N

N
N

HAL

open science

Latest Trends in Hardware Security and Privacy
Giorgio Di Natale, F. Regazzoni, V. Albanese, F. Lhermet, Y. Loisel, A.

Sensaoui, S. Pagliarini

» To cite this version:

Giorgio Di Natale, F. Regazzoni, V. Albanese, F. Lhermet, Y. Loisel, et al.. Latest Trends in Hardware
Security and Privacy. IEEE International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT 2020), Oct 2020, Rome, Italy. hal-02999289

HAL Id: hal-02999289
https://hal.science/hal-02999289
Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://hal.science/hal-02999289
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Latest Trends in Hardware Security and Privacy

Giorgio Di Natale!, Francesco RegazzoniQ, Vincent Albanese®, Frank Lhermet®, Yann Loisel?,

Abderrahmane Sensaoui®, Samuel Pagliarini

4

"Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, Grenoble, France,
2University of Amsterdam and ALaRI - USI, Switzerland,
3Platform Security Team, SiFive, La Ciotat, France,

“Tallinn University of Technology (TalTech), Estonia

Abstract—In the last two decades we have witnessed a massive
development of technologies (both hardware and software) which
have enabled the creation of billions of connected devices. These
devices are nowadays used in a very wide range of applications,
and they all contain different types of valuable assets, which
have been the target of an increasing number of cyber attacks.
Both scientific and industrial communities have focused their
attention to implement new design processes to reduce the risk
of cybersecurity breaches. This paper includes two different
contributions in the field of hardware security and privacy.

I. INTRODUCTION

In the last two decades we have witnessed a massive develop-
ment of technologies (both hardware and software) which have
enabled the creation of billions of connected devices. These
devices are nowadays used in a very wide range of applications,
including computing and cloud computing, communication,
gaming and entertainment, [oT, automotive, aerospace, defense.
All these applications contain different types of valuable assets
(e.g., safety, fortune, personal data, privacy, copyrights, indus-
trial secrets). As a consequence, together with the development
of versatile technologies and applications, we have also experi-
enced an increasing number of cyber attacks, which use more
and more sophisticated means (both hardware and software) to,
for instance, improperly access sensitive information, extorting
money, or interrupting services. Both scientific and industrial
communities have focused their attention to implement new
design processes to reduce the risk of cybersecurity breaches.
This paper includes two different contributions in the field of
hardware security and privacy.

The first contribution, provided by SiFive, describes how
software isolation can be guaranteed by implementing the so-
called WorldGuard architecture. Software isolation is an im-
portant feature mandated by distinct concerns (safety, security).
Considering the current trend of software code increasing size
and its potential various origins, important risks exist that one
software part can affect another one on the same platform,
intentionally or not. A secure software isolation solution could
be easily developed on a RISC-V core, thanks to the privileged
modes and the Physical Memory Protection (PMP) blocks.
Nevertheless, this approach has a major limitation for complex
platforms like SoCs, since the privileged modes and the PMPs
are attached to a single core, and their configurations are
neither shared nor synchronized with other cores. A hardware
system-level resource isolation solution is therefore necessary.
SiFive proposes the WorldGuard architecture, which provides
a secure and scalable solution to address the modern security

“Institute of Engineering Univ. Grenoble Alpes

978-1-7281-9457-8/20/$31.00 ©2020 IEEE

requirements on SoCs equipped with multiple masters, hosting
complex software architecture. On a SoC, WorldGuard allows
defining several worlds, as subsets of the SoC masters, memo-
ries, and peripherals. Each world behaves independently from
the others, with a high level of trust.

The second contribution, provided by Samuel Pagliarini
from Tallinn University of Technology, brings a discussion
on how software threats and defences can be analyzed from
a hardware-point-of-view. Indeed, for decades, software-based
plagues like viruses and malwares have been infecting our
computers and often spreading through our local networks. Yet,
we have developed many successful defense strategies, from the
obvious anti-virus software to firewalls and clever honeypots.
This contribution will address whether these concepts have
equivalents in hardware and what they would look like if so —
the most obvious example is the comparison between hardware
trojan horses and viruses. Moreover, we will analyze who
the attackers are in both domains and the different degrees
of anonymity an attacker can benefit from. The paper also
presents, as a case study, a silicon-validated ransomware attack,
a prime example of how a software threat can indeed make the
transition to hardware.

II. WORLDGUARD: A SOC-LEVEL ISOLATION SOLUTION

Software isolation is an important feature mandated by
distinct concerns, safety, and security. Considering the trend
of increasing code size, the different origins of the code and
the ways they are combined, important risks appear where a
piece of software can affect another one, intentionally or not.
A health-oriented device (a medical device, a car brake, a
nuclear plant sensor) shall keep its ability for its main mission,
even if another piece of software running on the device has
bugs and goes into infinite loop or erratic behavior (see [1]).
A credential-oriented device (payment terminal, badge control
system, DRM-equipped device) shall resist or raise a flag, and
not compromise any asset it protects (see [2]).

A. The Rationale Behind WorldGuard

Therefore, the goal is then to guarantee that an aggressive
(security) or uncontrolled (safety) piece of software cannot
affect a resource belonging to another piece of software running
on the same platform (see [3]). Changing any resource can
have a broad meaning, from simply reading a part of memory
to overwriting it or preventing the use of a peripheral. Devel-
oping a satisfying solution of isolation shall also consider the
major trend of integration in the semiconductor industry, where
increasingly complex SoCs are designed, including increased

functions on the same die, for a lower cost. Today, an offer for
a security software isolation can be easily developed on RISC-
V cores, thanks to the clever privileged modes management
and the PMP (Physical Memory Protection) (see [4]). This
approach is based on a hypervisor, aka security monitor, being
able to manage the different independent pieces of software,
the boxes. The boxes’ resources (memories, peripherals) and
the inter-boxes communications are dynamically controlled and
allocated by the hypervisor, upon request from the boxes. A
great benefit of this approach is the almost unlimited number
of boxes.

On open and flexible platforms, such as RISC-V-based
products, it is ideal to assign any important function or task
to only one single box, separated from the others, for example:
one box for the cryptographic computations, another one for the
communication library, one for the data sensors, and one for
the main application: this helps to limit the risk of a bug spread
among the whole software. Therefore, a common software
architecture is to have the security monitor running in machine
mode (M-mode), controlling boxes. Each of the boxes could be
made of two parts, the operating system, running in supervisor
mode (S-mode) and the application tasks, running in user mode
(U-mode).

However, there is a major limitation for this approach on the
more complex multi-core, multi-master SoCs: the privileged
modes and the PMPs scopes are restricted to their core and
their software, so they can only supply control on the memory-
mapped areas for this single core. The privilege management
registers belong to one single core, so their values and the
resulting controls are neither shared nor synchronized with
other cores. Moreover, other masters such as DMAs do not
have any PMP and are independent from the cores and their
applications; they are then able to circumvent resources access
restrictions set by the cores, as these restrictions are not
applicable to the other masters (see [5]). Solutions based on
software control of the DMAs undermine the benefits of such
IP blocks in terms of performance and efficiency.

So, for overcoming those limitations, SiFive proposes a very
smart and secure solution named the WorldGuard architecture
(see [6]). There are two different flavors in WorldGuard,
the core-driven strategy and the process-driven strategy. The
process-driven strategy proposes an even finer granularity than
the core-driven, but the same general principles apply, and both
can be combined anyway if needed: this architecture proposes
to set rights at masters’ level and check the rights at slaves’
side.

B. Core-Driven Strategy

The principle is to gather masters, memories areas and
peripherals within sets of resources, named worlds. In this
strategy, the software has no specific property and automatically
belongs to the world the master it runs on belongs to. The
worlds are distinct from each other, which means the software
running on cores belonging to a world 1 cannot access resources
(memory portions, peripherals) belonging to a world 2 and
more generally cannot interfere with the other worlds. Of
course, for inter-world communications, some memory portions

can belong to more than one world, behaving as shared mem-
ory.

So, one unique world ID value is assigned to a world, and
within this world, each of the masters is assigned the same
world ID value. This allocation is usually for each master, like
a core, but for enhanced IP blocks, it can be with a finer grain.
For example, it can be for each channel of a multi-channel
DMA. Therefore, each time a data request leaves the master,
this request is marked with the world ID. On the slave side, each
memory or peripheral has an access control list (ACL) having
the access rights per world ID. Through the communication
bus, each marked request coming from the master is sent to the
slave and analyzed versus its ACL. These ACL check IP blocks
have their functions similar to the PMPs functioning with the
world ID field acting as an additional field to be checked. This
mark-and-check strategy allows complex and rich architectures
to be easily secured as a wrong or missing world ID implies
the immediate rejection of the request. There is no practical
limitation in the number of supported worlds for a specific
platform, being then consistent with the software-only proposal
above: the number of worlds a SoC can support is application-
dependent and shall be determined by the application architect.

C. Process Driven Strategy

Everything above still applies for the process-driven strategy
except for the cores’ management: the world distinction can
now also depend on the privileged mode, having distinct world
IDs based on the privilege mode (M-mode, S-mode, U-mode)
on the same core. The obvious scenario for this process-driven
strategy is the application of the hypervisor/security monitor
scenario described above on a multi-core, multi-master SoC.
The simplest example is to have a core "hosting" two worlds,
the world 1 accessing the most sensitive assets (e.g., keys)
and to some specific peripherals (e.g., the fingerprint reader
on a smartphone), and the world 2 running generic application
software.

D. WorldGuard Configuration Setup

The WorldGuard worlds configurations, including assign-
ments of masters, definitions of ACLs, shall be set up at
platform startup. This is an operation that is usually performed
after the secure boot operation, the WorldGuard configuration
firmware being the first software to be run by the secure boot. It
is only once this configuration is completed that the application
can start.

III. RE-IMAGINING SOFTWARE THREATS AND DEFENCES
IN HARDWARE

For decades, software-based plagues like viruses [7] and
malwares [8] have been infecting our computers and often
spreading through local networks and email communication [9].
Recently, incidents related to ransomwares have been reported
to shut down airports, car manufacturing plants, and even entire
local government systems. Threats keep evolving and new
defensive approaches have to keep evolving as well.

On the hardware side, however, it could be argued that
attacks have not (yet) led to such large-scale incidents, but the
threat is looming. An episode that certainly was eye opening

for the entire community was the discovery of the Melt-
down/Spectre [10] vulnerabilities. However, despite the reach
and plausibility of exploitation by an attacker, the unearthed
flaws seem not to be intentional. The obvious research question
then becomes would an attacker be able to create such an
intricate malicious logic? If so, what are the lessons that can
be learned from threats and defences utilized in software?

Due to sheer necessity, security experts have developed many
widely adopted defense strategies, from the obvious antivirus
software to network firewalls. These concepts, however, do
not have strict equivalents in hardware. Perhaps, the closest
comparison to be made is that a software virus resembles a
hardware trojan [11] to some extent, especially if their intent
is simply to corrupt data or execution. In terms of defenses
against software-based threats, one can deploy static analysis
in order to expose (a signature of) a malicious code. On the
hardware side, many works have attempted to use current/power
measurements that would indirectly detect the presence of
extraneous logic [12]. This process, albeit feasible at first sight
and akin to code static analysis, gets more convoluted as circuits
fabricated in present-day technologies display a high degree
of process variation. It is not uncommon for chips from the
very same batch to present static currents that differ by one
order of magnitude. Trojans of small sizes can effectively
“hide” in the margins of the fabrication process. The same
way antivirus detection routines has evolved from simple static
checks to signature-less approaches, trojan detection has also
shifted to dynamic approaches like concurrent execution and
(self-)checking [13]. Other attacks that target hardware take
different forms. For instance, side channel attacks try to exploit
circuit emanations (power signatures, timing, electromagnetic
radiation, or even sound) to discover through correlation what
is being computed. The classical example is the use of side
channel traces to discover encryption keys that should, oth-
erwise, remain a secret. Here, detection does not help because
the attacker performs his/her analysis in a non-invasive manner.
The attacker only needs physical access to the circuit. Efforts
from the hardware security community shifted to avoidance
instead of detection, i.e., making sure that the circuits being
designed do not leak useful information [14].

However, there might be other approaches that promote
deception instead of avoidance. Not surprisingly, this is exactly
the role of honeypot servers in networks: usually, an isolated
server is employed, which has unnecessarily obvious open
ports or other vulnerabilities that attackers are probably on the
lookout for. The research question then becomes what would
be a hardware honeypot. The goal would be to devise a circuit
(or portion thereof) that would attract attackers. Perhaps this
can be achieved in the context of reverse engineering: maybe a
circuit layout can be devised to look like it stores a set of keys
for cryptography in very easy to identify fuses, while the real
set of keys rests safely in a camouflaged layout. By the time
the attacker understands the con (and let us assume he/she will,
given enough time and determination), precious resources were
already wasted looking in the wrong place. This is already a
win for a defence strategy. In other contexts, such as hardware
trojan insertion and fault injection, it is likely that effective
hardware honeypots can also be devised.

Table 1
ATTACKERS AND THEIR ROLES.

Attacker role
Contracted by the design house, provides specific
IP that is part of a larger project. IP might be
compromised.
In charge of fabrication, provides the silicon for

Attacker

3PIP provider

Foundry the design house. Might introduce small trojans or
parametric trojans.
Develops the CAD tools that the design house uti-
CAD vendor lizes. Theoretically, could introduce malicious logic

into a design.
Design houses may procure other companies for
finishing the top-level of their chip. The integrator is
a 3rd party that enjoys full visibility of the project,
potentially being capable of inserting localized and
smart trojans.

SoC integrator

Another example of a successful strategy for vetting third
party software is the use of virtual machines. The process
consists of running the software under test in a virtualized
environment while logging its activity: system calls, disk usage,
access to operating system registry, etc. However, despite the
widespread use of 3rd party intellectual property (3PIP) in
integrated circuit design, no such virtual environment exists
for vetting IPs. It could be argued that emulation platforms
utilized in functional verification could serve this purpose, but
the fact is that trojans/backdoors are not meant to be triggered
by regular stimuli. Quite the opposite, trojans/backdoors are
designed specifically to fly under the radar of verification
vectors (functional) and test vectors (structural). The hypothesis
is that a hardware within hardware solution could serve as a vir-
tualization testbed while also allowing for logging and isolation
if deemed necessary. Take a typical system-on-chip (SoC) as
an example, containing a processor, a memory subsystem, and
a few specialized accelerators, all connected by a shared bus.
If one of the accelerators comes from a third party, it should be
possible to bar it from accessing the main memory and other
resources while providing it with its own memory space and
an individualized bus. This approach, while feasible, is likely
to incur overheads that are not suitable for all applications.

Furthermore, it should be noted that attackers in software
and hardware domains are inherently very different from one
another. For both software- and hardware-based exploits, the
landscape comprises rogue individuals all the way to nation
states. What is a distinguishing trait is where the attacker is
located: often, an individual that has never worked for the
company whose product he is attacking can create a computer
virus for it. In hardware, however, we often assume the attacker
is tightly involved in the development/fabrication process of
the chips. This scenario is summarized in Table I, where it is
assumed a chip is developed by a fabless design house.

As part of our ongoing research at TalTech’s Centre for Hard-
ware Security, we are investigating several avenues of research
where (malicious) software finds a hardware counterpart. We
have recently demonstrated in silicon what is believed to be
the first hardware-only ransomware [15], which we describe in
the text that follows. First and foremost, a ransomware attack
only makes sense if the application/SoC has access to some
form of storage that holds user data. Even further, this data

must be of value such that the user would be compelled to
pay a ransom to acquire it back. Not all applications have
this profile. For instance, processor-centric SoCs have a large
amount of memory for cache, but the memory content is
transient and matters not to the user. On the other hand, a
system with embedded non-volatile memories makes for a
much better target for mounting this type of attack. Assuming
this characteristic is in place, the attacker has to reason about
a trigger, the payload, and a communication channel back to
the user (i.e., to notify the user he has been targeted by a
ransomware).

For the trigger, approaches from hardware trojans can be
borrowed: a rarely occurring combination of signals can be
used. For the payload, a public key cryptography scheme
based on elliptic curves was employed. This choice is not
arbitrary, elliptic curves lend themselves well to hardware
implementations with small footprints. For the communication,
we make use of a UART to transmit data serially, in and out
of the chip. The logic was implemented such that, once the
ransomware is activated, all user data is encrypted and a shared
key is provided to the user. This key serves as an identifier, for
which the attacker can calculate the reciprocal shared key. If
the user provide the chip with this reciprocal key, the user data
is decrypted back to plaintext.

A concern we had while developing the ransomware is to
make sure each chip generates a unique identifier. A physically
unclonable function (PUF) was employed for this purpose. The
PUF is implemented as an SRAM IP. Bench tests revealed
that the generated bits present good entropy, even though a
commercial memory compiler was utilized for generating the
IP. A microphotograph of the fabricated chip is shown in Fig. 1.
The technology node is 65nm and the fabrication was executed
in a multi project wafer (MPW) in March 2020. Packaged parts
were received in May 2020 and validated soon after. All parts
passed our bench tests, successfully performing key generation,
encryption and decryption on demand. The die size is Imm x
1mm because that is the standard MPW offering. However, the
actual size of the ransomware logic, when all debug structures
are unaccounted for, is approximately 0.13mm?2. More details
about the fabricated design can be found in [15].

Finally, let us conclude by saying that our fabricated chip
has no malicious purpose per se. Our intent was to show the
technological feasibility of such attack. This specific design was
executed by two first year PhD students, from RTL to sign-off.
It would probably be naive to assume a motivated adversary
would not be able to mount a similar (or improved) attack in
a real system.

REFERENCES

[1] “Fbi report about health care cybersecurity,” FBI Cyber Division,
Tech. Rep., 04 2014. [Online]. Available: https://publicintelligence.net/
fbi-health-care-cyber-intrusions/

[2] “Payment card industry pin transaction security point of interaction mod-
ulare security requirements v6.0,” PCI Security Standards Council, Tech.
Rep., 06 2020. [Online]. Available: https://www.pcisecuritystandards.
org/document_library ?category=pts&document=pci_pts_poi_sr_2

[3] “Iot devices exposed to cyber risk,” Tech. Rep.,
03 2020. [Online]. Available: https://securitybrief.com.au/story/
iot-devices-more-at-risk-of-cyber-attack-than-ever-report

[4] A. Waterman and K. Asanovic, RISC-V PMP specification, 5 2017.
[Online]. Available: https://content.riscv.org/wp-content/uploads/2017/05/
riscv-privileged-v1.10.pdf

Figure 1. Microscope image of the fabricated chip. Die dimensions are Imm x
Imm. Highlighted structures in the core area are the memories for user storage
and PUF.

[5] “Iot security guidelines for endpoints ecosystems,” GSM Association,
Tech. Rep., 02 2016. [Online]. Available: https://www.gsma.com/iot/
wp-content/uploads/2016/02/CLP.13-v1.0.pdf

[6] “Sifive unveils worldguard,” Tech. Rep., 10
2019. [Online]. Available: https://riscv-association.jp/en/2019/10/
sifives-new-open-security-details-shield- and- worldguard-unveiled/

[7]1 C.C. Zou, D. Towsley, and W. Gong, “Modeling and simulation study of
the propagation and defense of internet e-mail worms,” IEEE Transactions
on Dependable and Secure Computing, vol. 4, no. 2, pp. 105-118, 2007.

[8] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, “Cutting
the gordian knot: A look under the hood of ransomware attacks,” in
Detection of Intrusions and Malware, and Vulnerability Assessment,
M. Almgren, V. Gulisano, and F. Maggi, Eds. Cham: Springer Interna-
tional Publishing, 2015, pp. 3-24.

[9] P. Knight, “Iloveyou: Viruses, paranoia, and the environment of risk,”
The Sociological Review, vol. 48, no. 2_suppl, pp. 17-30, 2000. [Online].
Available: https://doi.org/10.1111/j.1467-954X.2000.tb03518.x

[10] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 1-19.

[11] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxon-
omy and detection,” IEEE Design Test of Computers, vol. 27, no. 1, pp.
10-25, 2010.

[12] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic, “Hardware
trojan detection and isolation using current integration and localized
current analysis,” in 2008 IEEE International Symposium on Defect and
Fault Tolerance of VLSI Systems, 2008, pp. 87-95.

[13] R. S. Chakraborty, S. Pagliarini, J. Mathew, S. R. Rajendran, and
M. N. Devi, “A flexible online checking technique to enhance hardware
trojan horse detectability by reliability analysis,” IEEE Transactions on
Emerging Topics in Computing, vol. 5, no. 2, pp. 260-270, 2017.

[14] K. Tiri and I. Verbauwhede, “A digital design flow for secure integrated
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 7, pp. 1197-1208, 2006.

[15] F. Almeida, M. Imran, J. Raik, and S. Pagliarini, “Design of a 5w
0.13mm?2 hardware ransomware in 65nm cmos,” in 26th Asia and South
Pacific Design Automation Conference (ASP-DAC) (submitted to), 2021.

	Introduction
	WorldGuard: a SoC-level isolation solution
	The Rationale Behind WorldGuard
	Core-Driven Strategy
	Process Driven Strategy
	WorldGuard Configuration Setup

	Re-Imagining Software Threats and Defences in Hardware
	References

