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Remote sensing is commonly used to map the presence of invasive alien
plant species across large areas. However, remote sensing also has potential to
predict fractional cover, which is more closely linked to the potential ecosys-
tem impact of invasive alien plant species. Here, we mapped the fractional
cover of the invasive bryophyte Campylopus introflexus using high resolution
imaging spectroscopy (233 bands, 490–2430 nm, 3m × 3m pixel size) in dif-
ferent habitat types within a coastal dune ecosystem. Maps were predicted
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from generalized partial least squares (gPLS) regression models trained with
cover information from 266 field plots (3m × 3m). Models were calibrated
using different data subsets, following a spatially blocked subsampling de-
sign. In addition, the relationship between C. introflexus fractional cover
and plant species richness was evaluated using a subset of plot data. Frac-
tional cover estimates from gPLS models resulted in R2 values of 0.64 ± 0.17
and an RMSE of 0.14 ± 0.02 based on independent validation data. Field
observations showed a negative relationship between C. introflexus fractional
cover and local plant species richness for pixels with a fractional cover above
44%. This threshold was exceeded in 4.3–7.1% of the studied area depend-
ing on the habitat type. Our study demonstrates that remote sensing can be
used to map the fractional cover of an invasive bryophyte in a coastal dune
ecosystem. Combining cover maps with a threshold value derived from an
abundance-impact relationship we were able to highlight areas with potential
negative impact on local plant species richness. This method can be imple-
mented on other species and other ecosystem properties affected by plant
invasions, al- lowing to highlight potential invasion impacts in a spatially
explicit manner.

1 Introduction
Invasive alien plant species can have various unwanted consequences, including adverse
effects on human health (Shackleton et al., 2019) and ecosystem functioning (Pyšek et al.,
2012; Vilà et al., 2011). Impacts on ecosystems include alterations of species richness and
composition (Powell et al., 2013), changes in disturbance regimes (Pauchard et al., 2008),
or in ecological processes like carbon, nutrient, and water cycling (Aerts et al., 2017; Liao
et al., 2008; Rascher et al., 2011). Once an invasive plant species has established within a
new range, it is often extremely difficult to eradicate (Rejmanek and J. Pitcairn, 2002).
Therefore, the management of established alien species focuses on limiting the most
adverse effects (Kumschick et al., 2012). This requires prioritizing management efforts
towards the most harmful species and the most valuable habitats (Gaertner et al., 2014;
McGeoch et al., 2016). One prerequisite to prioritize these management efforts is the
detection and monitoring of invasive plant species (Latombe et al., 2016).

Remote sensing techniques have high potential for monitoring invasive plants over
large areas (Rocchini et al., 2015). Many studies have demonstrated the capability of
remote sensing approaches to detect invasive plant species and to map their distribu-
tion (Vaz et al., 2018). These studies covered a variety of growth forms including trees
and shrubs (Lopatin et al., 2019; Somers and Asner, 2013), herbs or grasses (Müllerová
et al., 2016; Skowronek et al., 2017a) and even cryptogams (Skowronek et al., 2018).
Most commonly, these mapping approaches use classifiers, delivering maps with infor-
mation on the target species’ presence and absence. Yet, remote sensing can also be used
to acquire quantitative information on species abundance, such as the fractional cover
(e.g. Falkowski et al., 2017; Huang and Geiger, 2008; Miao et al., 2006; Peerbhay et al.,
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2016). As the ecosystem impact of an invasive plant species is considerably influenced by
its local abundance (Parker et al., 1999; Bradley et al., 2019), remote sensing is offering
high potential, not only to map invasive plant species, but also to indicate impact mag-
nitudes across large areas (Ewald et al., 2018; Große-Stoltenberg et al., 2018; Hellmann
et al., 2017). However, the potential to link abundance maps with potential invasion
impacts has not been fully explored yet. For example, abundance information can be
used to compare the invasion severity between different habitat types. Furthermore,
abundance maps can be used in combination with abundance-impact relationships to
display linkages between the abundance of an invader and specific ecosystem properties
(Bradley et al., 2019; Panetta and Gooden, 2017). This combination can be used as spa-
tially explicit indicator of invasion impacts on selected ecosystem properties. Here, we
aim to explore this potential. The ability to retrieve plant species covers using imaging
remote sensing techniques depends on the size of plant individuals or populations and
the pixel-size of the images. Broadly speaking, two scenarios are possible. First, the
size of the target individual or population is exceeding the pixel size of the image. This
is often the case when using very high resolution remote sensing data in combination
with large target individuals, such as shrubs and trees, or large monospecific stands (Gil
et al., 2013; Guirado et al., 2017; Kattenborn et al., 2019). Suitable mapping approaches
for this scenario include classification approaches, delivering pixel-wise presence-absence
information, and object or texture-based approaches (Bradley, 2014). These approaches
allow species cover to be calculated from resulting maps across larger areas (Falkowski
et al., 2017). In the second scenario, the size of the target individuals or stands is smaller
than the pixel size of the used image. In this specific case spectral unmixing approaches
and regression techniques can be used to predict fractional cover for single pixels (Asner
and Martin, 2008; Miao et al., 2006; Peterson, 2005).
Here, we used airborne imaging spectroscopy to map the fractional cover of the inva-

sive bryophyte Campylopus introflexus—listed among the 100 worst alien plant invaders
in Europe (Essl and Lambdon, 2009). In its non-native range C. introflexus is predom-
inately occurring in inland and coastal dunes. In early successional stages it can affect
natural succession dynamics (Ketner-Oostra and Sýkora, 2004). Once established, it can
form dense mono-specific carpets, locally decreasing species richness within plant com-
munities of dune ecosystems (Biermann and Daniels, 1997; Ketner-Oostra and Sýkora,
2004). Like other mosses, C. introflexus is capable of retaining water and nutrients
from precipitation, and therefore is suspected to influence biomass accumulation, soil
formation, and micro-climate (Ayres et al., 2006; Essl et al., 2014). Moreover, C. in-
troflexus was reported to influence the species composition of carabid beetles and spiders
in coastal dunes (Vogels et al., 2005). Using the fractional cover derived from predicted
maps as a proxy for local abundance, we aimed to evaluate the impact of C. introflexus
on plant species richness within a dune habitat in a spatially explicit manner. The
specific research questions were:

1. How accurately can the fractional cover of the invasive moss C. introflexus be
mapped in different habitats using airborne imaging spectroscopy data?

2. Which spectral bands are the most important to predict fractional cover of C.
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introflexus?

3. Which habitat type shows the highest level of invasion?

4. At which fractional cover can we expect an impact on local plant species richness?

2 Materials and Methods
2.1 Study area
The study area covers the coastal dune ecosystem in the western part of the island of
Sylt (54◦55’ N, 8◦20’ E) located in northern Germany (Fig. 1). The climate is temper-
ate oceanic with a mean annual temperature of 9 ◦ C and mean annual precipitation of
715mm. The western coastline of Sylt has a north-to-south distance of approximately
35 km with protected dunes covering an area of 27.7 km 2 . Habitats are characterized
by a narrow belt of shifting sand dunes along the shoreline and vast areas of decalcified
fixed dunes with herbaceous or dwarf shrub vegetation (Fig. 2, Table 1). In the northern
part of the island, dunes are grazed by sheep. The predominant soil types are sandy
loose immature soils and podsolized regosols both characterized by low organic matter
content. The vegetation of the shifting dunes is characterized by grassland dominated by
Ammophila arenaria (code 2120 according to the European Union Habitat Directive).
Decalcified fixed dunes are characterized by heath vegetation dominated by Empetrum
nigrum (code 2140; further referred to as crowberry heath, Table 1, Fig. 2), or by
herbaceous vegetation with Carex arenaria, Corynephorus canescens, and Hypochaeris
radicata as the characteristic species (code 2130; further regarded as grey dunes, Table
1, Fig. 2). Frequently occurring dune slacks, which are periodically flooded by precipi-
tation water, represent the floristically most valuable habitats (code 2190, Table 1, Fig.
2). The vegetation in dune slacks is characterized by Erica tetralix and Vaccinium ulig-
inosum with frequent occurrences of red-listed plant species like Drosera rotundifolia,
D. intermedia and Pedicularis sylvatica. Campylopus introflexus is present across the
entire island, mainly occurring in the fixed dunes with little windblown sand intake. The
species is locally forming huge and dense populations with growth heights up to 8 cm.

2.2 Study species
Campylopus introflexus was first observed in Europe in 1941, and has by now spread
across major parts of the continent (Hassel and Soderstrom, 2005). On the island of
Römö it was first noticed in 1970 (Frahm, 1971), and probably also introduced on the
neighboring island of Sylt around the same time. Growing on bare sand, C. introflexus
is predominately occurring in coastal dunes (Essl et al., 2014).

Vegetation data
Field data were acquired between June and November 2014, across 287 plots of 3m ×
3m surface area. Ninety of these plots were selected in situ in order to cover sites with
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Figure 1 Location of the study area (a), outline of the island of Sylt (b) and habitat maps including
plot locations for the northern (c) and southern part of the island (d).

Figure 2 Habitat types included in this study; a: grey dunes, b: crowberry dunes, c: dune slacks
(photos by S. Skowronek).

no presence (n = 30), low (≤ 30%, n = 31) and medium to high fractional cover (> 30%,
n = 29) of C. introflexus. Apart from the cover of C. introflexus, we also recorded the
percentage cover of all co-occurring vascular plant and moss species in these 90 plots. For
the 197 remaining plots, we only recorded the percentage cover of C. introflexus. These
additional plots were randomly located to cover all relevant habitat types across the
study area. For each of the 287 plots we recorded the center coordinates. In addition
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to the field data, for each plot, habitat types according to the Habitats Directive of
the European union were derived from biotope maps of the year 2012 (Fig 1, Table 1;
Leguan, 2012).

Table 1 Habitat types included in this study and total coverage across the Island of Sylt. # Training
plots: number of plots included in the dataset used for model calibration. The remaining plots covered
other habitat types.

Used Acronym Description Area (km2) # Training plots
Grey dunes Fixed coastal dunes with herbaceous vegetation 3.3 44
Crowberry dunes Decalcified fixed dunes with Empetrum nigrum 15.1 167
Dune slacks Humid dune slacks 1.6 13

Remote sensing data
Airborne imaging spectroscopy data were acquired on July 16 2014, between 12:21 and
13:13 local time (UTC+2), using the APEX (Airborne Prism EXperiment) sensor at a
flight height of 2270m with flight lines in a north-to-south direction. The data included
images of 285 spectral bands covering a spectral range from 412 nm to 2432 nm with a
pixel size of 1.8m × 1.8 m. Imaging spectroscopy data was geometrically and atmospher-
ically corrected using the standard procedures applied to APEX data (Sterckx et al.,
2016; Vreys et al., 2016). To verify atmospheric correction, ground samples were taken
in September 2014 from 15 different locations at the beach and at large parking lots
(serving as virtual invariant features) using a full-range field spectrometer (FieldSpec
4JR, ASD Inc., Longmont, USA).

Noisy bands between 410 nm and 480 nm, and bands in the range between 1320 nm
and 1450 nm and between 1670 nm and 1990 nm, being affected by atmospheric water
absorption, were excluded from subsequent analyses. This resulted in a total of 233
predictor variables. To minimize the influence of shadows, we subjected the spectra to
brightness normalization (Feilhauer et al., 2010). To meet the size of the field plots,
the spatial resolution of spectral images was resampled to a pixel size of 3m × 3 m.
Resampling was necessary because cover estimations were based on a surface area of
3m × 3 m, and also because we intended to link the predicted maps with information
derived from abundance-impact relationships based on plots of the same size.
For each of the 287 plots, we extracted the brightness normalized reflectance values

from all pixels overlapping with the plot area. This resulted in up to four spectra
originating from different neighboring pixels per plot. From these values we calculated
the weighted mean for each band using the percentage overlap of each pixel with the
respective plot area as weight.

2.3 Generalized partial least squares regression
To model the fractional cover of C. introflexus, we ran generalized partial least squares
(gPLS) regression models using the field-derived cover values as the response variable.
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Like classical partial least squares (PLS) regression, gPLS is a combined method of di-
mension reduction and regression that can deal with a high number of predictor variables,
and also with high collinearity among the predictor variables (Bastien et al., 2005; Wold
et al., 1984). For this reason, it is often used to link a response variable to hyperspectral
remote sensing data, in which adjacent bands are often highly correlated and the number
of predictors is exceeding the number of observations used to train the model. Similar
to other dimension reduction methods like principle component analyses, in a PLS re-
gression the information content of a dataset is translated into n latent variables, also
called components, which are aligned orthogonally in the n-dimensional feature space
determined by the n initial variables. In classical PLS regression, components are linked
to the response variable using a least squares regression. In a gPLS, this regression is
replaced by a general linear regression that can be fit to response variables ranging from
0 to 1 (Bastien et al., 2005). For the purpose of improving the prediction performance
(remove noise) and for a better understanding of the model, a variable selection can be
useful (Mehmood and Ahmed, 2016).
Because our response variable ranged from 0 to 1, we chose to calculate a gPLS with

a logit-link function. Models were calculated using the package plsRglm 1.1.1 (Bertrand
et al., 2014) in R 3.4.4 (R Core Team, 2018). The northern end of the island was excluded
from modeling because the specific vegetation community was under-represented in the
dataset. We therefore also dropped data from 21 field plots located in that area. This
resulted in a total of 266 plots, including 162 absence plots used in the final training
dataset. All predictor variables were scaled to a mean value of 0 and a standard deviation
of 1 to allow direct comparisons among estimated coefficients.
To prevent a possible underestimation of the prediction errors, model calculations

were ran repeatedly using 10 different data subsets resulting from a spatially blocked
subsampling procedure (Roberts et al., 2017). Based on their coordinates, field plots
were divided into ten clusters using k-means clustering. For each dataset, 20% of the
field plots were held back for independent validation, each time selecting the plots closest
to the center coordinates of the respective clusters.
For the selection of relevant spectral bands, model calculations were additionally em-

bedded in a 10-fold cross validation procedure. Bands were selected based on a stepwise
backward variable selection procedure using the standardized coefficients as selection
criteria. In each step we dropped 10% of the predictor variables using the following
procedure. We implemented a non-parametric bootstrap approach with 250 bootstrap
iterations. For each bootstrap iteration, we recalculated gPLS regression models. Stan-
dardized coefficients for each predictor variable resulting from the 250 bootstrap itera-
tions were then tested for significant difference from zero using a 95% confidence interval
(p < 0.05). Using the test results, we dropped predictor variables with insignificant stan-
dardized coefficient starting with those having the smallest mean absolute value.
For all models calculated in each step the optimal number of latent variables was

selected based on the lowest Akaike Information Criterion (AIC) value. To prevent
overfitting, we additionally limited the maximum number of latent variables to five.
The procedure stopped when less than 10% of the remaining predictor variables showed
insignificant standardized coefficients. From all steps the model associated with the

7



lowest RMSE in 10-fold cross validation was selected as final model. For each model
calculated with different data subsets, we calculated prediction maps representing the
fractional cover of C. introflexus within each pixel. From these maps we calculated
median maps representing pixel-wise medians of predicted values.

2.4 Model evaluation
The model’s predictive performances were evaluated by calculating two sets of Pearson
R2 values and root mean square error (RMSE) values based on training and independent
validation data respectively. To obtain the overall predictive performance, we calculated
the mean and standard error for both R2 and RMSE values.
The relative importance of each spectral band was derived by calculating model pre-

dictions based on permuted predictor datasets. For each model, permuted datasets were
created by successively randomizing the values of each predictor variable. For each
permuted dataset, we re-calculated model predictions based on the original response
data. Predicted values calculated from permuted datasets were then compared to the
predictions from the non-permuted dataset, calculating the Pearson correlation coeffi-
cient. A high correlation coefficient indicates that a predictor (here: spectral band) is
not better than a random predictor variable. In contrast, a small coefficient indicates
high relevance. Accordingly, the inverse correlation coefficient was then used as variable
importance of each predictor variable.
Model residuals were used to compare prediction errors for different habitat types. To

get a picture from all model residuals, we ran a linear mixed-effects model (LMM) using
the residuals from all models as response variable and habitat type as fixed-effect vari-
able. The data subsets were numbered from 1 to 10 and included as random intercepts.
We ran LMMs using the nlme 3.1 (Pinheiro et al., 2018) package in R.

2.5 Evaluating the impact of C. introflexus
To evaluate the abundance of C. introflexus in different habitat types, we calculated
mean fractional covers and the total cover for each type. First, average covers were
calculated from each of the 10 prediction maps for each habitat type. As a second step,
we calculated the mean and standard error from these values. Total cover was derived
by multiplying mean fractional cover with the total area covered by each habitat type,
respectively.
To assess the impact of C. introflexus on native plant communities, we evaluated the

relationship between its fractional cover and the richness of co-occurring plant species
based on data acquired in 90 field plots. We used the Simpson diversity index (Simp-
son, 1949) for plant species richness, including all vascular plant and moss species. This
abundance-impact relationship was analyzed by fitting a linear model. The Simpson
index was used as response variable and the percentage cover of C. introflexus, both
the first- and second-order polynomial term, was used as explanatory variable. To iden-
tify existing break points in this relationship, we ran a piecewise regression using the
segmented 3.0 package in R (Muggeo, 2008, 2003).
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2.6 Results
Models resulted in mean R2 values of 0.71 (standard error: ± 0.03), and 0.64 ± 0.17 as
well as mean RMSE values of 0.12 ± 0.01 and 0.14 ± 0.02 based on the training (Fig.
3) and independent validation datasets, respectively (Appendix A1).
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Figure 3 Median predicted values retrieved from generalized partial least squares regression models
vs. observed values for the fractional cover of C. introflexus in 3m × 3m plots from 10 training
datasets. Error bars represent ranges between the 25% quantile and the 75% quantile of model
predictions.

The ten final models included a range of 7–183 spectral bands after variable selection.
All models included bands situated in the shortwave-infrared region (SWIR), between
2150 nm and 2160 nm as well as between 2240 nm and 2250 nm (Fig. 4). The bands
located around 2242 nm and 2248 nm had highest mean variable importance. Prediction
errors differed between the habitat types, indicating highest prediction accuracy for
crowberry heath and lowest accuracy for dune slacks (Fig. 5).
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Figure 4 Relative importances of spectral bands included in 10 gPLS models using different training
datasets.

Based on the median predictions C. introflexus total cover across the island of Sylt
reached 2.08 km 2 . Mean cover of C. introflexus ranged from 10.2 ± 0.9% in crowberry
heath to 11.1 ± 1.0% in grey dunes (Table 2).
The linear model relating fractional cover of C. introflexus to plot level plant species

richness resulted in a R2 value of 0.10. The predicted curve peaks at about 30% cover
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Figure 5 Prediction error of C. introflexus fractional cover for different habitat types. Displayed
values represent absolute deviations of predicted covers from observed covers calculated using a linear
mixed effects model including all deviations resulting from repeated gPLS model calculations.

Table 2 Fractional covers of C. introflexus for different habitat types based on predicted maps. Mean
cover represents mean pixel values for each habitat type averaged for all calculated maps. The total
coverage is giving the total area covered by C. introflexus.

Habitat Mean cover (%) Total coverage (km2)
Grey dunes 11.1 ± 1.0 0.37
Crowberry heath 10.2 ± 0.9 1.54
Dune slacks 10.6 ± 1.9 0.17

of C. introflexus (Fig. 6). The piecewise regression analysis resulted in a break point
at a fractional cover of 44%. Above this threshold increasing cover of C. introflexus
was related to decreasing plant species richness within plots of 3m × 3m surface area.
Prediction maps indicated that 7.1%, 4.3%, and 6.8% of the pixels were characterized
by fractional covers of 44% or above, for grey dunes, crowberry heath and dune slacks,
respectively (Fig. 7).

3 Discussion
3.1 Mapping the fractional cover of C. introflexus
We demonstrated that imaging spectroscopy can be used to map the fractional cover of
an invasive alien bryophyte. Similar results for mapping invasive alien plant species cover
have been found by previous studies, however in different contexts. For example, Peter-
son (2005) used multi-seasonal Landsat 7 images to map the cover of a non-native grass
species using regression approaches. Guo et al. (2018), predicted the fractional cover of
an invasive grass species using hyperspectral data derived from field spectroscopy. Sim-
ilarly, spectral mixture analyses can be used to predict the fractional cover of selected
target species (Andrew and Ustin, 2008; Somers et al., 2011). For example, Asner and
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Figure 6 Relationship between C. introflexus cover and plant species richness given by the Simpson
diversity index observed for 90 field plots (3m × 3m) and predicted using a linear model.

Martin (2008) predicted the cover of several non-native tree species in a rainforest from
imaging spectroscopy data using a spatial unmixing approach. In line with these previ-
ous studies, our results underline the high potential of remote sensing to map fractional
cover of invasive alien plant species. Future remote sensing approaches should focus on
mapping quantitative data, such as fractional cover, as they provide more information
than qualitative (presence-absence) data.
Similar to presence-absence mapping one major requirement for the success of mapping

species cover is that the spectral signal of the target species differs from that of the back-
ground vegetation (Bradley, 2014). In our study, plots with a high C. introflexus cover
were spectrally different from those without presence (Appendix A2). Reflectance spec-
tra of C. introflexus were characterized by higher reflectance in the short wave infrared
(SWIR) and lower reflectance in the near infrared (NIR), compared to the dominating
vascular plant species of the studied habitat types. This finding is in contrast to Bubier
et al. (1997) who found lower canopy reflectance for mosses compared to vascular plant
species in both the NIR and SWIR. In the case of C. introflexus, high SWIR reflectance
is probably due to the high proportion of windblown sand that intermingles with the
moss carpets. Although reflectance differed between C. introflexus and the co-occurring
vegetation across large parts of the spectrum, variable importance indicated that only
distinct sections were important for predicting fractional cover. The high importance of
spectral bands in the SWIR for the prediction of C. introflexus cover can be attributed
to differences in leaf structure or water content (Jacquemoud et al., 2009; Kokaly et al.,
2009). Leaf water content can differ substantially between vascular plant species and
mosses such as C. introflexus. Furthermore, in contrast to vascular plants, mosses are
characterized by only a very thin cuticle and thus differ in leaf structure (Glime, 2017).
Therefore, it is likely that selected spectral bands in the SWIR allow a discrimination
of different C. introflexus covers from co-occurring vascular plant species. Furthermore,
spectral bands in the SWIR may have helped to discriminate C. introflexus from bare
soil.
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Figure 7 Map examples showing (a) an RGB image (b) the predicted fractional cover of C.
introflexus (c) a map of habitat types and (d) pixels with fractional covers higher than 0.44 (in red)
indicating potential negative impact on plant species richness.

The high importance of spectral bands located in NIR in some of the calculated models
(Fig. 4) can be attributed to differences in canopy structure. In contrast to most of the
co-occurring species, C. introflexus carpets are characterized by a very homogeneous
and dense canopy, allowing only little within-canopy scattering of incoming radiation
Ollinger (2011). The NIR was also recognized to be important for the discrimination
of different moss species (Bubier et al., 1997). In contrast to structural properties,
differences in pigment concentration can be excluded to be important for predicting C.
introflexus cover, as characteristic bands in the visible region of the spectrum did not
play an important role in the models (Ustin et al., 2009).
It is important to note that Skowronek et al. (2018), using the same hyperspectral

images, found different bands to be important for predicting the presence and absence
of C. introflexus. This previous study located important bands in the 1700–1750 nm re-
gion and around 2000 nm. This suggests that discriminating abundances of one species
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may require different spectral information than discriminating between presences and
absences. Similar to Skowronek et al. (2018), we identified distinct narrow bands in the
SWIR to be important for mapping C. introflexus. This suggests that hyperspectral
data is necessary for mapping C. introflexus, as SWIR bands from multispectral sen-
sors usually cover wavelength ranges that are too broad (e.g. Sentinel 2, Landsat 8).
Prediction accuracies differed between the habitat types, indicating less-accurate cover
predictions for dune slacks and grey dunes in comparison to crowberry heath. Lower
accuracies for dune slacks can probably be attributed to the small sample size (Table 1).
For grey dunes, lower accuracies can presumably be attributed to the spectral variability
that was highest in this habitat type (Appendix A3). In contrast to the two evergreen
heath habitats, grey dunes were characterized by a higher cover of grasses and herbs,
that show stronger phenological variation. We assume that the high spectral variability
observed for grey dunes was caused by the variable proportion of senescent leaves we
observed in some of the plots. Furthermore, grey dune plots were more variable concern-
ing bare soil coverage. Previous studies showed that the mapping accuracy of species is
influenced by the spectral variability of the studied habitat (Andrew and Ustin, 2008;
Somers et al., 2011). In addition, grey dunes and C. introflexus canopies seem to be
spectrally less different compared to the other habitat types (Appendix A3). This may
be due the higher influence of other native moss species on the canopy reflectance of
grey dunes or due to the higher bare soil coverage compared to other habitat types.
When mapping plant species, high spectral similarity between the target species and
its background vegetation may influence prediction accuracies negatively (Andrew and
Ustin, 2008). Apart from found differences in prediction accuracies, our results indicate
that imaging spectroscopy is suited for cover predictions in different habitat types and
hence also for comparing the potential impact of invasive plant species in these habitat
types.
As C. introflexus does not exhibit strong phenological variation, it is likely that the

results from our study can be transferred to other similar study areas. A previous study
by Skowronek et al. (2018) showed that model transfer is promising when predicting
presence-absence of this species. However, as for other moss species, spectral charac-
teristics may strongly vary with water content and thus with local weather conditions
(Neta et al., 2011).

3.2 Evaluating the impact of C. introflexus
This study demonstrates that remote sensing data can be used to evaluate the level
of invasion in different habitat types. Our results indicate that C. introflexus is most
abundant in grey dunes, in agreement with the findings of Klinck (2009). As the local
abundance is one of the determining factors for the impact magnitude of an invasive
alien species, cover maps can be used as baseline information for the potential impact
of C. introflexus. Such information covering different habitat types can be helpful to
prioritize limited management resources.

In our specific case, average fractional cover for C. introflexus was in the same order
of magnitude for the three habitat types. Cover values derived from prediction maps
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were slightly higher than observed in the 160 randomly placed field plots (mean fractional
cover of 9%, 5% and 6% for crowberry heath, grey dunes and dune slacks, respectively).
This may be because the discrete field sampling missed relevant spatial variation in C.
introflexus fractional cover. Furthermore, differences may be caused by uncertainties
of the used mapping approach. Potential difficulties may arise from its unreliability
to detect low cover occurrences at the sub-pixel level (Bradley, 2014). For example
Skowronek et al. (2017b) found that the detection of C. introflexus becomes unreliable
when the species is covering less than one third of the pixel size. We therefore do not
expect that this approach can be used to differentiate between low cover and absence.
However, it has high potential to discriminate between low, medium and high abundance
areas, and thus can indicate the magnitude of potential invasion effects.
To highlight invasion impacts concerning specific ecosystem properties, cover maps

can be combined with abundance-impact relationships. Here we studied the relationship
between C. introflexus cover and the species richness of co-occurring plant species. Our
results suggest a cover threshold of 44% above which increasing cover of C. introflexus
is related to decreasing plant species richness. In combination with a cover map, this
threshold can be used to highlight high impact areas in a spatially explicit manner.
Previous studies found variable abundance-impact relationships strongly depending on
the target species and studied variables (e.g. Bradley et al., 2019; Fried and Panetta,
2016; Gooden et al., 2009; McAlpine et al., 2015; Große-Stoltenberg et al., 2018). It is
important to note that thresholds derived from abundance-impact relationships should
be applied with caution because they do not necessarily imply a causal link between
invasive species abundance and a specific ecosystem property. Still, abundance or cover
thresholds are meaningful, particularly to prioritize the control of established invaders
in valuable habitats (Panetta and Gooden, 2017). Regarding our case study it should
also be considered that invasive alien plants may affect some native species or functional
groups even at lower abundance levels, than indicated by the threshold (Panetta and
Gooden, 2017). For example, interactions of C. introflexus with other mosses and lichens
are not specifically displayed in the threshold defined in this study and should be subject
to further investigations. Here, particularly long term effects on natural succession
dynamics are not fully understood (Hasse, 2007). Cover maps created from remote
sensing time series could help study these dynamics at the landscape level.

4 Conclusion
In this study, we successfully mapped the fractional cover of an invasive alien moss
C. introflexus using imaging spectroscopy. Important spectral bands for the prediction
of covers were situated in the SWIR, suggesting that variation in cover was related
to differences in leaf water content and leaf structure between C. introflexus and the
co-occurring native vegetation. Resulting maps can be used as baseline information
to study potential impact on ecosystem functioning, because the local abundance of
invasive alien species is one of the determinants to explain their impact magnitude.
We showed that cover maps can be used to evaluate the level of invasion in different

14



habitat types. Furthermore, cover maps in combination with thresholds derived from
cover-impact relationships might be useful to highlight areas of particular concern. Both
outputs represent valuable information to prioritize management of established invasive
alien species.
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