as three and four-field evolution implicit equations. Based on some approximation results and an equivalent fixed point problem for a multivalued function, we prove the existence of solutions to these variational evolution problems.

Introduction

This paper is concerned with the extension of some recent existence results proved for a class of nonsmooth dynamic contact problems which describe various surface interactions between the boundaries of two Kelvin-Voigt viscoelastic bodies. These interactions can include some relaxed unilateral contact, Coulomb friction or adhesion conditions.

Existence and approximation of solutions to the quasistatic elastic problems have been studied for different contact conditions. The quasistatic unilateral contact problems with local Coulomb friction have been studied in 1 [START_REF] Andersson | Existence results for quasistatic contact problems with Coulomb friction[END_REF][START_REF] Rocca | Existence and approximation of a solution to quasistatic Signorini problem with local friction[END_REF][START_REF] Rocca | Numerical analysis of quasistatic unilateral contact problems with local friction[END_REF], adhesion laws were analyzed in [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Cocou | Existence results for unilateral quasistatic contact problems with friction and adhesion[END_REF] and the normal compliance models have been investigated by several authors, see e.g. [START_REF] Kikuchi | Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods[END_REF][START_REF] Han | Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[END_REF][START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF] and references therein.

Dynamic frictional contact problems with normal compliance laws have been studied in [START_REF] Martins | Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws[END_REF][START_REF] Kikuchi | Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods[END_REF][START_REF] Kuttler | Dynamic friction contact problems for general normal and friction laws[END_REF][START_REF] Chau | A dynamic frictional contact problem with normal damped response[END_REF][START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities[END_REF] and local friction laws were considered in [START_REF] Jarušek | Dynamic contact problems with given friction for viscoelastic bodies[END_REF][START_REF] Kuttler | Dynamic bilateral contact with discontinuous friction coefficient[END_REF][START_REF] Kuttler | Dynamic contact with Signorini's condition and slip rate depending friction[END_REF][START_REF] Eck | Unilateral Contact Problems -Variational Methods and Existence Theorems[END_REF][START_REF] Cocou | Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity[END_REF][START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF], for viscoelastic bodies. Dynamic frictionless problems with adhesion have been studied in [START_REF] Chau | Dynamic frictionless contact with adhesion[END_REF][START_REF] Kuttler | Existence and regularity for dynamic viscoelastic adhesive contact with damage[END_REF][START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF] and dynamic viscoelastic problems coupling unilateral contact, recoverable adhesion and nonlocal friction have been analyzed in [START_REF] Cocou | A dynamic unilateral contact problem with adhesion and friction in viscoelasticity[END_REF][START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF].

Using the Clarke subdifferential, the variational formulations of various nonsmooth contact problems were given as hemivariational inequalities, see [START_REF] Migorski | A unified approach to dynamic contact problems in viscoelasticity[END_REF][START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities[END_REF][START_REF] Naniewicz | Mathematical Theory of Hemivariational Inequalities and Applications[END_REF][START_REF] Panagiotopoulos | Hemivariational Inequalities: Applications in Mechanics and Engineering[END_REF] and references therein.

Based on Ky Fan's fixed point theorem, an elastic contact problem with relaxed unilateral conditions and pointwise Coulomb friction in the static case was studied in [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF], the extension to an elastic quasistatic contact problem was investigated in [START_REF] Cocou | A variational inequality and applications to quasistatic problems with Coulomb friction[END_REF] and the corresponding viscoelastic dynamic case was analyzed in [START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF].

This work extends the results in [START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF] to the case of a coefficient of friction depending on the sliding velocity. Using new three and four-field variational formulations, expressed as an evolution variational equation coupled with pointwise constraints, existence and improved regularity results are established.

The paper is organized as follows. In Section 2 the classical formulation of the dynamic contact problem is presented and two variational formulations are given. Section 3 is devoted to establish some auxiliary approximation results. In Section 4 the existence of a solution is proved for an equivalent fixed point problem by using the Ky Fan's theorem.

Classical and variational formulations

We consider two viscoelastic bodies, characterized by a Kelvin-Voigt constitutive law, which occupy the reference domains

Ω α of R 3 with Lipschitz boundaries Γ α = ∂Ω α , α = 1, 2. Let Γ α U , Γ α F and Γ α C be three open disjoint sufficiently smooth parts of Γ α such that Γ α = Γ α U ∪ Γ α F ∪ Γ α C
and, to simplify the estimates, meas(Γ α U ) > 0, α = 1, 2. We assume the small deformation hypothesis and we use Cartesian coordinates representations.

Let y α (x α , t) denote the position at time t ∈ [0, T ], where 0 < T < +∞, of the material point represented by the Cartesian coordinates x α = (x α 1 , x α 2 , x α 3 ) in the reference configuration Ω α , and u α (x α , t) = y α (x α , t) -x α denote the displacement vector of x α at time t, with the Cartesian coordi-

nates u α = (u α 1 , u α 2 , u α 3 ). Let ε α = (ε ij (u α ))
, and σ α = σ α ij , be the infinitesimal strain tensor and the stress tensor, respectively, corresponding to Ω α , α = 1, 2.

Assume that the displacements u α = 0 on Γ α U × (0, T ), α = 1, 2, and that the densities of both bodies are equal to 1. Let

f 1 = (f 1 1 , f 2 1
) and

f 2 = (f 1 2 , f 2 
2 ) denote the given body forces in Ω 1 ∪ Ω 2 and tractions on Γ 1 F ∪ Γ 2 F , respectively. The initial displacements and velocities of the bodies are denoted by

u 0 = (u 1 0 , u 2 0 ), u 1 = (u 1 1 , u 2 1
) and the usual summation convention will be used for i, j, k, l = 1, 2, 3.

Suppose that the solids can be in contact between the potential contact surfaces Γ 1 C and Γ 2 C which can be parametrized by two C 1 functions, ϕ 1 , ϕ 2 , defined on an open and bounded subset Ξ of R 2 , such that [START_REF] Boieri | Existence, uniqueness, and regularity results for the two-body contact problem[END_REF]. Define the initial normalized gap between the two contact surfaces by

ϕ 1 (ξ) -ϕ 2 (ξ) ≥ 0 ∀ ξ ∈ Ξ and each Γ α C is the graph of ϕ α on Ξ that is Γ α C = { (ξ, ϕ α (ξ)) ∈ R 3 ; ξ ∈ Ξ}, α = 1, 2, see e.g.
g 0 (ξ) = ϕ 1 (ξ) -ϕ 2 (ξ) 1 + |∇ϕ 1 (ξ)| 2 ∀ ξ ∈ Ξ.
Let n α denote the unit outward normal vector to Γ α , α = 1, 2. We introduce the following notations for the normal and tangential components of a displacement field v α , of the relative displacement corresponding to v := (v 1 , v 2 ) and of the stress vector σ α n α , respectively, on Γ α C , α = 1, 2:

v α (ξ, t) := v α (ξ, ϕ α (ξ), t), v α N (ξ, t) := v α (ξ, t) • n α (ξ), v N (ξ, t) := v 1 N (ξ, t) + v 2 N (ξ, t), [v N ](ξ, t) := v N (ξ, t) -g 0 (ξ), v α T (ξ, t) := v α (ξ, t) -v α N (ξ, t)n α (ξ), v T (ξ, t) := v 1 T (ξ, t) -v 2 T (ξ, t), σ α N (ξ, t) := (σ α (ξ, t)n α (ξ)) • n α (ξ), σ α T (ξ, t) = σ α (ξ, t)n α (ξ) -σ α N (ξ, t)n α (ξ), for all ξ ∈ Ξ and for all t ∈ [0, T ]. Let g := -[u N ] = g 0 -u 1 N -u 2
N be the gap corresponding to the solution u := (u 1 , u 2 ).

Let A α = (A α ijkl ), B α = (B α ijkl ) denote the components of the elasticity tensor and the viscosity tensor corresponding to Ω α , respectively, satisfying the following classical symmetry and ellipticity conditions:

C α ijkl = C α jikl = C α klij ∈ L ∞ (Ω α ), ∀ i, j, k, l = 1, 2, 3, ∃ α C α > 0 such that C α ijkl τ ij τ kl ≥ α C α τ ij τ ij ∀ τ = (τ ij ) verifying C α ijkl = A α ijkl , C α = A α or C α ijkl = B α ijkl , C α = B α ∀ i, j, k, l = 1, 2, 3, α = 1, 2.
Let κ, κ : R 2 → R be two mappings with κ lower semicontinuous and κ upper semicontinuous, satisfying the following conditions:

κ(s) ≤ κ(s) and 0 / ∈ (κ(s), κ(s)) ∀ s ∈ R 2 , (1) 
∃ r 0 ≥ 0 such that max(|κ(s)|, |κ(s)|) ≤ r 0 ∀ s ∈ R 2 . ( 2 
)
Let µ : Ξ × R 3 → R + be a bounded function such that for a.e. ξ ∈ Ξ µ(ξ, •) is Lipschitz continuous with the Lipschitz constant independent of ξ, and for every v ∈ R 3 µ(•, v) is measurable.

Consider the following dynamic viscoelastic contact problem with Coulomb friction.

Problem P c : Find u = (u 1 , u 2 ) such that u(0) = u 0 , u(0) = u 1 and, for all t ∈ (0, T ), üα -div σ α (u α , uα ) = f α 1 in Ω α , (3) σ α (u α , uα ) = A α ε(u α ) + B α ε( uα ) in Ω α , (4) 
u α = 0 on Γ α U , σ α n α = f α 2 on Γ α F , α = 1, 2, (5) 
σ 1 n 1 + σ 2 n 2 = 0 in Ξ, (6) κ([u N ], uN ) ≤ σ N ≤ κ([u N ], uN ) in Ξ, ( 7 
) |σ T | ≤ µ( uT ) |σ N | in Ξ and (8) uT = 0 ⇒ σ T = -µ( uT )|σ N | uT | uT | , where σ α = σ α (u α , uα ), α = 1, 2, σ N := σ 1 N , σ T := σ 1
T and µ is the sliding velocity dependent coefficient of friction. Different choices for κ, κ will give various contact and friction conditions, see e.g. [START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF].

To give the variational formulations, we adopt the following notations:

H s (Ω α ) := H s (Ω α ; R 3 ), α = 1, 2, H s := H s (Ω 1 ) × H s (Ω 2 ), v, w -s,s = v 1 , w 1 H -s (Ω 1 )×H s (Ω 1 ) + v 2 , w 2 
H -s (Ω 2 )×H s (Ω 2 ) ∀ v = (v 1 , v 2 ) ∈ H -s , ∀ w = (w 1 , w 2 ) ∈ H s , ∀ s ∈ R, H := H 0 = L 2 (Ω 1 ; R 3 ) × L 2 (Ω 2 ; R 3 ), V := V 1 × V 2 , where V α = {v α ∈ H 1 (Ω α ); v α = 0 a.e. on Γ α U }, α = 1, 2. (H, |.|) and (V , .
) are Hilbert spaces with the associated inner products denoted by (. , .) and by . , . , respectively.

Define Ξ T = Ξ × (0, T ) and the closed convex cones

L 2 + (Ξ), L 2 + (Ξ T ) as follows: L 2 + (Ξ) := {δ ∈ L 2 (Ξ); δ ≥ 0 a.e. in Ξ}, L 2 + (Ξ T ) := {η ∈ L 2 (Ξ T ); η ≥ 0 a.e. in Ξ T }.
Let a, b be two bilinear, continuous and symmetric mappings defined by

a(v, w) = a 1 (v 1 , w 1 ) + a 2 (v 2 , w 2 ), b(v, w) = b 1 (v 1 , w 1 ) + b 2 (v 2 , w 2 ) ∀ v = (v 1 , v 2 ), w = (w 1 , w 2 ) ∈ H 1 , where, for α = 1, 2, a α (v α , w α ) = Ω α A α ε(v α ) • ε(w α ) dx, b α (v α , w α ) = Ω α B α ε(v α ) • ε(w α ) dx.
As meas(Γ α U ) > 0 and the components of A α , B α , α = 1, 2, satisfy the ellipticity conditions, by Korn's inequality it follows that a and b are Velliptic in the following sense:

∃ m a , m b > 0 a(v, v) ≥ m a v 2 , b(v, v) ≥ m b v 2 ∀ v ∈ V . (9) 
Assume

f α 1 ∈ W 1,∞ (0, T ; L 2 (Ω α ; R d )), f α 2 ∈ W 1,∞ (0, T ; L 2 (Γ α F ; R d )), α = 1, 2, u 0 , u 1 ∈ V , g 0 ∈ L 2 + (Ξ)
, and define the following mapping:

f ∈ W 1,∞ (0, T ; H 1 ), f , v = α=1,2 Ω α f α 1 • v α dx + α=1,2 Γ α F f α 2 • v α ds ∀ v = (v 1 , v 2 ) ∈ H 1 , ∀ t ∈ [0, T ].
Assume the following compatibility conditions:

[u 0N ] ≤ 0, κ([u 0N ]) = 0 a.e. in Ξ and ∃ p 0 ∈ H such that (p 0 , v) + a(u 0 , v) + b(u 1 , v) = f (0), v ∀ v ∈ V . ( 10 
)
For

every ζ = (ζ 1 , ζ 2 ) ∈ L 2 (0, T ; (L 2 (Ξ)) 2 ) = (L 2 (Ξ T )) 2
, define the following nonempty, closed, and convex sets:

Λ 0 (ζ 1 , ζ 2 ) = {η ∈ L 2 (Ξ T ); κ • (ζ 1 , ζ 2 ) ≤ η ≤ κ • (ζ 1 , ζ 2 ) a.e. in Ξ T }, Λ 0 + (ζ 1 , ζ 2 ) = {η ∈ L 2 + (Ξ T ); κ + • (ζ 1 , ζ 2 ) ≤ η ≤ κ + • (ζ 1 , ζ 2 ) a.e. in Ξ T }, Λ 0 -(ζ 1 , ζ 2 ) = {η ∈ L 2 + (Ξ T ); κ -• (ζ 1 , ζ 2 ) ≤ η ≤ κ -• (ζ 1 , ζ 2 ) a.e. in Ξ T },
where, for each r ∈ R, r + := max(0, r) and r -:= max(0, -r) denote the positive and negative parts, respectively. Also, for every w ∈ W 1,2 (0, T ; V ), define the following nonempty and closed sets:

Λ 1 (w) = {(η, ς) ∈ L 2 (Ξ T ) × (L 2 (Ξ T )) 3 ; η ∈ Λ 0 ([w N ], ẇN ), |ς| ≤ µ( ẇT ) |η|, ς • ẇT + µ( ẇT ) |η| | ẇT | = 0 a.e. in Ξ T }, Λ 2 (w) = {(η, ς) ∈ L 2 (Ξ T ) × (L 2 (Ξ T )) 3 ; η + ∈ Λ 0 + ([w N ], ẇN ), η -∈ Λ 0 -([w N ], ẇN ), |ς| ≤ µ( ẇT ) (η + + η -), ς • ẇT + µ( ẇT ) (η + + η -) | ẇT | = 0 a.e. in Ξ T }, Λ 3 (w) = {(η 1 , η 2 , ς) ∈ (L 2 (Ξ T )) 5 ; η 1 ∈ Λ 0 + ([w N ], ẇN ), η 2 ∈ Λ 0 -([w N ], ẇN ), |ς| ≤ µ( ẇT ) (η 1 + η 2 ), ς • ẇT + µ( ẇT ) (η 1 + η 2 ) | ẇT | = 0 a.e. in Ξ T }. Since meas(Ξ) < ∞ and κ, κ satisfy (2), it follows that for all ζ ∈ L 2 (0, T ; (L 2 (Ξ)) 2 ) the sets Λ 0 (ζ), Λ 0 + (ζ) and Λ 0 -(ζ) are bounded in norm in L 2 (0, T ; L 2 (Ξ))=L 2 (Ξ T ) by R 0 = r 0 (meas(Ξ)) 1/2 T and are bounded in norm in L ∞ (0, T ; L ∞ (Ξ)) by r 0 .
As the coefficient of friction µ is a bounded function, it follows also that for all w ∈ W 1,2 (0, T ; V ) the sets Λ 1 (w), Λ 2 (w), and Λ 3 (w) are bounded in norm. Thus, there exists R 1 > 0 such that Λ 3 (w) ⊂ D 0 × D 1 for all w ∈ W 1,2 (0, T ; V ), where

D 0 = {(η 1 , η 2 ) ∈ (L 2 (Ξ T )) 2 ; η 1 L 2 (Ξ T ) ≤ R 0 , η 2 L 2 (Ξ T ) ≤ R 0 } and D 1 = {ς ∈ (L 2 (Ξ T )) 3 ; ς (L 2 (Ξ T )) 3 ≤ R 1 }.
A first variational formulation of the problem P c is the following.

Problem P 1 v : Find u ∈ C 1 ([0, T ]; H) ∩ W 1,2 (0, T ; V ), λ ∈ L 2 (Ξ T ), γ ∈ (L 2 (Ξ T )) 3 , such that u(0) = u 0 , u(0) = u 1 , (λ, γ) ∈ Λ 1 (u), and ( u(T ), v(T )) - T 0 ( u, v) dt + T 0 {a(u, v) + b( u, v)} dt - T 0 {(λ, v N ) L 2 (Ξ) + (γ, v T ) (L 2 (Ξ)) 3 } dt = T 0 f , v dt + (u 1 , v(0)) (11) 
∀ v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H).
where (•, •) L 2 (Ξ) and (•, •) (L 2 (Ξ)) 3 denote the inner products of the corresponding spaces.

The formal equivalence between the variational problem P 1 v and the classical problem (3)-( 8) can be easily proved by using Green's formula and an integration by parts, where the Lagrange multipliers λ, γ satisfy the relations

λ = σ N , γ = σ T . The sets Λ 0 (ζ 1 , ζ 2 ), Λ 0 + (ζ 1 , ζ 2 ) and Λ 0 -(ζ 1 , ζ 2 )
have the following useful properties, see [START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF].

Lemma 2.1. Let (ζ 1 , ζ 2 ) ∈ (L 2 (Ξ)) 2 and (η 1 , η 2 ) ∈ Λ 0 + (ζ 1 , ζ 2 ) × Λ 0 -(ζ 1 , ζ 2 ). Then η 1 η 2 = 0 a.e. in Ξ T and there exists η ∈ Λ 0 (ζ 1 , ζ 2 ) such that η + = η 1 , η -= η 2 a.e. in Ξ T . Since λ ∈ Λ 0 ([u N ], uN ) if and only if (λ + , λ -) ∈ (Λ 0 + ([u N ], uN )×Λ 0 -([u N ]
, uN ), from the previous lemma it follows that the variational problem P 1 v is clearly equivalent with the following problem denoted by P 2 v , in the sense that it has the same solutions u, γ as the problem P 1 v and the solutions λ 1 , λ 2 satisfy the relation λ = λ 1 -λ 2 , where λ is a solution of P 1 v .

Problem P 2 v : Find u ∈ C 1 ([0, T ]; H)∩W 1,2 (0, T ; V ), (λ 1 , λ 2 ) ∈ (L 2 (Ξ T )) 2 , γ ∈ (L 2 (Ξ T )) 3 , such that u(0) = u 0 , u(0) = u 1 , (λ 1 , λ 2 , γ) ∈ Λ 3 (u), and ( u(T ), v(T )) - T 0 ( u, v) dt + T 0 {a(u, v) + b( u, v)} dt - T 0 {(λ 1 -λ 2 , v N ) L 2 (Ξ) + (γ, v T ) (L 2 (Ξ)) 3 } dt = T 0 f , v dt + (u 1 , v(0)) (12) ∀ v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H).
The existence of solutions to problem P 2 v will be established by using an equivalent fixed point problem which will be presented in the following section.

A fixed point problem formulation

By an immediate application of Theorem 3.2 proved in [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF] and using similar arguments to those that enabled to prove Lemma 3.2 in [START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF], one obtains the following existence and uniqueness result. 3 with η 1 (0) = η 2 (0) = 0, ς(0) = 0, there exists a unique solution u = u (η 1 ,η 2 ,ς) of the following evolution variational equation: find u ∈ W 2,2 (0, T ; H) ∩ W 1,2 (0, T ; V ), such that u(0) = u 0 , u(0) = u 1 , and for almost all t ∈ (0, T )

Lemma 3.1. For each (η 1 , η 2 ) ∈ (W 1,∞ (0, T ; L 2 (Ξ))) 2 , ς ∈ (W 1,∞ (0, T ; L 2 (Ξ)))
(ü, v) + a(u, v) + b( u, v) -(η 1 -η 2 , v N ) L 2 (Ξ) -(ς, v T ) (L 2 (Ξ)) 3 = f , v ∀ v ∈ V . ( 13 
)
We shall also use the following estimate result.

Lemma 3.2. Let (η 1 , η 2 ), (δ 1 , δ 2 ) ∈ (W 1,∞ (0, T ; L 2 (Ξ))) 2 such that η 1 (0) = η 2 (0) = δ 1 (0) = δ 2 (0) = 0, ς 1 , ς 2 ∈ (W 1,∞ (0, T ; L 2 (Ξ))) 3 such that ς 1,2 (0) = 0, and let u (η 1 ,η 2 ,ς 1 ) , u (δ 1 ,δ 2 ,ς 2 )
be the corresponding solutions of [START_REF] Fan | Fixed points and minimax theorems in locally convex topological linear spaces[END_REF]. Then there exists a constant C 0 > 0, independent of (η 1 , η 2 ), (δ 1 , δ 2 ), and

ς 1 , ς 2 , such that for all t ∈ [0, T ] | u(η 1 ,η 2 ,ς 1 ) (t) -u(δ 1 ,δ 2 ,ς 2 ) (t)| 2 + u (η 1 ,η 2 ,ς 1 ) (t) -u (δ 1 ,δ 2 ,ς 2 ) (t) 2 + t 0 u(η 1 ,η 2 ,ς 1 ) -u(δ 1 ,δ 2 ,ς 2 ) 2 dτ ≤ C 0 t 0 {(η 1 -η 2 -δ 1 + δ 2 , u(η 1 ,η 2 ,ς 1 )N -u(δ 1 ,δ 2 ,ς 2 )N ) L 2 (Ξ) +(ς 1 -ς 2 , u(η 1 ,η 2 ,ς 1 )T -u(δ 1 ,δ 2 ,ς 2 )T ) (L 2 (Ξ)) 3 } dτ. ( 14 
) Proof. Let (η 1 , η 2 ), (δ 1 , δ 2 ) ∈ (W 1,∞ (0, T ; L 2 (Ξ))) 2 ς 1 , ς 2 ∈ (W 1,∞ (0, T ; L 2 (Ξ))) 3 with u 1 := u (η 1 ,η 2 ,ς 1 ) , u 2 := u (δ 1 ,δ 2 ,ς 2 )
the corresponding solutions of ( 13) which exist according to Lemma 3.1. Taking in each equation v = u1 -u2 , for a.e. τ ∈ (0, T ) it follows that

(ü 1 -ü2 , u1 -u2 ) + a(u 1 -u 2 , u1 -u2 ) + b( u1 -u2 , u1 -u2 ) = (η 1 -η 2 -δ 1 + δ 2 , u1N -u2N ) L 2 (Ξ) + (ς 1 -ς 2 , u1T -u2T ) (L 2 (Ξ)) 3 .
Since the solutions u 1 , u 2 verify the same initial conditions and a is symmetric, by integrating over (0, t) it follows that for all t ∈ [0, T ]

1 2 | u1 (t) -u2 (t)| 2 + 1 2 a(u 1 (t) -u 2 (t), u 1 (t) -u 2 (t)) + t 0 b( u1 -u2 , u1 -u2 ) dτ = t 0 {(η 1 -η 2 -δ 1 + δ 2 , u1N -u2N ) L 2 (Ξ) + (ς 1 -ς 2 , u1T -u2T ) (L 2 (Ξ)) 3 } dτ.
Using the V -ellipticity of a and b, the estimate ( 14) follows.

The following compactness theorem proved in [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] will be used several times in this paper. Theorem 3.3. Let X, U and Y be three Banach spaces such that X ⊂ U ⊂ Y with compact embedding from X into U .

(i) Let F be bounded in L p (0, T ; X), where 1 ≤ p < ∞, and ∂F/∂t := { ḟ ; f ∈ F} be bounded in L 1 (0, T ; Y ). Then F is relatively compact in L p (0, T ; U ).

(ii) Let F be bounded in L ∞ (0, T ; X) and ∂F/∂t be bounded in L r (0, T ; Y ), where r > 1. Then F is relatively compact in C([0, T ]; U ).

As D(0, T ; L 2 (Ξ)) is dense in L 2 (0, T ; L 2 (Ξ)), it follows that for every (η 1 , η 2 ) ∈ (L 2 + (Ξ T )) 2 and every ς ∈ (L 2 (Ξ T )) 3 , there exist (η n 1 , η n 2 ) n in (L 2 + (Ξ T )) 2 ∩ (W 1,∞ (0, T ; L 2 (Ξ))) 2 , (ς n ) n in (W 1,∞ (0, T ; L 2 (Ξ))) 3 such that η n 1 (0) = η n 2 (0) = 0, ς n (0) = 0, for all n ∈ N, η n 1 → η 1 , η n 2 → η 2 in L 2 (Ξ T ), and ς n → ς in (L 2 (Ξ T )) 3 .
Theorem 3.4. Under the assumptions of Section 2, for every

(η 1 , η 2 ) ∈ (L 2 + (Ξ T )) 2 and every ς ∈ (L 2 (Ξ T )) 3 , let (η n 1 , η n 2 ) n be a sequence in (L 2 + (Ξ T )) 2 ∩(W 1,∞ (0, T ; L 2 (Ξ))) 2 and (ς n ) n be a sequence in (W 1,∞ (0, T ; L 2 (Ξ))) 3 such that η n 1 (0) = η n 2 (0) = 0, ς n (0) = 0, for all n ∈ N, η n 1 η 1 , η n 2 η 2 in L 2 (Ξ T ), and ς n ς in (L 2 (Ξ T )) 3 . Let u (η n 1 ,η n 2 ,ς n ) be the solution of (13) corresponding to (η n 1 , η n 2 , ς n ), for every n ∈ N. Then (u (η n 1 ,η n 2 ,ς n ) ) n is strongly convergent in C 1 ([0, T ]; H) ∩ W 1,
2 (0, T ; V ), its limit, denoted by u := u (η 1 ,η 2 ,ς) , is independent of the chosen sequences weakly converging to (η 1 , η 2 , ς) with the same properties as (η n 1 , η n 2 , ς n ) and is a solution of the following evolution variational equation: andς n ς in (L 2 (Ξ T )) 3 . Then, by Lemma 3.1, for every n ∈ N there exists a unique solution of the following variational equation: find

u(0) = u 0 , u(0) = u 1 , ( u(T ), v(T )) - T 0 ( u, v) dt + T 0 {a(u, v) + b( u, v)} dt - T 0 {(η 1 -η 2 , v N ) L 2 (Ξ) + (ς, v T ) (L 2 (Ξ)) 3 } dt = T 0 f , v dt + (u 1 , v(0)) (15) ∀ v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H). Proof. Assume (η 1 , η 2 ) ∈ (L 2 + (Ξ T )) 2 , ς ∈ (L 2 (Ξ T )) 3 , (η n 1 , η n 2 ) ∈ (L 2 + (Ξ T )) 2 ∩ (W 1,∞ (0, T ; L 2 (Ξ))) 2 , ς n ∈ (W 1,∞ (0, T ; L 2 (Ξ))) 3 such that η n 1 (0) = η n 2 (0) = 0, for all n ∈ N, η n 1 η 1 , η n 2 η 2 in L 2 (Ξ T ),
u n := u (η n 1 ,η n 2 ,ς n ) ∈ W 2,2 (0, T ; H) ∩ W 1,2 (0, T ; V ), such that u n (0) = u 0 , un (0) = u 1 , and for almost all t ∈ (0, T ) (ü n , v) + a(u n , v) + b( un , v) -(η n 1 -η n 2 , v N ) L 2 (Ξ) -(ς n , v T ) (L 2 (Ξ)) 3 = f , v ∀ v ∈ V . (16) 
For v = un , and integrating over (0, t) with t ∈ (0, T ], we derive and so for every t ∈ (0, T ] we have

1 2 | un (t)| 2 + 1 2 a(u n (t), u n (t)) + t 0 b( un , un ) dτ = t 0 (η n 1 -η n 2 , unN ) L 2 (Ξ) dτ + t 0 (ς n , unT ) (L 2 (Ξ)) 3 dτ + t 0 f , un dτ + 1 2 |u 1 | 2 + 1 2 a(u 0 , u 0 ).
By the relations (9), we obtain

1 2 | un (t)| 2 + m a 2 u n (t) 2 + m b t 0 un 2 dτ ≤ k 1 t 0 ( η n 1 L 2 (Ξ) + η n 2 L 2 (Ξ) + ς n (L 2 (Ξ)) 3 ) un dτ + t 0 f un dτ + 1 2 |u 1 | 2 + M a 2 u 0 2 ∀n ∈ N, ∀t ∈ (0, T ],
where k 1 is a positive constant independent of n and M a is a positive continuity constant of a.

Since the sequences (η n 1 , η n 2 ) n , (ς n ) n are bounded in (L 2 (Ξ T )) 2 , (L 2 (Ξ T )) 3 , respectively, by Young's inequality it follows that there exists a positive constant C 1 , depending only on a, b, f , u 0 , u 1 , k 1 , the bounds of (η n 1 , η n 2 ) n and (ς n ) n , such that the following estimates hold:

∀ n ∈ N, | un (t)| ≤ C 1 , u n (t) ≤ C 1 ∀t ∈ [0, T ], un L 2 (0,T ;V ) ≤ C 1 . (17)
Using ( 16) for v = ψ, we see that for all ψ ∈ L 2 (0, T ;

H 1 0 ) with H 1 0 := H 1 0 (Ω 1 ; R 3 ) × H 1 0 (Ω 2 ; R 3 ) T 0 (ü n , ψ) dt + T 0 a(u n , ψ) dt + T 0 b( un , ψ) dt = T 0 f , ψ dt.
This relation and the estimates [START_REF] Kuttler | Dynamic friction contact problems for general normal and friction laws[END_REF] imply that there exists a positive constant C 2 having the same properties as C 1 and satisfying the estimate

∀ n ∈ N, ün L 2 (0,T ;H -1 0 ) ≤ C 2 , (18) 
where 17), [START_REF] Kuttler | Dynamic bilateral contact with discontinuous friction coefficient[END_REF], it follows that there exist a subsequence (u n k ) k and u such that

H -1 0 := H -1 0 (Ω 1 ; R 3 ) × H -1 0 (Ω 2 ; R 3 ). From (
un k * u in L ∞ (0, T ; H), u n k * u in L ∞ (0, T ; V ), un k u in L 2 (0, T ; V ), ün k ü in L 2 (0, T ; H -1 0 ). According to Theorem 3.3 with F = ( un k ) k , X = V , U = H ι , Ŷ = H -1 0 , p = 2, we obtain un k → u in L 2 (0, T ; H ι ), where 1 > ι > 1 2
, so that, by the trace theorem, the last convergence implies

un k → u in L 2 (0, T ; (L 2 (Ξ)) 3 ) = (L 2 (Ξ T )) 3 . (19) 
By Lemma 3.2, for all l, m ∈ N and for all t ∈ [0, T ],

| ul (t) -um (t)| 2 + u l (t) -u m (t) 2 + t 0 ul -um 2 dτ ≤ C 0 t 0 (η l 1 -η l 2 -η m 1 + η m 2 , ulN -umN ) L 2 (Ξ) dτ + C 0 t 0 (ς l -ς m , ulT -umT ) (L 2 (Ξ)) 3 dτ. (20) 
for every n ∈ N, then, using similar arguments as above for the union of the two sequences

(η n 1 , η n 2 , ς n ) n and (δ n 1 , δ n 2 , n ) n , it follows that u (δ n 1 ,δ n 2 , n ) → u in C 1 ([0, T ]; H) ∩ W 1,2 (0, T ; V ).
It remains to prove that the unique limit u of this class of approximating sequences is a solution of [START_REF] Jarušek | Dynamic contact problems with given friction for viscoelastic bodies[END_REF]. For all v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H), integrating over (0, T ) in ( 16) yields

T 0 (ü n , v) + a(u n , v) dt + T 0 b( un , v) dt - T 0 (η n 1 -η n 2 , v N ) L 2 (Ξ) dt - T 0 (ς n , v T ) (L 2 (Ξ)) 3 dt = T 0 f , v dt (23) 
and integrating by parts the first term in ( 23) implies

( un (T ), v(T )) -(u 1 , v(0)) - T 0 ( un , v) dt + T 0 {a(u n , v) + b( un , v)} dt - T 0 {(η n 1 -η n 2 , v N ) L 2 (Ξ) + (ς n , v T ) (L 2 (Ξ)) 3 } dt = T 0 f , v dt (24) 
∀ v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H).
Passing to the limits by using ( 21) and ( 22), it follows that u is a solution of [START_REF] Jarušek | Dynamic contact problems with given friction for viscoelastic bodies[END_REF].

Let Φ : (L 2 + (Ξ T )) 2 × (L 2 (Ξ T )) 3 → 2 (L 2 + (Ξ T )) 2 ×(L 2 (Ξ T )) 3 \ {∅} be the setvalued mapping defined by Φ(η 1 , η 2 , ς) = Λ 3 (u (η 1 ,η 2 ,ς) ) ∀(η 1 , η 2 , ς) ∈ (L 2 + (Ξ T )) 2 × (L 2 (Ξ T )) 3 , (25) where u (η 1 ,η 2 ,ς) is the solution of the variational equation ( 15) which corresponds to (η 1 , η 2 , ς) by the procedure described in Theorem 3.4.

As (λ 1 , λ 2 , γ) is a fixed point of Φ, i.e. (λ 1 , λ 2 , γ) ∈ Φ(λ 1 , λ 2 , γ), if and only if (u (λ 1 ,λ 2 ,γ) , λ 1 , λ 2 , γ) is a solution of the Problem P 2 v , we consider a new problem, which consists in finding a fixed point of the set-valued mapping Φ, called also multifunction.

Existence of a solution to the contact problem

We shall prove the existence of a fixed point of the multifunction Φ by using a corollary of the Ky Fan's fixed point theorem [START_REF] Fan | Fixed points and minimax theorems in locally convex topological linear spaces[END_REF], proved in [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF] in the particular case of a reflexive Banach space. so that passing to limits we obtain 

Now, we consider the relation (33) which is equivalent to

ω n • unT + ω µ( unT ) (δ n 1 + δ n 2 ) | unT | = 0, (37) 
for every measurable subset ω ⊂ Ξ T and for all n ∈ N. By (35) we have

µ( unT ) | unT | → µ( uηT ) | uηT | in L 1 (Ξ T ), (38) 
and, by Lemma 2.1 and the relations (2), [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF],

δ n 1 + δ n 2 * δ 1 + δ 2 in L ∞ (Ξ T ). ( 39 
)
Passing to limits in (37) by using (38) and (39), we obtain

ω • uηT + ω µ( uηT ) (δ 1 + δ 2 ) | uηT | = 0,
for every measurable subset ω ⊂ Ξ T , which implies

• uηT + µ( uηT ) (δ 1 + δ 2 ) | uηT | = 0. (40) 
By ( 29), (34), (36), (40), it follows that (δ 1 , δ 2 , ) ∈ Φ(η 1 , η 2 , ς), so that, by applying Proposition 4.1, the theorem is proved.

η n 2 , 0 f

 20 unN ) L 2 (Ξ) dτ -t 0 (ς n , unT ) (L 2 (Ξ)) 3 dτ = t , un dτ

  ) (δ 1 + δ 2 ),for every measurable subset ω ⊂ Ξ T , which implies| | ≤ µ( uηT ) (δ 1 + δ 2 ) a.e. in Ξ T .
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Using the weak convergence properties of (η n 1 ) n , (η n 2 ) n , (ς n ) n , and the strong convergence property [START_REF] Kuttler | Dynamic contact with Signorini's condition and slip rate depending friction[END_REF], we can pass to limits in the previous estimates corresponding to t = T for (u n k ) k and so we obtain that (u n k ) k is a Cauchy sequence in W 1,2 (0, T ; V ) and

then, using the same arguments as above, we have

and passing to limits in [START_REF] Kuttler | Existence and regularity for dynamic viscoelastic adhesive contact with damage[END_REF] 

By [START_REF] Kuttler | Existence and regularity for dynamic viscoelastic adhesive contact with damage[END_REF], the Cauchy-Schwarz inequality and the trace properties, there exists a positive constant C 3 such that for all l, m ∈ N and for all t ∈ [0, T ],

Passing to limits in the previous estimates, it follows that (u 5 is clearly convex, closed, and bounded. Since for each w ∈ W 1,2 (0, T ; V ) the set Λ 3 (w) is nonempty, closed, and convex, it follows that Φ(η 1 , η 2 , ς) is a nonempty, closed, and convex subset of D for every (η 1 , η 2 , ς) ∈ D.

In order to prove that the multifunction Φ is sequentially weakly upper semicontinuous, let (

) and let us verify that (δ 1 , δ 2 , ) ∈ Φ(η 1 , η 2 , ς). Using the Theorem 3.4 for each (η n 1 , η n 2 , ς n ), and the remark preceding this theorem, it follows that there exists a sequence 3 , ηn 1 (0) = ηn 2 (0) = 0, ςn (0) = 0, for all n ∈ N, and

where

is the solution of (15 5 , and, by Theorem 3.4,

where u (η 1 ,η 2 ,ς) is the solution of (15) corresponding to (η 1 , η 2 , ς).

We adopt the following notations:

13 Thus, by [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF] and the triangle inequality, we obtain

which implies

The relations [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] are equivalent to

for every measurable subset ω ⊂ Ξ T and for all n ∈ N.

Passing to limits according to Fatou's lemma, by using ( 30), the semicontinuity of κ and κ, the relation (2), and the convergence property 

The relation ( 32) is equivalent to

for every measurable subset ω ⊂ Ξ T and for all n ∈ N.

As µ(ξ, •) is Lipschitz continuous with the Lipschitz constant independent of ξ, by using [START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF] it is easy to see that unT → uηT in (L 2 (Ξ T )) 3 , µ( unT ) → µ( uηT ) in L 2 (Ξ T ), (35)