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Abstract

Study of the propagation of sound in a single non-ideal fluid originates with
Stokes in 1845 and Kirchhoff in 1868. The situation is much more complex
in the case of two-fluid flow, both from the physical point of view, as the
configuration of the flow matters greatly, and from the analytical point of
view. The principle two-fluid models currently in use for CFD are the focus
of this article. It is shown that analytical expressions for the speed of sound
depend heavily on the chosen model. These sound speed expressions are
compared with experimental values. The consequences for CFD models are
discussed in the final section of this paper. It is found that numerical models
with inaccurate wave speeds lead to incorrect numerical solutions, despite
the accuracy of the numerical scheme.

Keywords: Multi-fluid, Multi-phase, Speed of sound, Added mass,
Dispersion relation, Sound attenuation and adsorption.

1. Introduction

Since the Seventies, Computational Fluid Dynamics (CFD) for single-
fluid flow has made tremendous progress and today, at least for the engi-
neering community, a wealth of codes are available both in open source and
commercial formats, with the possibility of use in industrial applications.
This success has resulted from both theoretical advances (physical modeling,
numerical methods and algorithms, software engineering, ...) and exponen-
tial growth of computational resources.
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The situation for multi-fluid flows is more contrasted because physical mod-
eling of multi-fluid and multi-phase flows remains an issue. Derivation of
a physical model for multi-fluid flow that explicitly takes account of the
interfaces between the fluids is a standard question. However, when these in-
terfaces become complex, it is not possible to derive effective computational
models and the need for computational resources exceeds what is available
by many orders of magnitude.

State of the art multi-fluid flow computation is reminiscent of the situation
for the computation of single fluid turbulent flows. Whilst all the information
is present in the Navier-Stokes Equations, the number of degrees of freedom
necessary to capture the multi-fluid flow at large Reynolds numbers with
this physical model is beyond present computational capacities: both mem-
ory and CPU time are strong bottlenecks. The solution to this problem has
come from turbulence modeling which provides statistical models i.e. aver-
aged models like e.g. ensemble-averaged models. The reader is referred to
the text book from S.B. Pope [37] for a comprehensive account of this matter.

1.1. Averaged models for two-fluid flows

For multi-fluid flows, a parallel methodology to that of turbulent flows
has led to averaged models, see e.g. the reference book M. Ishii and T. Hibiki
[23]. Since multi-fluid flow involves much more complex phenomena than sin-
gle fluid flow, there are a large number of physical model types and for each
single model a large number of modeling terms must be investigated in or-
der to derive a closed model suitable for discretization and simulation. This
is inherent to the so-called regimes in multi-fluid flow. Regimes are spatial
configurations of the interfaces between the fluids. For instance for two non-
miscible fluids, a liquid and a gas, we can have stratified flows (the two-fluids
are separated by a gradual free surface), dispersed flows (either bubbles or
droplets), slug flows (large patch of one of the two-fluids), churn flows (tran-
sient and very unstructured flows), ... Moreover, in practical situations, the
flows are transient and the spatial configurations evolve with time and space.

The story of multi-phase CFD is interesting by itself. In the sixties, a few
groups were actively working on building codes in this area, but the task was
made challenging by the lack of theoretical work on the subject. The reader
is referred to the personal memoir by R. Lyczkowski [34] for an account of
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this fascinating story.

Today, there is unfortunately no “all purpose” model for the simulation of
two-fluid flow. However, a large variety of physical models exist1, where each
model has a dedicated range of applications. There are at least two issues
that must be investigated prior to building a code from a physical model.
The first pertains to the physical relevance of the model and the second issue
deals with its well-posedness, i.e. uniqueness of the time evolution problem
and stability with respect to the initial and boundary data. For the latter,
the reader is referred to the review paper of H. Stewart and B. Wendroff
[46], where, in particular, hyperbolicity of some models for two-fluid flow is
studied. The main purpose of this paper is related to the physical relevance
of the model and is focused on the following question: does the considered
model produce the correct value for the Speed of Sound (SoS)?

Actually, this question is of great importance for at least two reasons. Phys-
ical relevance is a paramount issue when dealing with CFD but also, since
most modern numerical methods use so-called characteristic waves (e.g. ex-
act or approximate Riemann Solvers), it is critical that the sound waves
propagate at a physical speed. Propagation of sound waves in multi-phase
mixtures is a mature subject from the experimental point of view, see e.g.
Leroy [32] and references within. Hence, this work is concerned with inves-
tigating the main physical Eulerian models for two-fluid flows found in the
literature and studying analytically the predicted speed of sound values.

1.2. Content of this work

After introducing the notation used in this paper (Section 1.3), the usual
definition for the speed of sound in a fluid is given in Section 1.4. The case
of the classical Navier-Stokes model is used to introduce a typical dispersion
relation and values for the sound speed and attenuation are obtained. Next,
in Section 1.5, a brief literature review on analytical and experimental results
for the speed of sound in two-fluid mixtures is presented. Section 2 lists the
main Eulerian models used in the numerical modeling of two-fluid flows.
The convective part of these models, i.e. without diffusion, surface tension
or change of phase effects, is first dealt with. Mainly, these models can be

1Some of the main classes of models will be listed in this article, see Section 2.
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divided into single-velocity models and two-velocities models. In Section 3
the value of the speed of sound for each of the models from the previous
Section is found. In Section 4 the effect of molecular diffusion (viscosity of
the fluids) is studied by introducing the dispersion relation for these models.
In Section 5 the consequences of our results for CFD models are discussed.
Finally, after proposing some directions for future work (Section 6), technical
results are collected in the Appendices at the end.

1.3. Notation

The notation presented in the following 3 tables will be used throughout
this paper. In Table 1, the notation used for a single fluid model is given.

Symbol Quantity Symbol Quantity

ρ Density T Temperature
µ Dynamic viscosity λ Thermal conductivity
c Adiabatic speed of sound cT non conductive speed of sound
Cv Isochoric heat capacity Cp Isobaric heat capacity
γ Ratio Cp/Cv Γ Grüneisen parameter
Pr Prandtl number µCp/λ Kn Knudsen number (103)

Table 1: Notation for a single fluid model (see also (2) and (99)).

In Tables 2 and 3, the notation and relations used for two-fluid mixtures
are given.

Symbol For fluid ± Symbol For fluid ±
α± Volume fraction η± Mass fraction
ρ± Density v± Specific volume (= 1/ρ±)
c± Adiabatic speed of sound e± Specific internal energy
s± Specific entropy E± Specific total energy
p± Pressure H± Specific total enthalpy
u± Velocity T± Temperature
µ± Viscosity h± Specific enthalpy
Γ± Grüneisen parameter Kn± Knudsen numbers (123)

Table 2: Notation for quantities per fluid.
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1 = α+ + α− η ≡ η+ − η−
η± = (1± η)/2 ≥ 0 |η| ≤ 1 = η+ + η−

ρ = α+ ρ+ + α− ρ− v = η+ v+ + η− v− = 1/ρ
e = η+ e+ + η− e− s = η+ s+ + η− s−

E± = e± + 1
2
|u±|2 u = α+ u+ + α− u−

E = η+E+ + η−E− H = η+H+ + η−H−

p = α+p+ + α−p− µ = α+ µ+ + α− µ−

h± = e± + p±

ρ±
H = E + p

ρ

Table 3: Notation for mean relations.

1.4. On the speed of sound in single fluid

Following L. Landau and E. Lifchitz [31], a sound wave is a small ampli-
tude oscillatory motion in a single compressible fluid. These authors derive
the classical linear wave equation where the speed of sound is the usual ther-
modynamic coefficient which holds this name. Extending this definition to
the mixture of two non miscible fluids leads us to consider the propagation
of waves in such a medium. According to Whitham [54], there is no single
precise definition of what exactly constitutes a wave. Nevertheless this Au-
thor proposes to distinguish between hyperbolic waves, see Definition 1, and
dispersive waves. The latter being plane-waves where frequency ω is a de-
fined real function of the wave number k and the function ω(k) is determined
by the particular system under consideration. In this case, the speed of the
wave is its phase speed, that is ω(k)/k, see (1), and the waves are usually
said to be ”dispersive” if this phase speed is not a constant but varies with
k.

Dispersion relation: the classical case of the Navier-Stokes equation. Con-
sidering the classical compressible Navier-Stokes equation in 1D, see (97), it
is shown in Section 4.1 that small disturbances around a constant state of
rest will propagate as the superposition of plane waves (k ∈ R , ω ∈ C):

W = W0 exp i(k x− ω t) = W0 exp ik
(
x− ω

k
t
)
, (1)

provided ω and k satisfy equation (3) hereafter, which is known as the dis-
persion relation. With the notation given in Table 1, setting:

a =
2 k µ

3 ρ
≡ k a1 and c2

T ≡
∂p

∂ρ

∣∣
T
, (2)
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where a is Stokes’ attenuation [47], the dispersion relation (100) found in
Section 4.1 can be written as:(ω

k

)3

+ 2 i k a1

(
1 +

3 γ

4Pr

)(ω
k

)2

−
(
c2 +

3 γ

Pr
a2

1 k
2

)(ω
k

)
− i 3 γ k a1 c

2
T

2Pr
= 0 , (3)

In general this dispersion relation has 3 solutions (ω , k) with ω ∈ C and
k ∈ R . By writing ω = ω(k) = ωR + i ωI , it is seen that (1) reads:

W = W0 (exp−σ(k) t) · exp ik (x− c(k) t) , (4)

where c(k) ≡ ωR(k)

k
, and σ(k) ≡ −ωI(k) . (5)

Sticking to Whitham’s definition of dispersive waves [54], the phase speed
of the wave is c(k), while σ(k) corresponds to the attenuation for positive
values or amplification for negative values.

Although the dispersion relation (3) could be explicitly solved for ω/k
(with fixed frequency k) using Cardano’s formula for third order polynomials,
it is more intelligible to expand the ω/k roots with respect to k for relatively
small k, where the medium continuum hypothesis applies. More precisely,
with respect to the Knudsen number based on k. See in Section 4.1, (103)
and after.

1.5. On the speed of sound in two-fluid mixtures: State of the art review

The goal of this work is to study the speed of sound in two-fluid non
miscible mixtures. Following L. Landau and E. Lifchitz, small amplitude
oscillatory motions in fluid mixtures are studied. Surprisingly, in a two-
fluid mixture, the measured speed of sound can be one order of magnitude
smaller than that of its constituents. For example for water and air in normal
conditions the speed of sound in the mixture can be about 23 m/s while it
is 1 500 m/s in water and 330 m/s in air, see Figure 7. This is supported by
both analytical and experimental results, as will now be discussed.

1.5.1. Analytical formulas from the literature

To determine the speed of sound in a mixture of two-fluids, the most com-
mon and basic model is based on the mixture effective mean compressibility
and mean density (Wood [55], Brennen [7]). As in the literature, Wood’s
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speed of sound will refer to the sound speed obtained by this model, and
denote it by cw. It can be straightforwardly derived as follows. Consider a
homogeneous mixture of two non miscible fluids in mechanical equilibrium
(equal pressure), and assume that the mass fraction of each fluid is constant.
Then differentiating the relation 1/ρ = η−/ρ− + η+/ρ+ with respect to the
pressure leads to:

1

ρ2c2
w

=
η−

(ρ−)2(c−)2
+

η+

(ρ+)2(c+)2
. (6)

This gives Wood’s formula and is also equivalent to (see Figure 5 for a plot
of cw against α+):

1

ρc2
w

=
α−

ρ−(c−)2
+

α+

ρ+(c+)2
. (7)

As will be shown later in Section 3.1.1, this derivation is equivalent to
considering a homogeneous medium where the sound propagates with no
slipping of thermal exchange between the two phases, so out of thermal
equilibrium between the two fluids (Stewart and Wendroff [46]).

Other models for the speed of sound in two-fluid mixtures are presented
in Nguyen et al. [36]. These models depend on the flow regime under consid-
eration (homogeneous, stratified and slug regimes), and use the consideration
that the interface of one phase is a confining elastic boundary for the other,
making use of the general theory of sound propagation in fluids confined by
elastic tubes.

(i) For a stratified flow regime, the model assumes the existence of two
sound speeds, one for each fluid (c±eff ), and gives the following formulas
for the effective speed of sound in each phase as a function of the pure
fluid velocities c± :

1

(c−eff )
2

=
1

(c−)2
+
α+

α−
ρ−

ρ+

1

(c+)2
, (8)

1

(c+
eff )

2
=

1

(c+)2
+
α−

α+

ρ+

ρ−
1

(c−)2
. (9)

In each of the two previous formulas the second term is due to the
confinement of medium ∓ by the other elastic medium ±.
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(ii) For a slug flow regime, and assuming that the sound wave passes
through each phase successively, the model proposed in Nguyen et al.
[36] gives the following formula for the speed of sound :

1

c+
eff

=
α+

c+
+
α−

c−
. (10)

(iii) For a homogeneous bubbly flow regime, the model proposed in Nguyen
et al. [36] takes into account the elastic confinement by the other phase
and the following two formulas for the speed of sound in each phase
are proposed :

1

(c−eff )
2

=
α−

(c−)2
+
ρ−

ρ+

α+

(c+)2
, (11)

and
1

(c+
eff )

2
=

α+

(c+)2
+
ρ+

ρ−
α−

(c−)2
. (12)

The composite speed of sound in the medium is derived assuming that
the sound wave passes through each phase successively :

1

c
=

α+

c+
eff

+
α−

c−eff
. (13)

The hypothesis that the sound wave passes through each phase succes-
sively in a bubbly homogeneous flow is not necessary applicable and exper-
imental work shows a poor agreement with (13) (see section 1.5.2). A more
relevant approach is to consider the mixture compressiblity based on the two
effective compressibilities of the fluids computed by (11) and (12):

1

ρc2
=

α−

ρ−(c−eff )
2

+
α+

ρ+(c+
eff )

2
=

α−

ρ−(c−)2
+

α+

ρ+(c+)2
. (14)

Note that this is Wood’s formula (7). This means that the funneling effects,
of each phase on the sound wave propagation in the other phase, cancel each
other out, for the mean sound speed in the medium. Figure 1 shows a plot of
the different formulas above for water and air bubbly mixtures as a function
of void fraction.

Generalizations of Wood’s formula that account for different additional
phenomenon, such as surface tension, phase change in a single component
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Figure 1: Comparison of different sound speed relations for a water-air bubbly mixture as
a function of void fraction α−.

mixture (e.g. water and its vapor), can be found in the books of Brennen [7]
and Landau and Lifshitz [31].

Temkin in [48] refers to the previous Wood’s formula as the frozen equi-
librium speed of sound, because it is derived without taking into account
thermal exchanges between the two phases. Temkin gives a relation for a
complete equilibrium speed of sound that is equivalent to the formula put
forward here in Appendix A.1.

The models cited above do not consider the effect of the wave frequency
and hence the sound dispersion and attenuation. The first model that con-
sidered the effect of frequency on sound speed propagation in bubbly liquids
is due to Foldy [15] and is also presented in Feshbach et al. [13] page 1498.
This model is based on a multiple scattering analysis. If + is the liquid phase
and − is the bubbly gas phase, the speed of sound in a bubbly medium, with
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bubbles of radius R is given by:

1

c2
=
k2(ω)

ω2
= α+ ρ+

(
1

ρ+(c+)2
+

α−

ρ−(c−)2

1

1− R2ρ+ω2

3ρ−(c−)2
(1 + iR ω

c+
)

)
, (15)

where here c = ω/k is a complex number, see (4)-(5).

Noting that ω0 = c−

R

√
3 ρ−

ρ+
is the Minnaert resonance frequency, we have:

1

c2
=
k2(ω)

ω2
= α− ρ+

(
α−

ρ+(c+)2
+

α+

ρ−(c−)2

1

1− ω2

3ω2
0
(1 + iR ω

c+
)

)
. (16)

This model has been generalized to single substance two-fluid mixtures
(i.e. with phase change) by Trammell [52] and Kielland [27]:

k2(ω)

ω2
=

α−

1 + 2α+
ρ+

(
1

ρ+(c+)2
+
α+

Kb

1

1− R2ρ+ω2Kb
3

(1 + ik(ω)R)

)
, (17)

with Kb = 1
ρ−(c−)2

+ 3λ+

ρ−L dP
dT

[
1
R

√
C+
p

λ+ω
+ i

R2ω

]
and where λ+ is the liquid ther-

mal conductivity, C+
p its isobaric heat capacity, L the latent heat of evapo-

ration and dP
dT

is the pressure derivative along the saturation curve. Figure
2 shows the speed of sound from equation (16), for a water-air mixture at a
void fraction of α− = 0.1, and for a range of wave frequencies.

Another theoretical model for the sound dispersion and attenuation is
due to Temkin [49] and this gives predictions numerically close to Foldy’s
model [49].

Substantial experimental work has been conducted to validate the previ-
ously mentioned formulas.

1.5.2. Experiments at low frequency

Many authors have produced experiments studying the variation of the
speed of sound with respect to the void fraction in either a two-substance two-
phase system (e.g. air and water) or in a single-substance two-phase system
(e.g. water and steam). Among the works that do not take into account
the effect of the frequency, the reader is referred to Costigan et al. [10] and
Hiva et al. [43]. Their measurements, as well as those of Karplus [24] show
a good agreement with Wood’s formula, but with the additional hypothesis
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Figure 2: Speed of sound (sos) in equation (16), for a water-air mixture at a void fraction
of α− = 0.1, and for a range of wave frequencies.

that the gas obeys a perfect-gas equation of state with a polytropic index
γ = 1, corresponding to an non-heat-conducting speed of sound c−T in the
gas:

1

ρc̃2
w

=
α−

ρ−(c−T )2
+

α+

ρ+(c+)2
. (18)

Costigan et al. [10] also show that Nguyen’s formula for bubbly liquids
(13) gives a less precise prediction.

Similarly, Temkin [49] shows that the (isentropic) Wood’s formula over-
estimates slightly the speed of sound (as can be seen in Figure 3) and instead
of modifying the polytropic index for the gas, it is argued that the relaxed
equilibrium speed of sound (see section Appendix A.1) better matches the
data from Karplus [24] and other experiments, and hence corresponds to the
best choice of model to adopt.
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Figure 3: Karplus [24] data, taken from Brennen [7]. The isentropic Wood formula over-
estimates the experimental speed of sound. Using a non conductive sound speed for air
gives a better match with the experimental results.

1.5.3. Experiments at varying frequencies

Little experimental data are available for the dependence of speed of
sound (and sound attenuation) on the wave frequency. The available data
in the literature, in Silberman [44] and in Cheyne et al. [9], show a good
agreement with the scattering theory, as shown in Figure 4.

Concerning the use of numerical simulation to evaluate the speed of sound
in a mixture of two non miscible fluids, the reader is referred to the papers
by J.A. Redford et al [38] and V. Leroy et al [33].

1.6. A few plots for the Speed of Sound

In the present article, analytical formulas for the speed of sound will be
derived based on various dynamical models. These formulas are gathered in
Table 4. One of the major outcomes of this work concerns the three basic
formulas: (i) c0 found in Section 3.2.1, (ii) cκ found in Section 3.2.3 and (iii)
cw found in Section 3.1.1. In the first two cases the two-fluids can slip freely
(two independent velocities), while in the third case the fluids have the same
velocity.
In general, when the velocities are independent there is at least a drag force
that tends to equalize these velocities. The speed of sound is unchanged
so long as this restoring force does not involve derivatives of the dependent
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Figure 4: Speed of sound versus frequency from [9]. Void fraction = 1% and bubble radius
= 1.11mm. Taken from [9].

variables, which is in contrast to the added mass force that will now be dis-
cussed.
The values c0 and cw correspond to the extremes (i.e. asymptotic cases)
where the physical reality is somewhere between. Introducing an added mass
force in the evolution equations for the velocities (momentum equations), see
(48), it is indeed possible to interpolate between these two extreme cases and
this leads to an intermediate speed of sound cκ. Here κ is a non-dimensional
coefficient that governs the strength of this restoring force whose effect tends
to equalize the velocities. Actually, as expected and shown by (85), c0 corre-
sponds to cκ for the value κ = 0 (i.e. no restoring force) and cw corresponds
to the limit of cκ as κ tends to infinity (equal velocities).

For the air and water mixture shown in Figures 5 and 7, it is seen that
c0 is a monotone function of the water liquid volumic fraction α+ , while
cw is decreasing to a minimum and then increases. The same behavior is
observed for cκ (for sufficiently large κ). This matches with the experimental
observation mentioned in Section 1.5.
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Notation Denomination Value

c Thermodynamic isentropic SoS (A.2)
cT Thermodynamic non conductive SoS (A.3)
cw Wood formula (7)
cκ Added mass model SoS (81)
c0 Two-velocity model SoS (78), (82)
ceq Equilibrium/one temperature SoS (A.8)

Table 4: Expressions for the various Speed of Sound (SoS) in this article.

Figure 5: Sound speeds, cw (red), cκ (green), κ = 10, and c0 (blue), as a function of water
volume fraction α+. Enlarged plots for small or large α+ are given Figure 6 and a plot
with an adapted α+ scale to enhance readability is given in Figure 7.

2. two-fluid flow models

In this Section, the main models encountered in the literature are briefly
reviewed. Roughly speaking, there are two classes of model. In the first, lo-
cal disequilibrium between the two fluids is ignored, while in the second this
hypothesis is not made. Recalling that these models are averaged models,
hence, average variables at a given point (x , t) are considered. Let us take,
for instance, the relative velocity u+−u−. Assuming that u+ = u− at a point
means that on average there is no slipping between the two fluids (or that
it is neglected in the model). With respect to a two-velocity model, this is

14



Figure 6: Behavior of cw (red), cκ (green), κ = 10, and c0 (blue) for small or large water
volume fraction α+.

Figure 7: Sound speeds, cw (red), cκ (green), κ = 10, and c0 (blue), as a function of the
water volume fraction α+. The scale of the x-axis is adapted to the variations of these
functions in the vicinity of α+ = 1 (pure water, yellow) and α+ = 0 (pure air, turquoise).
The level corresponding to the minimal speed of sound is also plotted (marine blue). The

parametrization θ of the x-axis is 0 ≤ θ < +∞ with α+ = 1− 10−θ
2

.

an asymptotic model that can be relevant, or not, depending on the physical
situation. In this Section, inviscid (or perfect) fluids will not be considered.
The effect of viscosity and thermal diffusivity will be addressed in Section 4.
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From the mathematical point of view, well-posedness is, up to now, an
outstanding open question and the reader is referred to Bresch et al. [8] con-
cerning its discussion. The two difficulties are (i) the presence of non conser-
vative terms e.g. the term pα±t in the energy equation (24) or α±∇p in the
momentum equation (32) and (ii) non-hyperbolicity of the convective part
of the equation (Stewart and Wendroff [46]). The question of well-posedness
will not be addressed in this paper as the focus will be on determination of
the speed of sound, which deals with small perturbations around a rest state
with vanishing velocities.

Listed below are the different inviscid models considered in this paper,
referring to Section 3 for the expression of the associated speed of sound.
The definitions of the quantities appearing in the different systems are given
in Tables 2 and 3.

2.1. One-velocity models

In these models, it is assumed that the two fluids are in mechanical equi-
librium (p = P±(ρ±, s±)) and that there is no slipping between the fluids
u = u±.

2.1.1. Isentropic case

The two-fluid one-velocity system of equations reads:

(α±ρ±)t + div(α±ρ±u) = 0 , (19)

(ρu)t + div(ρu⊗ u) +∇p = 0 , (20)

where a⊗ b denotes the matrix (a⊗ b)i j = ai bj and the two EoS are:

EoS±(p, ρ±) = 0 . (21)

2.1.2. A model with two temperatures

Here it is again assumed that the two-fluids are in mechanical equilibrium
and that there is no slipping between the two fluids, u = u±, but two energy
equations are considered in the model:

(α±ρ±)t + div(α±ρ±u) = 0 , (22)

(ρu)t + div(ρu⊗ u) +∇p = 0 , (23)
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(α±ρ±E±)t + div(α±(ρ±E± + p)u) + pα±t = 0 , (24)

p = P±(ρ±, s±). (25)

For smooth solutions this system is equivalent to

ρt + div(ρ u) = 0 , (26)

(ρu)t + div(ρu⊗ u) +∇p = 0 , (27)

ηt + u.∇η = 0 , (28)

s±t + u.∇s± = 0 , (29)

p = P (ρ, η, s+, s−) . (30)

2.1.3. A model with thermal equilibrium

It is supposed that in addition to mechanical equilibrium between the
two fluids (p+ = p−), the thermal equilibrium T+ = T− is also verified at all
times. The corresponding dynamic model is as follows:

(α±ρ±)t + div(α±ρ±u) = 0 , (31)

(α±ρ±u)t + div(α±ρ±u⊗ u) + α±∇p = 0 , (32)

(ρE)t + div((ρE + p)u) = 0 , (33)

p = p±(ρ±, e±) , T = T±(ρ±, e±) . (34)

For smooth solutions, the above system is equivalent to

ρt + div(ρu) = 0 , (35)

(ρu)t + div(ρu⊗ u) +∇p = 0 , (36)

ηt + u.∇η = 0 , (37)

st + u.∇s = 0 , (38)

p = P (ρ, η, s) . (39)
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2.2. Two-velocity models

2.2.1. Isentropic case

In the isentropic case the two-velocity model reads as follows:

(α±ρ±)t + div(α±ρ±u±) = 0 , (40)

(α±ρ±u±)t + div(α±ρ±u± ⊗ u±) + α±∇p = 0 , (41)

where the pressure p is related to the densities ρ± through two equations
of state

EoS±(p, ρ±) = 0 . (42)

2.2.2. A model with two temperatures

The system (40)-(41) can be completed with the two energy equations:

∂(α±ρ±E±)

∂t
+ div (α±(ρ±E± + p)u±) + p

∂α±

∂t
= 0, (43)

and (42) should then be replaced with energy dependent equations of state.

EoS±(p, ρ±, s±) = 0 . (44)

2.2.3. A model with two temperatures and added mass

The added mass modeling term is also called the “virtual mass”. Here,
the approach found in the Appendix of Redford et al. [38] is followed.
These models can be written as :

∂(α±ρ±)

∂t
+ div (α±ρ±u±) = 0, (45)

∂(α±ρ±u±)

∂t
+ div (α±(ρ±u± ⊗ u± + pI)) = p∇α± + f± , (46)

∂(α±ρ±E±)

∂t
+ div (α±(ρ±E± + p)u±) + p

∂α±

∂t
= f± · u± , (47)

where

f± ≡ ∓κ α+α−ρ+ρ−

α+ρ+ + α−ρ−
∂(u+ − u−)

∂t
, (48)

are the so-called added mass terms see e.g. M. Ishii and T. Hibiki [23]. The
ten (in 3D) differential equations (45) to (47) are supplemented with the two
equations of state :

EoS±(p, ρ±, s±) = 0 , (49)

and κ (≥ 0) may depend on thermodynamic variables (i.e. p , s± ) and α±.
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3. Kinematics and Speed of Sound

In this Section the expressions for the speed of sound for each of the
models presented in the previous Section are derived. As presented in the
Introduction, the technique is to obtain the dispersion relation through plane-
waves, as will now be discussed.

In 1D, when linearized around a constant state, all the differential models
given in Section 2 (and also the Baer-Nunziato Model in Section 3.2.4) lead
to a linear differential system of the form:

∂W

∂t
+ A

∂W

∂x
= 0 , (50)

where A is a N × N constant matrix and N is the number of differential
equations occurring in the model.

Definition 1. The model (50) is said to be hyperbolic if there exists a basis
(r1 , . . . , rN) of RN made with eigenvectors of A :

Ark = λk rk , k = 1 , . . . , N , (51)

where λk ∈ R are the associated eigenvalues.

Dimensional analysis shows that the dimension in S.I. units of λk is m/s, i.e.
velocity. Looking for non-vanishing plane-wave solutions, (1), leads to the
simple dispersion relation:

ω

k
∈ Λ ≡ {λ1 , . . . , λN} , (52)

i.e. all these models are non dispersive equations since ω/k is constant.

When dealing with all the models in this paper, and their linearization
around a quiescent state, it appears, for symmetry reasons, that the set Λ is
symmetric around 0 : Λ = −Λ . Hence Λ = {−χ` , χ` , ` = 1 , . . . ,M} , χ` ≥ 0.
In general (but not always, see (40)-(41)) one of the χ` vanishes. The velocity
0 is in general associated with a material wave, such as the propagation of
a contact discontinuity. Non-vanishing velocities χ` correspond to pressure-
waves and, besides the Baer-Nunziato Model (86)-(92), see (95), it is found
that for all the other models either Λ = {−χ , χ } or Λ = {−χ , 0 , χ } , χ > 0.
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3.1. One-velocity models

3.1.1. Isentropic case

In order to linearize the system (19)-(21), it is noted that this is equivalent
to:

ρt + div(ρu) = 0 , (53)

(ρu)t + div(ρu⊗ u) +∇p = 0 , (54)

ηt + u.∇η = 0 , (55)

p = P (ρ, η) , (56)

for smooth solutions. Hence, a single-fluid Euler system is recognized, where
the mass fraction variable η takes the place of the usual entropy variable s.

The system (53-56) can be linearized around a constant (ρ0 , u0 , η0) solu-
tion to obtain a system of type (50) with W = t(ρ , u , η) and

A =

 u0 ρ0 0
1
ρ0

∂p
∂ρ

∣∣∣
η
u0

1
ρ0

∂p
∂η

∣∣∣
ρ

0 0 u0

 . (57)

The eigenvalues for the linearized system are u0, u0− c, u0, where (drop-
ping the subscripts 0) the speed of sound c is given by:

c2 =
ρ+ρ−(c+)

2
(c−)

2

(α+ρ+ + α−ρ−) (α+ρ−(c−)2 + α−ρ+(c+)2)
. (58)

which is equivalent to Wood’s relation (using ρ = α+ρ+ +α−ρ− , η+ = α+ρ+

ρ
):

1

ρ2c2
=

η+

(ρ+)2(c+)2
+

η−

(ρ−)2(c−)2
or

1

ρc2
=

α+

ρ+(c+)2
+

α−

ρ−(c−)2
. (59)

The minimal speed of sound is attained for:

α+ = αmin =
1

2

(ρ+)2(c+)
2

+ (ρ−)2(c−)
2 − 2 ρ−ρ+(c+)

2

−ρ+ρ−(c−)2 + (ρ−)2(c−)2 + (ρ+)2(c+)2 − ρ−ρ+(c+)2 , (60)

where the minimal value is:

c2
min = 4

(
−ρ+ρ−(c−)

2
+ (ρ+)2(c+)

2
+ (ρ−)2(c−)

2 − ρ−ρ+c1
2
)

(c+)
2
ρ−(c−)

2
ρ+

(ρ+)4(c+)4 − 2 (ρ+)2(c+)2(ρ−)2(c−)2 + (ρ−)4(c−)4 .

(61)
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Thus, for water and air at 25◦C it is found that cmin ≈ 23.78m/s . Plots of

cw is shown in Figures 5 to 7. Note, if it is supposed that ρ+

ρ−
� c−

c+
= O(1),

the following approximations are obtained:

c2
min ≈ 4

(
ρ+

ρ−

)
(c+)2 , (62)

α2
min ≈

1

2

(
1 +

ρ+

ρ−
(c−)2 − (c+)2

(c+)2

)
. (63)

So the minimum speed of sound is approximately 2c+
√

ρ+

ρ−
, which is attained

around the value α+ = 1/2.
It is also noted that Wood’s speed of sound corresponds to the following

thermodynamic derivative of the mixture equation of state (56):

c2 =
∂p

∂ρ

∣∣∣∣
η

. (64)

To obtain the mixture EOS (56), we note that given each fluid equation
of state p = P (ρ±), the mixture with an additional state variable α+ or η
and the mechanical equilibrium constraint p+ = p− , is a divariant system
with an equation of state that can be expressed in the form p = P (ρ, α+) or
p = P (ρ, η).

3.1.2. A model with two temperatures

As noted before, for smooth solutions this system is equivalent to

ρt + div(ρ u) = 0 , (65)

(ρu)t + div(ρu⊗ u) +∇p = 0 , (66)

ηt + u.∇η = 0 , (67)

s±t + u.∇s± = 0 , (68)

p = P (ρ, η, s+, s−) . (69)

The eigenvalues for the linearized system are u+ c, u− c, u (with multi-
plicity 3), with c given by Wood’s formula:

1

ρ2c2
=

η+

(ρ+)2(c+)2
+

η−

(ρ−)2(c−)2
, (70)

and with the definition P = P (ρ, s+, s−, η):

c2 =
∂P

∂ρ

∣∣∣∣
s+ ,s− ,η

. (71)
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Link to thermodynamics Appendix A . Here, given each fluid equation of
state P = P (ρi, si), the mixture (in mechanical equilibrium p+ = p−, but not
necessary in thermal equilibrium) is a quadri-variant system with an equation
of state of the form P = P (ρ, s+, s−, η). This is referred to in Temkin [48]
as the frozen equilibrium equation of state. Also, Stewart and Wendroff [46]
note that a two-fluid flow is an out of equilibrium process and that Wood’s
formula is an out of equilibrium speed of sound. The reader is referred to
Landau and Lifshitz [30, p. 42] for a discussion on the characteristic times
for mechanical and thermal equilibriums between two phases. A complete
equilibrium speed of sound can be defined with the additional hypothesis
T+ = T−, as shown in the next Section.

3.1.3. A model with thermal equilibrium

Linearizing the system (31-34) or its equivalent form (35-39), leads to a
set of eigenvalues of the form {u−c, u, u, u+c}. The equation of state in (39)
is the same as the one defined in Appendix A.1 and after diagonalization of
the system, it was found that the speed of sound c is given by:

c2 =
∂p

∂ρ

∣∣∣∣
η ,s

,

which is the same as the thermodynamic speed of sound for a two-fluid
mixture (A.8) and is referred to in Temkin [48] as the relaxed equilibrium
speed of sound.

3.2. Two velocity models

3.2.1. Isentropic case

By setting W = t(p , α+ , u+ , u−), it can be shown that system (40) -
(41) is equivalent for smooth solutions to :

[
α+ρ−(c−)2 + α−ρ+(c+)2

] ∂p
∂t

+ (α+ρ−(c−)2u+ + α−ρ+(c+)2u−)∇p

+ ρ+ρ−(c+)2(c−)2div(α+u+ + α−u−) = 0 , (72)

[
α+ρ−(c−)2 + α−ρ+(c+)2

] ∂α+

∂t
+ α+α−(u+ − u−)∇p

+ α−ρ+(c+)2div(α+u+)− α+ρ−(c−)2div(α−u−) = 0 , (73)

22



∂u±

∂t
+

1

ρ±
∂p

∂x
+ u±

∂u±

∂x
= 0 , (74)

EoS±(p, ρ±) = 0 . (75)

Note that (72) to (74) can be written as a quasilinear system :

∂Wi

∂t
+

3∑
k=1

4∑
j=1

Bk
i,j(W )

∂Wj

∂xk
= 0 . (76)

Let W0 be a given constant state. The linearization of (76) around this state
is :

∂Wi

∂t
+

3∑
k=1

4∑
j=1

Bk
i,j(W0)

∂Wj

∂xk
= 0 . (77)

For the case of a constant solution W0 with u− = u+ = u0, and after
diagonalization of the matrices Bk, it is found that all the eigenvalues are in
the set {u0, u0 ± c0} with c0 the dynamic speed of sound:

c0 =

√
(c−)2(c+)2 (α+ρ− + α−ρ+)

α+ρ−(c−)2 + α−ρ+(c+)2 . (78)

The index 0 in c0 refers to the fact there is “a zero force” in the momentum
equations that acts to equalize the two u+ and u− velocities2.
Observe that c0 is a monotone function (homographic) of the volume fractions
α+ or α−. This can also be seen in Figures 5 and 7.

Considering only the equations of state (75), the ‘thermodynamic speed
of sound’, which can be seen as a compressibility coefficient:

c2 =
∂p

∂ρ

∣∣∣∣
η

,

is still given by Wood’s formula (70), and hence, in this case, it is different
from the actual propagation speed of sound (78) in the medium.

2Like e.g. the added mass force (48).
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3.2.2. A model with energy

The energy equations (43) can be rewritten for the entropies s± as:

s±t + u±∇s± = 0 , (79)

and equations (72)-(74) remain the same as in the isentropic case. In view
of (79) and given the block structure of the Jacobian matrix, only the mul-
tiplicity of the eigenvalue u0 is altered, while the speed of sound is the same
as in the isentropic case:

c2
0 =

(c−)
2
(c+)

2
(α+ρ− + α−ρ+)

α+ρ−(c−)2 + α−ρ+(c+)2 . (80)

3.2.3. A model with added mass term

Following the calculation in the Appendix of Redford et al. [38], lineariza-
tion of System (45) to (47) leads to the following speed of sound:

c2
κ ≡

(
α+ ρ+ κρ+

ρ(1 + κ)ρ+
+ α−

ρ+ κρ−

ρ(1 + κ)ρ−

)
ρ+ρ−(c+)2(c−)2

α+ρ−(c−)2 + α−ρ+(c+)2
. (81)

Then one can easily compute:

c2
0 ≡

(α−ρ+ + α+ρ−)(c+)2(c−)2

α+ρ−(c−)2 + α−ρ+(c+)2
, (82)

and

c2
∞ ≡

ρ+ρ−(c+)2(c−)2

ρ(α+ρ−(c−)2 + α−ρ+(c+)2)
. (83)

where ρ = α+ρ+ +α−ρ−. Note that (82) is the same as (78), whereas (83) is
Wood’s formula (81) for the one-velocity model: c∞ = cw .

It can easily be seen that:

c0 ≥ cw and c0 = cw if and only if α+ α− (ρ+ − ρ−)2 = 0 . (84)

As expected, cκ interpolates between c0 , the speed of sound for the two-
fluid two-velocity model in Section 3.2.1, and cw , the speed of sound for the
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two-fluid one-velocity model in Section 3.1.1. Moreover, c2
κ is a simple linear

interpolation between c2
0 and c2

w:

c2
κ =

κ c2
w + c2

0

κ+ 1
. (85)

Furthermore, thanks to c0 ≥ cw , cκ is a strictly convex interpolation between
c0 and cw (as long as α+ α− (ρ+ − ρ−)2 > 0) .

3.2.4. Baer-Nunziato Model for Reactive Granular Materials

The 1986 article of Baer and Nunziato [1] introduced a two-phase model
describing flame spread and deflagration-to-detonation in gas-permeable re-
active granular materials.

Convective part of Baer-Nunziato Model. This reads as:

α+
t + u+α+

x = 0 , (86)

(α+ρ+)t + (α+ρ+u+)x = 0 , (87)

(α+ρ+u+)t + (α+(ρ+(u+)2 + p+))x − p−α+
x = 0 , (88)

(α+ρ+E+)t + (α+(ρ+E+ + p+)u+)x − p−u+α+
x = 0 , (89)

(α−ρ−)t + (α−ρ+u−)x = 0 , (90)

(α−ρ−u−)t + (α−(ρ−(u−)2 + p−))x + p−α+
x = 0 , (91)

(α−ρ−E−)t + (α−(ρ−E− + p−)u−)x + p−u+α+
x = 0 , (92)

where subscript + (resp. −) refers to the solid (resp. gas). This system is
closed by two equations of state (EoS):

EoS±(p± , ρ± , e±) = 0 . (93)

Although this model is not a two-fluid model, but rather a two-phase (gas-
solid) model, it is included in this paper because some authors (this subject
will be touched upon in Section 5) use it in simulation codes for both two-
phase and two-fluid flows. As will now be seen, the values for the speed of
sound are particular in this case.
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The Bar-Nunziato model Speed of Sound. According to Embid and Baer [12],
the convection operator eigenvalues that correspond to the Bar-Nunziato
model (86)-(93) are as follows:

u+ − c+ , u+ + c+ , u+(twice), u− − c− , u− + c− , u− . (94)

Using the notation in (52), here:

Λ = {−c+ ,−c− , 0 , c+ , c−} (recall that u± = 0 ). (95)

Hence, the speeds of sound for this model are the phasic speeds of sound:

c+ and c− . (96)

4. Dispersion relations

The first goal in this Section is to derive the dispersion relation for the
three kinds of models: 1 fluid, 2 fluids with 1 velocity and 2 fluids with
2 velocities. Then various asymptotic relations are derived for the speed
and attenuation of sound-waves (sometimes called pressure-waves in the lit-
erature). The results are summarized in Table 5 (Section 4.4), where the
expressions for these quantities are the same provided that relevant values
are taken for the speed of sound at infinite length scale (k = 0)3 and for the
equivalent dynamic viscosity. Concerning the single-fluid case, reference is
made to the classical works of Stokes [47], Kirchhoff [28] and Fletcher [14] and
asymptotic developments are presented with the specific physical conditions
under which the different dispersion and attenuation formulas apply.

4.1. A single conductive and viscous fluid
The goal here is to illustrate both the nature of a dispersion relation in

fluid mechanics and the technique used to derive it. Considering the 1D
compressible Navier-Stokes equations:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 ,

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
=

1

ρ

∂

∂x

(
4µ

3

∂u

∂x

)
,

∂s

∂t
+ u

∂s

∂x
=

4µ

3 ρ T

(
∂u

∂x

)2

+
1

ρ T

∂

∂x

(
λ
∂T

∂x

)
,

(97)

3Or vanishing frequency ω = 0 .
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where dynamic viscosity µ , thermal conductivity λ and pressure p are known
as a function of density and temperature. Using Stokes’ hypothesis for the
second viscosity coefficient µ′ = ζ + 2µ/3 = 0, where ζ is the second Lamé’s
elastic coefficient for the fluid (usually denoted by λ which is kept here for
the thermal conductivity). In all the formulas hereafter, the general case
µ′ ≥ 0 can be retrieved by replacing µ by µeq = µ + 3µ′/4 = 3µ/2 + 3 ζ/4 ,
and redefining the Prandt number with µeq accordingly.

The linearization of (97) around a constant solution ρ0, u0 = 0, T0 reads:

∂ρ

∂t
+ ρ0

∂u

∂x
= 0 ,

∂u

∂t
+

1

ρ0

∂p

∂x
=

4µ0

3 ρ0

∂2u

∂x2
,

∂s

∂t
=

λ0

ρ0 T0

∂2T

∂x2
=
λ0Γ0

ρ2
0

∂2ρ

∂x2
+

λ0

ρ0Cv,0

∂2s

∂x2
,

p = c2
0ρ+ ρ0 Γ0T0 s ,

(98)

where (see Table 1 for notation):

Γ ≡ 1

ρ

∂p

∂e

∣∣
ρ
, c2 ≡ ∂p

∂ρ

∣∣
s
, Cv ≡

∂e

∂T

∣∣
ρ

= T
∂s

∂T

∣∣
ρ
. (99)

The second equality in the s evolution equation of (98) follows from the two
thermodynamic identities (D.9). In general the linearization should be made
around a constant solution ρ0 , u0 , T0 , but using the Galilean invariance of
the Navier-Stokes equations it can be assumed that u0 = 0 . Hence, when
u0 6= 0 all the eigenvalues should be shifted by u0.

The linear differential system (98) is of the form ∂W
∂t

+ A∂W
∂x

= B ∂2W
∂x2

,
where W = t(ρ , u , s) and:

A =

 0 ρ0 0
c20
ρ0

0 Γ0 T0

0 0 0

 , B =

 0 0 0
0 4µ0

3 ρ0
0

λ0Γ0

ρ20
0 λ0

ρ0 Cv,0

 .

Non-vanishing plane-wave solutions of the form (4) are of interest. Hence,
ωR/k represents the propagation speed of the plane-wave and the dispersion
relation corresponds to the roots of the characteristic polynomial of the 3×3
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matrix: −iωI + ikA+ k2B . Dropping the 0 subscript, this gives:(ω
k

)3

+
i k

ρ

(
4µ

3
+

λ

Cv

)(ω
k

)2

−
(
c2 +

4 k2 λµ

3 ρ2Cv

)(ω
k

)
− i k λ c2

T

ρCv
, (100)

using the identity c2
T = c2 − Γ2CvT , see (D.8).

Using the Prandtl number and Stokes’ attenuation factor a , (2), equation
(100) can be rewritten as (3), which will now be analysed.

(i) For µ = 0 and λ = 0 (or a1 = 0, Pr = ∞), the speed of sound
ω/k ∈ {0,±c} is recovered for the inviscid Euler equation. This system
is hyperbolic and non dispersive.

(ii) In the case of a non heat conducting (λ = 0 , or Pr =∞) viscous flow
(µ 6= 0), Stokes’ attenuation and dispersion relations are recovered [47]:(ω

k

)3

+
4 i k µ

3 ρ

(ω
k

)2

− c2
(ω
k

)
= 0 , (101)

⇒ ω

k
∈

{
0,−i2 k µ

3ρ
±

√
c2 − 4 k2µ2

9 ρ2

}
. (102)

Let us consider a plane wave (1). Here 1/k represents a characteristic
length for the wave. In the context of continuum mechanics (as op-
posed to rarefied flows) where the Navier-Stokes equations are valid,
the Knudsen number Kn built with this characteristic length should
not be greater than the critical Knudsen number Knc = 10−2 , that is:

Kn ≡ k µ

ρ c
≤ Knc = 10−2 . (103)

Hence:

c(k) = c

√
1− 4 (Kn)2

9
= c

(
1− 2 (Kn)2

9
+O(Kn4)

)
≈ c

(
1− 2 k2µ2

9 ρ2 c2

)
= c− 2 k2µ2

9 ρ2 c
. (104)

According to (4), the disturbances are a linear combination of functions
of the form:

W± = W0 exp−2 k2 µ t

3 ρ
exp ik (x± c(k) t) , (105)
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W 0 = W0 exp−2 k2 µ t

3 ρ
exp ik x . (106)

The waves (105) are dispersive since their velocities are ±c(k) , where:

c(k) ≡

√
c2 − 4 k2µ2

9 ρ2
=
√
c2 − k2 a2

1 ≈ c− 2 k2µ2

9 ρ2 c
, (107)

depends on k . Moreover they are exponentially damped with time.

(iii) For µ = 0 and λ 6= 0 (Pr = 0) the dispersion relation (100) reads:(ω
k

)3

+
i k λ

ρCv

(ω
k

)2

− c2
(ω
k

)
− i k λ c2

γ ρCv
= 0 . (108)

In Vekstein [53] this dispersion relation is given in the case of a perfect
gas. Introducing the Knudsen number based on thermal diffusivity:

Knth ≡
k λ

ρCp c
, (109)

then (108) can be rewritten as:(ω
k

)3

+ i γ cKnth

(ω
k

)2

− c2
(ω
k

)
− i c3 Knth = 0 . (110)

In the context of fluid dynamics the Knudsen number is small and
the techniques used in Appendix B lead immediately to the following
asymptotic expressions for the three roots, (ω/k)± = (ω±R+i ω±I )/k and
(ω/k)0 = (ω0

R + i ω0
I )/k, of (3).

ω±I
k

= −(γ − 1) k λ

2 ρ γ Cv
+O

(
k2 λ2

ρ2C2
v c

)
,

ω±R
k

= ±c+O
(
k2 λ2

ρ2C2
v c

)
,

(111)
ω0
I

k
= − k λ

ρ γ Cv
+O

(
k2 λ2

ρ2C2
v c

)
,

ω0
R

k
= O

(
k2 λ2

ρ2C2
v c

)
, (112)

and (111) generalizes Vekstein [53] to the case of arbitrary divariant

fluids. Note also that the zero order term in
ω±
I

k
is the same as the

thermal contribution in the Stokes-Kirchhoff [28] attenuation:

(γ − 1) k λ

2 ρCp
=

(γ − 1)Knth
2

c =
λ k

2 ρCv

(
1− c2

T

c2

)
.

For the general case of a viscous and heat conducting fluid, the reader is
referred to [3] for an analysis of the dispersion relation (100).
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4.2. A one-velocity two-fluid viscous model

The system reads:
(α±ρ±)t + div(α±ρ±u) = 0 ,

(ρu)t + div(ρu⊗ u) +∇p = div(σ),

(α±ρ±E±)t + div(α±ρ±H±u) + pα±t = div(α± σ± · u) ,

(113)

where p = P±(ρ±, s±) and with Stokes hypothesis :

σ± = µ± (∇u+t∇u)− 2µ±

3
div u I , σ = µ (∇u+t∇u)− 2µ

3
div u I . (114)

It is more convenient to rewrite the system in the non-conservative form
with the variables η, ρ, u and s±. In one dimension we obtain :

∂η

∂t
+ u

∂η

∂x
= 0,

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
=

1

ρ

∂

∂x

(
4µ

3

∂u

∂x

)
,

∂s±

∂t
+ u

∂s±

∂x
=

4α±µ±

3 ρ±T±

(
∂u

∂x

)2

,

p = P±(ρ±, s±) .

(115)

As for the monofluid case, the second viscosity can be taken into account
by replacing µ± by µ±eq = 3µ±/2+3 ζ±/4 , where ζ± are the second Lamé coef-
ficients for the two-fluids and redefining the average viscosity µeq accordingly
by α+ µ+

eq + α− µ−eq.
The obtained dispersion equation is(ω

k

)5

+
4 iµ k

3 ρ

(ω
k

)4

− c2
w

(ω
k

)3

= 0 .

where cw is Wood’s speed of sound, c2
w = ∂p

∂ρ

∣∣∣
η ,s±

, given by formula (59).

The dispersion formula is the same as for the monofluid case, using the
average quantities µ, ρ and Wood’s speed of sound cw :

c(k) =
ω

k
∈

{
0,−i2 k µ

3ρ
±

√
c2
w −

4 k2µ2

9 ρ2

}
.
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Hence, introducing the ad hoc Knudsen number

Knw ≡
k µ

ρ cw
≤ Knc = 10−2 , (116)

and then, using the same approach as for the single fluid case, for the sound-
waves (with notation in (4)-(5)):

c(k) =

√
c2
w −

4 k2µ2

9 ρ2
= cw−

2 k2µ2

9 ρ2 cw
+O

(
2 k4µ4

ρ4 c3
w

)
, σ(k) =

2 k2 µ

3 ρ
. (117)

Thermal conductivity: If one considers thermal conductivity λ± for each
fluid, the entropy equations become:

∂s±

∂t
+ u

∂s±

∂x
=

4α± µ±

3 ρ± T±

(
∂u

∂x

)2

+
1

ρ± T±
∂

∂x

(
λ±

∂T±

∂x

)
,

and after linearization:

∂s±

∂t
=

λ±

ρ± T±
∂2T±

∂x2
=
λ±Γ±

ρ±2

∂2ρ±

∂x2
+

λ±

ρ±Cv,±

∂2s±

∂x2
,

p = c2
wρ+ ρ+ Γ+T+ s+ + ρ− Γ−T− s− .

Calculations similar to the monofluid case (Section 4.1) can be conducted
to derive Stokes-Kirchoff type dispersion and attenuation relations and their
asymptotic analysis. Here, only thermal transfers within each phase are
taken into account. A more elaborate model would also take into account
the thermal exchanges between the two phases, through their interfaces.
Another thermal model consists of considering the one-temperature model
(31)-(34) with an effective conductivity for the two-fluid mixture. The dis-
persion and attenuation from the monofluid case applies exactly, where c is
replaced by ceq in (A.8). It is recalled that ceq is different to Wood’s velocity,
although they can be numerically close, as seen in Figure 8.

4.3. A two-velocity two-fluid viscous model, with added mass

Following Ishii and Hibiki [23], viscosity is taken into account in the
system (45)-(47). The mass conservation equations are, of course, unchanged
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Figure 8: Plot of cw and ceq for a water-air mixture (foam) against the water mass fraction
on the horizontal axis. The thermal equilibrium leads to a slightly smaller speed of sound.

while the right-hand side parts of (46) and (47) are respectively modified as
follows:

r.h.s. viscous momentum eqn. = p∇α± + f± + div(α±σ±) , (118)

r.h.s. viscous energy eqn. = f± · u± + div(α±µ± σ± · u±) . (119)

The dispersion relation for this model is derived in Appendix C and it is
found that:(ω

k

)3

+ ik

(
4µκ

3ρ (κ+ 1)

)(ω
k

)2

−
(
c2
κ +

16µ+µ−k2

9(κ+ 1)ρ+ρ−

)(ω
k

)
− 4ikµ ρ c2

w

3ρ+ ρ− (κ+ 1)
= 0 , (120)

where:

µκ ≡ (1 + κ)µ+ α+µ−
ρ+

ρ−
+ α−µ+ρ

−

ρ+
= κµ+ ρ

(
µ+

ρ+
+
µ−

ρ−

)
, (121)

µ ≡ α+µ− + α−µ+ . (122)

Remark 1. In the case of vanishing viscosities µ± = 0, as expected, the
dispersion relation (120) leads to (81).
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Asymptotic speed of sound for second order µ. Introducing the phasic Knud-
sen numbers:

Kn± ≡ k µ±

ρ± c±
≤ Knc = 10−2 , (123)

where the ω/k solutions of the dispersion relation (120) that corresponds to
sound-waves can be expanded with first order Kn± as follows:

ω±

k
= ±cκ + i c̃+ Kn+ + i c̃−Kn− +O((Kn+)2) + (Kn−)2)) , (124)

where:

c̃± ≡
2 (ρ2α∓c2

w − ρ∓(ρ+ κα±ρ±)c2
κ) c

±

3 (κ+ 1) ρ ρ∓c2
κ

. (125)

If this expansion is expressed in terms of µ± then:

ω±

k
= ±cκ −

2 i k

3 ρ
(ϕ+ µ

+ +ϕ− µ
−) +O

((
k µ+

ρ+ c+

)2

+

(
k µ−

ρ− c−

)2
)
, (126)

ϕ± ≡
ρ∓(ρ+ κα±ρ±)c2

κ − ρ2α∓c2
w

(κ+ 1) ρ+ ρ−c2
κ

. (127)

Moreover, the second order µ± term in (126) is as follows:

− 2 k2

9 ρ2 cκ
(θ±+(µ+)2 + 2 δ± µ+ µ−+θ±−(µ−)2) +O

((
k µ+

ρ+ c+

)3

+

(
k µ−

ρ− c−

)3
)
,

(128)

θ±` ≡ ±
ϕ`
(
(κ+ 1)ρ−ρ+ϕ` c

2
κ + 4 ρ2α−`c2

w

)
(κ+ 1)ρ+ρ−c2

κ

, ` ∈ {+,−} , (129)

δ± ≡ ±c
2
κ(κ+ 1)ρ−ρ+ϕ+ϕ− + 2 c2

wρ
2(α−ϕa− + α+ϕ+)− 2 c2

κρ
2

(κ+ 1)ρ+ρ−c2
κ

. (130)

4.4. Summary for viscous models

The results given in Table 5 are obtained if pressure-waves for the 3
previous viscous models are considered.
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Model Speed of sound c(k) Attenuation σ(k)

1 fluid, 1 velocity c− 2 k2µ2

9 ρ2 c
2 k2 µ

3 ρ

Section 4.1

2 fluids, 1 velocity cw − 2 k2µ2

9 ρ2 cw

2 k2 µ
3 ρ

Section 4.2

2 fluids, 2 velocities cκ −
2 k2µ2θ
9 ρ2 cκ

2 k2 µϕ
3 ρ

Section 4.3

Table 5: Asymptotic speed of sound and attenuation for second order Knudsen numbers
and viscous models, µϕ ≡ ϕ+ µ

+ + ϕ− µ
− , µ2

θ ≡ θ
+
+(µ+)2 + 2 δ+ µ+ µ− + θ+−(µ−)2 , see

(127), (129) and (130).

5. Consequences for CFD methods

As already discussed, there is no universal model for two-fluid or two-
phase flows, in contrast with single-fluid flow where the Navier-Stokes equa-
tion is the reference model for dense (as opposed to rarefied) flows. A CFD
model is the discrete version of a continuous mathematical model. Hence,
the mathematical models will now be discussed.

Roughly speaking, as far as averaged models are concerned, there are two
principle classes of models: one and two velocity models. In each of these two
classes, a chosen equilibrium assumption can be made based on the physical
situation (e.g. single temperature assumption). Two velocity models are
more general in the sense that one can often recover a one-velocity model by
adding the two conservation of momentum equations together. For example,
summing the two equations (41) leads to (20).

Hence, let us discuss two velocity models. In addition to the classical
transport term of the form (α±ρ±u±)t + div(α±ρ±u± ⊗ u±), these models
have two momentum equations, which involve pressure terms, viscous terms
and terms that model the exchange of momentum between the two fluids.
Since these terms are obtained from the phasic Navier-Stokes equations by
an averaging process, Ishii and Hibiki [23], they must be modeled in order
to obtain a closed system. For example, these may include the drag force
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between the two fluids or the added mass term. These modeling terms will of
course depend strongly on the particular flow under investigation, including
the regimes concerned.

Most modern CFD codes rely on Finite Volume Methods (FVM) in order
to locally satisfy the balance equations. For these methods, the propagation
direction of the waves in the system is critical. Indeed, FVM applied to CFD
are based on the construction of flux terms at an edge between two volumes.
These fluxes are determined by examining the propagation direction of the
information (or waves). As discussed in the Introduction, it is therefore of
the utmost importance that the considered model capture physically relevant
speeds of sound. When dealing with the flow of two compressible fluids, as
supported by experiments (see Section 1.5), one expects that the physical
model on which the code is built will propagate pressure-waves in a phys-
ically meaningful manner. That is, at a single speed that depends on the
constant physical state that is perturbed. In other words, physical models
that produce two sound speeds (e.g. one per fluid) are not suitable.

In contrast, the model of Baer and Nunziato [1] has two sound speeds:
one for the gas phase and the other for the solid phase. But here, the Authors
are dealing with gas-permeable, reactive granular materials and not two-fluid
compressible flows. From the physical point of view this could be interpreted
as follows for large solid volume fraction. In such a case the solid grains may
touch and a pressure wave can propagate from one solid particle to another,
hence producing sound waves at the solid sound speed. See e.g. Mézière et
al. [35].

The first two-fluid CFD codes were developed in the context of thermal-
hydraulics in the 1970s (see Lyczkowski [34]). This initial effort was mainly
focused on physical models because the subject was new at this time. Con-
cerning numerical methods, the approach was essentially the so-called “pres-
sure based methods”, which consists of deriving an elliptic equation for the
pressure. The advantage of this kind of method is that it naturally han-
dles low Mach number flows (i.e quasi-incompressible flows). However, these
methods are overly diffusive such that the solution gradients are smeared,
in particular the pressure gradients which are essential for sizing of instal-
lations. Moreover, the method is implicit, which allows to solve large and
ill-conditioned linear systems.
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As far as Finite Volumes are concerned, it is only since the 1990s that
convection methods (i.e use of the pressure waves in the computation of the
fluxes) have been used. The great advantage of convection methods is that
they allow accurate computation of strong solution gradients. Most convec-
tion methods are explicit, leading to “simple” codes. However, use of these
methods is sometimes challenging for low Mach number flows. This draw-
back can be corrected using preconditioning techniques, see e.g. Guillard
and Viozat [21].

Most modern industrial codes are based on convection methods. Hence
correctly computing the pressure-waves is an important issue. Some Authors
(Saurel and Abgrall [42], Gallouet et al. [16], Tian et al. [51], Städtke et al.
[45]) propose two-fluid flow models with inconsistent sound speeds. Namely,
the two distinct speeds of sound of each fluid, as for the Baer and Nunziato
model. In fact, these authors are led to this because they need to compute
exact solutions (use of Riemann invariant or Riemann solvers) in order to
apply a robust numerical method, which is derived for a single fluid flow,
such as Godunov’s method [20] or Roe’s scheme [39], and is then applied
to multi-fluid flow. This is not always possible for the physical models, but
in these articles, the model is chosen so that the numerical method can be
applied. Moreover, in the aforementioned references, mostly 1D validations
are proposed and the current authors are unaware of applications of such
methods to industrial cases.

In Ghidaglia et al. [18, 19], a characteristic flux finite volume method
has been proposed. It was designed especially for multi-fluid or multi-phase
models. This numerical method is applicable here regardless of the convective
part of the model. The method is based on the reduction of the convection
matrix (e.g. A in (57) or Bk in (77)) for the considered model. As shown
in Ghidaglia [17], this method is a natural extension of Roe’s scheme, that
is derived for single fluid flows, to multi-fluid flows. This method has been
used by various authors for 1D, 2D and 3D simulations and for industrial
applications in the context of multi-fluid and multi-phase flows (Halama et
al. [22], Kervella et al. [25], Dutykh et al. [11], Sahmim et al. [41], Boucker
[6], Rovarch [40], Benjelloun et al. [2], Redford et al. [38], ...).
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6. Conclusions and perspectives

Various expressions have been derived for the speed of sound for two-fluid
models by taking convective and viscous effects into account. The conse-
quences of the model choice for CFD codes have been discussed.
In further work, the important case of two fluids of the same substance in
thermodynamic equilibrium with phase change will be addressed. The effect
of surface tension on the value of the speed of sound is also to be considered
in the case of two fluids.

Another question that needs careful investigation in the future is the
following. Considering a numerical code designed to simulate a given math-
ematical model, for which there is an analytical expression for the speed of
sound and the attenuation. Is there consistency and convergence of values
from the numerical model with respect to those found with the analytical
expression?

Acknowledgement

The authors would like to thank John Redford and Valentin Leroy for the
careful reading of this paper and for their valuable remarks for the improve-
ment of this paper.

Appendix A. The thermodynamic speed of sound

In thermodynamics, for single-phase fluids and mixtures, it is a common
abuse of language to refer to the ‘speed of sound’ for any quantity of the
form

c2 =
∂p

∂ρ
, (A.1)

where ρ and p are respectively the density and the pressure of the system
defined as averages or in some other way.

A monophase fluid is a divariant thermodynamical system, and the equa-
tion (A.1) implies that a thermodynamic state variable is held constant.
Entropy and temperature are the two quantities usually considered. The
isentropic speed of sound, that is still denoted as c, is the velocity observed
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in normal physical circumstances which arises from linear perturbation the-
ory for the Euler system :

c2 =
∂p

∂ρ

∣∣∣∣
s

. (A.2)

The non conductive speed of sound, that is denoted here as cT , is reported
in some experiments as the actual speed of propagation of sound under some
physical circumstances (boundary layers, microfluidic, high frequency...)[5,
14], and this is justified for physical reasons:

c2
T =

∂p

∂ρ

∣∣∣∣
T

. (A.3)

These definitions for the non conductive and isentropic speeds of sound
can be generalized for two phase mixtures, that are or are not in thermody-
namic equilibrium.

Appendix A.1. Equilibrium Speed of Sound in two phase mixtures

A two-fluid mixture (with no mass exchange between the two fluids), with
mass fraction η+ of fluid + and η− for fluid −, is under complete thermo-
dynamic equilibrium if T+ = T− and P+ = P−. Such a system, which is
assumed to be constantly in equilibrium, is also a divariant system and the
mixture thermodynamic quantities, v , ρ , e , s given in Table 3, satisfy the
classical thermodynamic identities (e.g. de = T ds− p dv... etc). Hence, the
different thermodynamic coefficients can be defined from partial derivatives,
such as the isentropic and non conductive speed of sound. Furthermore, all
the thermodynamic relations (Reech, Mayer, ... etc) are verified by these
coefficients. In particular we recall the following identities that will be used
hereafter:

c2
T = c2 − Γ2TCv , (A.4)

and
1

ρ2c2
s

=
1

ρ2c2
T

− T χ
2

Cp
, (A.5)

where Γ is the Grüneisen parameter defined as Γ = v ∂p
∂e

]v, Cp is the isobaric
heat capacity, and χ is the coefficient of the isobar thermal expansion, which
is defined as χ = 1

v
∂v
∂T

]p .
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For such system, it can be proven that the equilibrium non-conductive
speed of sound is given by Wood’s formula:

1

ρ2c2
T

=
η+

(ρ+)2(c+
T )2

+
η−

(ρ−)2(c−T )2
, (A.6)

or equivalently
1

ρc2
T

=
α+

ρ+(c+
T )2

+
α−

ρ−(c−T )2
. (A.7)

Indeed, one can derive the mixture volume v in Table 3 with respect to
P = P+ = P− at constant T = T+ = T−, to obtain (A.6).

The isentropic speed of sound can then be computed using the relation
(A.5) to give

1

ρ2c2
=

η+

(ρ+)2(c+
T )2

+
η−

(ρ−)2(c−T )2
− T χ2

ηC+
p + (1− η)C−p

, (A.8)

with χ being the mixture isobar thermal expansion given by

χ =
1

v

∂v

∂T
]p =

1

v
(η+χ+v+ + η− χ−v−) = α+ χ+ + α− χ− ,

and the mixture isobaric heat capacity T ∂s
∂T
|P is given by:

Cp = η+ C+
p + η−C−p . (A.9)

The speed of sound (A.8) is referenced in [48, 49] as the relaxed equilib-
rium speed of sound and a different, although equivalent, formula is given in
[48, 49]:

(c−)2

c2
=

ρ

ρ−

(
γ− α− + γ+α+ρ

−(c−)2

ρ+(c+)2

)
− (γ− − 1)

α− + α+ χ+/χ−

η− + η+C+
p /C

−
p

.

Note that, for intermediate values of α±, this formula gives lower values
than Wood’s formula, hence it corrects Wood’s overestimation as seen in Fig-
ure 3. Moreover, as the third term in (A.8) is dominated by the gas terms
((χ−)2 >> (χ+)2) this correction gives similar results to equation (18), which
is shown in Figure 3.
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Appendix A.2. Non-equilibrium speed of sound in two phase mixtures

The equilibrium speed of sound presented in the previous two sections
is meant to be applied to systems in complete thermodynamic equilibrium,
but in many situations this hypothesis is not justified. Particularly in the
context of fluid flows, where the assumption of thermal equilibrium between
the two phases does not hold [46]. However, mechanical equilibrium (i.e. the
equality of pressure) is a more rapid phenomenon and can be assumed in
most cases [30, page 44]. In this context and assuming a mixture without
exchange of matter between the two phases, the speed of sound is given by
Wood’s equation [26, 7]:

c2 =
∂ρ

∂P

∣∣∣∣
s+,s−,η

,

1

ρc2
=

α+

ρ+(c+)2
+

α−

ρ−(c−)2
.

Given the above justification, this speed is referred to in the literature
[48, 46] as the frozen equilibrium speed of sound.

Appendix B. On the dispersion relation for a single fluid

In the two first Sections of this Appendix our goal is to study the dis-
persion relation (100) that has been rewritten as P

(
ω
k

)
= 0 (see (3)), where

(referring to (2) and Table 1 for notation):

P (X) ≡ X3 + 2 i k a1

(
1 +

3 γ

4Pr

)
X2 −

(
c2 +

3 γ

Pr
a2

1 k
2

)
X − i 3 k a1 c

2

2Pr
,

(B.1)
where the last term has been modified using the identity c2

T = c2/γ , see
(D.8).
Introducing the two second-degree polynomials Q and QT :

Q(X) ≡ X2 + 2 i k a1X − c2 , (B.2)

QT (X) ≡ X2 + 2 i k a1X − c2/γ , (B.3)

it is seen that (note that these two polynomials are independent of Pr):

P (X) = X Q(X) + i k a1
3 γ

2Pr
QT (X) . (B.4)
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Appendix B.1. Asymptotic for large Prandtl number

When the Prandtl number Pr is infinite, which is the case for a non-
conductive (λ = 0) viscous fluid (µ 6= 0), P (X) = X Q(X) and (101) is
recovered.
Since the three P roots are distinct in this case, one can easily see4 that for
large Prandtl number (i.e. for λ � Cp µ), that is the case where viscous
diffusion is more prevalent than thermal diffusion, the three P roots have a
smooth dependence on 1/Pr and can be expanded as:

X
(`)
Pr = X

(`)
0 − i k a1

3 γ

2Pr

QT (X
(`)
0 )

Q(X
(`)
0 ) +X

(`)
0 Q′(X

(`)
0 )

+O
(

1

Pr2

)
, (B.5)

where X
(`)
0 are the three X Q(X) roots. According to (102), with c(k) defined

in (107), these roots are:

X
(−1)
0 = −ik a1 − c(k) , X

(0)
0 = 0 , X

(+1)
0 = −ik a1 + c(k) , (B.6)

and after some computations, the following result is deduced from (B.5).

Proposition 1. For large Prandtl number, the three P roots satisfy:

X
(∓)
Pr = −ik a1 ∓ c(k)∓ 3 (γ − 1) k a1 (k a1 ± ic(k))

4 c(k)

1

Pr
+O

(
1

Pr2

)
, (B.7)

X
(0)
Pr = −i 3 k a1

2Pr
+O

(
1

Pr2

)
. (B.8)

Appendix B.2. Asymptotic for small Prandtl number

Let us now address the case where the Prandtl number is small (i.e. for
Cp µ� λ), which is the case where thermal diffusion is more prominent with
respect to viscous diffusion.
At the limit where Pr = 0, the dispersion relation P

(
ω
k

)
= 0 reads QT

(
ω
k

)
=

0 but QT has only two roots while P has three. It will be proven that for
Pr � 1 the two roots of P situated are on curves starting from the two roots
of QT (as in (B.5)) and the third root is large O

(
1

Pr

)
, see Propositions 2 and

3.
Indeed, denoting the three roots of P by ξ

(`)
Pr , where ` = −1 , 0 and 1, and if

4Using the implicit function theorem, as is done hereafter in the proof of Proposition 3.
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ξ
(−1)
Pr (resp. ξ

(+1)
Pr ) is close to ξ(−1) (resp. ξ(+1)), where ξ(`) are the roots of

QT , that is:

ξ(`) ≡ −ik a1 + ` cT (k) , cT (k) ≡
√
c2
T − k2 a2

1 , ` = ±1 , (B.9)

which will now be proven in the following.

Proposition 2. The following asymptotic expressions are obtained:

lim
Pr→0

ξ
(∓)
Pr = −ik a1 ∓ cT (k) , (B.10)

ξ
(0)
Pr ∼ i

3 k a1 γ

2Pr
, as Pr → 0 . (B.11)

This result is readily derived from a simple observation.

Lemma 1. The three ξ
(`)
Pr roots of P satisfy the identity:

ξ
(−1)
Pr ξ

(0)
Pr ξ

(+1)
Pr = −i3 k a1 c

2

2Pr
. (B.12)

This relation is obvious because according to (B.4), P (0) = i k a1
3 γ

2Pr
QT (0),

and then Proposition 2 follows.
Here again, Proposition 2 can be refined in the spirit of Proposition 1, and
the following result is proven.

Proposition 3. For small Prandtl numbers, the three P roots satisfy:

ξ
(∓)
Pr = −ik a1 ∓ cT (k)± (γ − 1) c2 (k a1 ∓ i cT (k))

3 γ2 k a1 cT (k)
Pr +O(Pr2) , (B.13)

ξ
(0)
Pr = i

3 k a1 γ

2Pr
+O(Pr) . (B.14)

Proof. ξ
(`)
Pr are the solutions of P (X) = 0 or equivalently:

F (X ,Pr) ≡ PrX Q(X) + i
3 k a1 γ

2
QT (X) = 0 . (B.15)

The function F is smooth and ∂F
∂X

(X , 0) = i 3 k a1 γ
2

Q′T (X) . For each ` = ±1,

F (ξ(`) , 0) = i 3 k a1 γ
2

QT (ξ(`)) = 0 and since the roots ξ(`) of QT are simple:
∂F
∂X

(ξ(`) , 0) 6= 0. Hence, two smooth curves are found to exist using the

implicit function theorem for small Pr, such that F (ξ
(`)
Pr , P r) = 0 and ξ

(`)
0 =

ξ(`) . Then (B.13) follows immediately from the first-order Taylor expansion
of F with respect to X and Pr at the point (ξ(`) , 0) .

Concerning (B.14), (B.13) is used together with the identity (B.12).
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Appendix C. The dispersion relation for a two-velocity two-fluid
viscous model with added mass

The system (45)-(48), where the right hand sides of (46) and (47) are
respectively modified according to (118) and (119), is addressed here. One
dimensional flows can only be considered as far as the dispersion relation
is concerned. Indeed, plane-waves W = W0 exp i(k · x− ω t) , x ∈ R3 ,
k ∈ R3 , propagate in the direction of the wave vector k, and when k 6= 0
the system satisfied by ω and k can be found by writing the correspond-
ing 1D system, where x ∈ R is the direction of k . By choosing variables
W = t(α+ , p , u+ , u− , s+ , s−), this system is equivalent (for smooth solu-
tions) to :

(α−ρ+(c+)2 + α+ρ−(c−)2)
∂α+

∂t
+ α+α−(u+ − u−)

∂p

∂x
+ α+α−(c+)2ρ+∂u

+

∂x

− α+α−(c−)2ρ−
∂u−

∂x
+
[
α−ρ+u+(c+)2 + α+ρ−u−(c−)2

] ∂α+

∂x

= α+α−
4µ+

3

(
∂u+

∂x

)2

− α+α−
4µ−

3

(
∂u−

∂x

)2

, (C.1)

(α+ρ−(c−)2 + α−ρ+(c+)2)
∂p

∂t
+ (α+ρ−(c−)2u+ + α−ρ+(c+)2u−)

∂p

∂x
+

+α+ρ+ρ−(c−)2(c+)2∂u
+

∂x
+α−ρ+ρ−(c+)2(c−)2∂u

−

∂x
+
[
ρ+ρ−(c−)2(c+)2

]
(u+−u−)

∂α+

∂x

= α+ρ−(c−)2 4µ+ Γ+

3

(
∂u+

∂x

)2

+ α−ρ+(c+)2 4µ− Γ−

3

(
∂u−

∂x

)2

, (C.2)

∂u+

∂t
+

ρ+ κρ+

ρ(1 + κ)ρ+

∂p

∂x
+
ρ+ κα+ρ+

ρ(1 + κ)
u+∂u

+

∂x
+

κα−ρ−

ρ(1 + κ)
u−
∂u−

∂x
=

ρ+ κα+ρ+

ρ(1 + κ)

µ+

α+ρ+

∂α+

∂x

∂u+

∂x
+
ρ+ κα+ρ+

ρ(1 + κ)

µ+

ρ+

∂2u+

∂x2
+

+
κµ−

ρ(1 + κ)

∂α−

∂x

∂u−

∂x
+

κα−µ−

ρ(1 + κ)

∂2u−

∂x2
, (C.3)
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∂u−

∂t
+

ρ+ κρ−

ρ(1 + κ)ρ−
∂p

∂x
+

κα+ρ+

ρ(1 + κ)
u+∂u

+

∂x
+
ρ+ κα−ρ−

ρ(1 + κ)
u−
∂u−

∂x
=

κµ+

ρ(1 + κ)

∂α+

∂x

∂u+

∂x
+

κα+µ+

ρ(1 + κ)

∂2u+

∂x2
+

+
ρ+ κα−ρ−

ρ(1 + κ)

µ−

α−ρ−
∂α−

∂x

∂u−

∂x
+
ρ+ κα−ρ−

ρ(1 + κ)

µ−

ρ−
∂2u−

∂x2
, (C.4)

s+
t + u+∂s

+

∂x
=

4µ+

3 ρ+T+

(
∂u+

∂x

)2

, (C.5)

s−t + u−
∂s−

∂x
=

4µ−

3 ρ−T−

(
∂u−

∂x

)2

, (C.6)

p = P (ρ, η, s+, s−) . (C.7)

Keeping only the linear terms, it is seen that the entropy equations can
be decoupled. The dispersion relation is then given when the matrix deter-
minant vanishes:

−iωI + ikA+ k2B ,

with :

A(α+, p, u+, u−) =
α−ρ+(c+)2u++α+ρ−(c−)2u−

π

α+α−(u+−u−)
π

(α+α−ρ+(c+)2)
π

− (α+α−ρ−(c−)2)
π

ρ+ρ−(c+)2(c−)2(u+−u−)
π

α+ρ−(c−)2u++α−ρ+(c+)2u−

π
α+ρ+ρ−(c+)2(c−)2

π
α−ρ+ρ−(c+)2(c−)2

π

0 ρ+κρ+

ρ(1+κ)ρ+
ρ+κα+ρ+

ρ(1+κ)
u+ κα−ρ−

ρ(1+κ)
u−

0 ρ+κρ−

ρ(1+κ)ρ−
κα+ρ+

ρ(1+κ)
u+ ρ+κα−ρ−

ρ(1+κ)
u−


where π ≡ α+ρ−(c−)2 + α−ρ+(c+)2 =

ρ+ρ−(c+)2(c−)2

ρ c2
w

,

B =


0 0 0 0
0 0 0 0

0 0 ρ+κα+ρ+

ρ(1+κ)
4µ+

3ρ+
4κα−µ−

3ρ(1+κ)

0 0 4κα+µ+

3ρ(1+κ)
ρ+κα−ρ−

ρ(1+κ)
4µ−

3ρ−

 .
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Then the determinant, for u+ = u− = 0, vanishes according to:

(ω
k

)4

+ 4ik

(
κ
α+µ+ + α−µ−

3ρ (κ+ 1)
+
µ+ρ− + µ−ρ+

3ρ+ρ− (κ+ 1)

)(ω
k

)3

−
(
k2 16µ+µ−

9(κ+ 1)ρ+ρ−
+ (c+)2(c−)2κρ

+ρ− + ρ(α+ρ− + α−ρ+)

π(κ+ 1)ρ

)(ω
k

)2

− 4ik(c+)2(c−)2 (α−µ+ + α+µ−)

3π(κ+ 1)

(ω
k

)
= 0 . (C.8)

By noting that c2
κ = κρ+ρ−+ρ(α+ρ−+α−ρ+)

π(κ+1)ρ+ρ−
c2
w, the dispersion relation can be

rewritten, eliminating the first vanishing root
(
ω
k

)
= 0 , as with (120).

Appendix D. Some classical thermodynamic identities used in this
article

The dispersion relations derived in this paper involve some thermody-
namic coefficients that depend on the equations of state. All the coefficients
are well referenced in the literature, but the notation is not universal. Fur-
thermore, they are expressed in the case of a perfect gas in many references.
For example, in this case the Grüneisen coefficient Γ is equal to γ− 1, where
γ is the ratio of the heat capacity at constant pressure to the heat capacity
at constant volume. This can sometimes cause confusion in the obtained
results. See also [4].

The following relations will be proven by considering a divariant sub-
stance:

d e = Cv d T +
γ Γ p− (γ − 1) ρ c2

γ Γ ρ2
d ρ , (D.1)

d h = γ Cv d T +
Γ− γ + 1

Γ ρ
d p , h = e+

p

ρ
, (D.2)

d p = c2 d ρ+ ρΓT d s =
c2

γ
d ρ+ ρΓCv d T . (D.3)

Indeed, starting from:

d e = Cv d T +

(
β +

p

ρ2

)
d ρ , (D.4)
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d h = γ Cv d T +

(
α +

1

ρ

)
d p , h = e+

p

ρ
, (D.5)

d p = c2 d ρ+ ρΓT d s = c2
T d ρ+ ε d T , (D.6)

where α , β , . . . can be seen as partial derivatives e.g. ε ≡ ∂p
∂T

∣∣
ρ

and where

the pressure p for this divariant substance is seen as a function of the two
independent thermodynamic variables ρ and T . Some of the coefficients have
already been identified in order to be consistent with Table 1, (2) and (99).
It is elementary to prove the following result using these two variables.

Proposition 4. It follows from Gibbs relation:

T d s = d e− p

ρ2
d ρ , (D.7)

that

ε = Γ ρCv , α = −γ − 1

Γ ρ
, c2

T =
c2

γ
, β = −(γ − 1) c2

γ Γ ρ
,

Γ2Cv T =
γ − 1

γ
c2 . (D.8)

Hence, by combining identities (D.1) to (D.3) it is found that:

d p = c2 d ρ+ ρΓT d s , d T =
ΓT

ρ
d ρ+

T

Cv
d s , (D.9)

which is needed for the derivation of (98).
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