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ABSTRACT

We propose to train a neural network to estimate space vary-
ing blur operators from a single blurry image. The key as-
sumption is that the operator lives in a subset of a known
subspace, which is a reasonable assumption in many micro-
scopes. We detail a specific sampling procedure of the subset
to train a Resnet architecture. This allows a fast estimation.
We finally illustrate the performance of the network on de-
blurring problems.

Index Terms— blur identification, neural network, non-
uniform blur, blind debluring, blind inverse problem.

1. INTRODUCTION

Optical systems often produce observations blurred 1 by the
various optical components. Most existing deblurring algo-
rithms require the knowledge of the blur operator to improve
the image quality. This assumption is critical to produce ac-
curate reconstructions. There are three main methods for es-
timating a blur operator: i) using a theoretical model, which
is prone to calibration errors, ii) imaging point sources: un-
fortunately, this step should often be reproduced before each
acquisition, iii) solving a blind inverse problem, i.e. looking
for both the original signal and the blur operator. In this paper,
we are interested in the latter approach.

1.1. Existing works

Blind inverse problems have received continual attention for
the last four decades. The approach that has prevailed is to es-
timate the original signal and the blur operator using an alter-
nating minimization procedure. Under regularity assumptions
on the image and the operator, each sub-problem boils down
to a standard inverse problem [1, 2, 3, 4]. In the last few years,
machine learning approaches have begun to emerge and out-
perform older methods, in particular in the field of computer
vision where motion blurs are estimated [5, 6]. These blurs
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1In this paper, we deal with spatially varying blurs, and therefore prefer
the term deblurring to deconvolution (i.e. spatially invariant operator).
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Fig. 1: a, Image and operator dataset used to train the proposed
neural network. The image dataset is composed of 10000 natural
images, and the operator dataset is composed of space varying blur
operator. b, Observation model, the unknown blur operator H0 and
the unknown signal u0 are drawn from an arbitrary distribution. c,
Estimation procedure, the blurry-noisy image is given to the Resnet
neural network. It outputs Ĥ an estimate of the original blur operator
H0.

have characteristic (slow Fourier decay) which are not di-
rectly applicable to microscopic blurs. Recently [7] proposed
to use a neural network to estimate the blur parameter from a
single blurry image. This work is closely related to our con-
tribution, with the following differences: i) their operators are
convolutions and ii) a central assumption in our work is that
the operator live in a low-dimensional subspace.

1.2. Observation model

Let y ∈ Rm denote the observed signal, H0 : Rm → Rm de-
note the linear blur operator and u0 ∈ Rm denote the original
image. We have

y = H0(u0) + η, (1)

where η ∈ Rm is an additive random perturbation.
Without further assumption, estimatingH0 and u0 from y



is an ill-posed problem. In the next paragraphs, we will detail
the structure of the admissible operators.

1.2.1. Product-convolution expansion

Optical blurs are very often modeled by a convolution opera-
tor, and can only capture stationary degradations. We over-
come this limitation by using the product-convolution expan-
sions [8, 9]. They are efficient models of space varying blurs,
have good approximation properties if the PSF (Point Spread
Function) varies smoothly, and can be computed rapidly using
fast Fourier transforms.

A product-convolution expansion H has the following
form:

H(u) =

K∑
k=1

ek ∗ (fk � u),∀u ∈ Rm, (2)

where ∗ denotes the convolution product, � denote the
Hadamard (element-wise) product and (ek)k and (fk)k de-
note two families of Rm. The family (ek) can be interpreted
as a basis to describe the PSFs of H while the family (fk)
describes the PSF variations.

To clarify the definition, we provide an example withK =
2 in Fig. 2. The family (ek) is computed by selecting 2
anisotropic Gaussian kernels with standard deviations ran-
domly chosen in [1, 4], see Fig. 2a. The family (fk) is com-
puted with the following procedure:
1. Generate a smooth Gaussian process v ∈ Rm.
2. Extract 2 random domains ω1, ω2 of R2 by thresholding
v.

3. Construct 2 images v1, v2 as the indicator functions of
ω1, ω2.

4. Return a smoothed version of these 2 images using a
Gaussian kernel with large variance.

This allows to produce smooth and contrasted coefficients
maps fk. Finally, we apply (2) to a Dirac comb in fig.2c.

(a) (b) (c)

Fig. 2: Example of product-convolution. a) 24 × 24 anisotropic
Gaussian filters e1, e2, b) 128 × 128 coefficients maps f1, f2, c)
Product-convolution operator applied to a Dirac comb (128× 128).

1.2.2. Subspace of operators

We now detail the assumptions on the space of admissible
blur operators.

Assumption 1.1 (Subspace of operators). Let (ek) and (fk)
denote two known families. The blur operators live in a low-
dimensional subspace H ⊂ {H : Rm → Rm} of product-
convolution operators of the form:

H[γ](u) =

K∑
k=1

γkek ∗ (fk � u) (3)

We will refer to an operator inH either by H , γ or H[γ].

Assumption 1.1 is realistic in many microscopes. The
spaceH can be estimated by imaging fluorescent micro-beads
[10], or provided that we have access to a collection of oper-
ators [11].

Assumption 1.2 (A conical hull in H). We are given a col-
lection (γp) of P admissible operator parameterizations. As-
suming that this set represents the set of operators sufficiently
densely, we can construct the conical hull of the coefficients
γp:

C def.
= cone (γp, 1 ≤ p ≤ P ) , (4)

which we will use as a proxy to describe the set of all admis-
sible operators.

1.3. Contributions

The objective of this paper is to recover an estimate Ĥ of H0

and an estimate û of u0 given the observation y. Given the
previous assumptions, a natural approach to attack this issue
would consist in solving

inf
u∈Rm,
H∈H[C]

1

2
‖Hu− y‖22 +R(u), (5)

where R : Rm → R+ is a regularization function promoting
desired properties of the signal u. Imposing H ∈ H[C] is
a strong regularization on the admissible operators that pre-
serve properties of the admissible operators (e.g. positivity or
barycenter). Optimizing H and u jointly makes the problem
(5) nonconvex and numerically involved.

In this paper, we therefore follow a different route and
consider a two-step procedure: First, estimate the blur opera-
tor

Find Ĥ ∈ C an estimate of H0 using y. (6)

Second, solve a non-blind inverse problem assuming that
H0 = Ĥ .

The main contribution of this paper is to provide a robust
methodology to solve the first step. We identify the blur oper-
ator from a blurry-noisy image by training a neural network.
This requires a specific sampling procedure of the set H[C].
We then train a Resnet neural network to estimate a spatially
variant blur operator from a single blurry image. This pro-
cedure appears to be robust if trained with a large enough
dataset. In particular, we show that the network trained with
natural images still performs well on unseen biological im-
ages. A summary of the approach is shown in Fig. 1.



2. METHOD

2.1. Modeling and sampling blur operators

In order to train a neural network, we will need to sample
operators at random within H[C]. If P is large, a uniform
sampling on the (P −1)-dimensional simplex would result in
the fact that the extreme rays of the cone C are not explored.
To avoid this flaw, we propose two complementary solutions:
i) Simplify the cone by keeping only a subset of extreme

rays.
ii) Do not draw the coefficients α uniformly, but rather favor

sparse distributions.

2.1.1. Cone simplification

Simplifying a conical hull is a difficult problem related to
nonnegative matrix factorization. We refer the interested
reader to [12] for instance. In this work, we propose a simple
greedy algorithm described in Algorithm 1.

Algorithm 1 A cone simplification algorithm
Require: A set of normalized vectors (γp).
Require: A number of extreme rays N .

Find the circumcenter [13] γ̄ of cone(γp, 1 ≤ p ≤ P ).
Initialize the set of kept rays toR = {γ̄}. Initialize the set
of rays to explore to S = {γp, 1 ≤ p ≤ P}.
for all n = 0→ N − 1 do

Find γ ∈ S that maximizes the minimum angle with
the rays inR. Remove this vector from S and add it toR.
end for
SetR = R\{γ̄}.
returnR and cone(R).

2.1.2. Sampling the operators at random

By Caratheodory theorem, any point within a conical hull can
be expressed as a conical combination of K extreme rays. In
this work, we propose a heuristic method to favor the extreme
rays. This is detailed in Algorithm 2.

Algorithm 2 Sampling procedure in C
Require: The subspace dimension K and the cone

cone(γq, 1 ≤ q ≤ |R|). Weights αmin < αmax.
Draw a random integer J uniformly in {1, . . . ,K}.
Pick J integers {z1, . . . , zJ} at random on the set
{1, . . . , |R|}.
Draw a random vector β uniformly distributed on the (J −
1)-dimensional simplex.
Draw a random weight α uniformly in [αmin, αmax].
return Coefficient vector α

∑J
j=1 β[j]γzj .

2.2. Learning procedure

The coefficient γ is drawn from a distribution LH defined in
Algorithm 2. This ensures that γ ∈ C. In order to compute
y from the model (1), we need an image u. In this work, we
select u using the uniform distribution Lu over the STL-10
data-set of natural images [14]. This data-set is composed of
10000 images for the training procedure, and 1000 different
images for the testing procedure.

Finally, we train a Resnet convolutional neural network
(CNN) [15] to retrieve γ using the blurry-noisy observation
y. We use the relative Frobenius norm between the true oper-
ator and the estimation as a cost function. We train the con-
volutional neural network with 100 iterations of the ADAM
algorithm, using 2, 048 images drawn from the distribution
Lu, with a batch size of 64 and a learning rate equal to 10−3.

3. NUMERICAL ILLUSTRATION

In this section, we work with square images m = 128× 128.
The subspaceH and the convex set C are computed using the
estimation procedure described in [10]. We use the operators
described in Section 1.2.1. The resulting subspace is com-
posed of K = 20 elementary operators. The learning proce-
dure is performed using the parameters described in Section
2.2. The average relative Frobenius norm between the true
operator and the estimation produced by the network is less
than 5% at the end of the training phase (on the test data-set).

To illustrate the proposed methodology, we solve the fol-
lowing total variation deblurring problem with a proximal
gradient descent algorithm:

inf
u∈Rm

TV (u) +
λ

2
‖Ĥu− y‖22. (7)

In Fig. 3, we display the true and estimated operators applied
to a Dirac comb, and the result of the deblurring algorithm us-
ing the estimated operator with total variation regularization
for various images. In Fig. 3a-d, we use natural images of
the STL-10 test data-set. As expected, the network – that has
been trained on similar images – outputs an accurate estimate
of the true operator. Solving the deblurring Problem (7) leads
to sharp results, and allows to recover hidden details.

In Fig. 3e and Fig. 3f, we observe how the trained net-
work behaves on other images. In Fig. 3e, we use a real im-
age of microscopy from the dataset [16]. In Fig. 3f, we use a
simulated image of single molecule localization microscopy,
i.e. points sources at random locations. In both problems the
network performs well and retrieves the operator with high
accuracy. More importantly, solving the deblurring Problem
(7) with the estimated operator allows to better discriminate
the biological elements, such as the cells in Fig. 3e. In the last
experiment, we replace the total variation regularization term
by a `1 penalty on the signal. It allows to retrieve sparse ele-
ments and greatly improves the resolution of fluorescent pro-
teins. Notice that these deblurring results are simply a proof



of concept since better deblurring algorithms could be used
(e.g. a variational network).

True operator Est. operator Blurry image True image Est. image

(a) Operator relative error: 4.8%. SNR: 15dB to 21dB.

(b) Operator relative error: 3.4%. SNR: 19dB to 27dB.

(c) Operator relative error: 6.8%. SNR: 18dB to 24dB.

(d) Operator relative error: 4.9%. SNR: 19dB to 28dB.

(e) Operator relative error: 6.5%. SNR: 7.6dB to 15dB.

(f) Operator relative error: 8.4%. SNR: -7dB to 0.64dB.

Fig. 3: From left to right. True and estimated operator, blurry-noisy
image, original image and estimated one by solving problem (7) with
total variation regularization for (a)-(e) and `1 regularization for (f)).
The SNR with the blurry and the estimated images is given in the
sub-captions.

4. CONCLUSION

We have presented a learning based method to estimate spa-
tially varying blur from a blurry-noisy image. This method-
ology is robust in the sense that even if the neural network is
trained on a set of natural images, it still performs well on bi-
ological images not seen during the training. We will extend
this work to blur operators adapted to large images estimated

from microscopes in [10]. We expect this approach to provide
a turnkey tool for biologists to improve their image quality.
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