Jean-Pierre Gerval 
  
Anna Labbe 
  
Yann Le Ru 
  
Gérard Sagot 
email: gerard.sagot@isen.fr
  
A MICROPROCESSOR IP FOR WEB-BASED DIGITAL ELECTRONIC DESIGN AND ASSEMBLY LANGUAGE PRACTICAL ACTIVITIES

Keywords: Web-based Training, Embedded System, Digital Electronic Design, Remote Control

This paper presents a pedagogical platform dedicated to the training in Assembly Language Programming and Digital Electronic Design. The central component of this platform is a development kit that implements a FPGA (Field Programmable Gate Array) based chip. A Microprocessor IP (Intellectual Property) has been developed and implemented in order to compute Assembly Language instructions. A Web interface enables students to upload their programs to the development kit and a WebCam provides visual feedback to students.

INTRODUCTION

In our Graduate School, we have nearly 200 students using laptops for various activities. Students have to buy their own laptop and according to this fact they are eager to use sophisticated pedagogical applications.

The purpose of our work is to provide students with a web-based tool that will enable distant FPGA configuration.

The interest for such a work is twofold. On the one hand, students can learn digital circuit design and test their design from anywhere at any time. On the other hand, it minimises the quantity of resources (FPGA development kits) needed for a large amount of students. This paper is organized around three main themes: overview of the platform that has been developed and pedagogical targets, hardware point of view and server side description. The conclusion gives feedback from testing and future development perspectives.

OVERVIEW

The platform

The pedagogical platform (Fig. 1.) implements an Altera's PLD (Programmable Logic Devices) development kit [1] that provides a FPGA (Field Programmable Gate Array) and a CPLD (Complex Programmable Logic Device).

The CPLD (MAX7000) offers 2,500 gates for basic developments. The FPGA (FLEX10k) supports 20,000 gates and includes input/output devices such as: DB25 VGA, PS/2 port. This development kit is programmable through a Personal Computer parallel port Such a development kit enables both prototyping and development of embedded applications. For our part we have chosen to develop a microprocessor IP (Intellectual Property) that is to say, to design an 8-bit CISC Microprocessor [START_REF] Hwang | Microprocessor Design: Principles and Practices with VHDL[END_REF] and target an FPGA. This approach lets our student to learn how a microprocessor is developed. We have chosen a reduce instructions set. However, the microprocessor architecture could be evolved in order to add more instructions or improve its performance. This way we can provide trainings for different microprocessor developments using the same platform.

A web server completes the platform and supply communication with clients. It is coupled with the Quartus II software that is used to design a digital circuit using VHDL (Very High Speed Integrated Circuit Hardware Description Language) [START_REF] Donald | MOORBY -The Verilog Hardware Description Language[END_REF] and then to upload the configuration file into the development kit. 

Pedagogical targets

This platform has been developed in order to show students how data flow inside a microprocessor. So students could better understand the relationship between hardware and software. An assembly language is associated to the microprocessor. It enables students to test the microprocessor and to develop programs.

Assembly language is a low-level language close to processor architecture. Therefore it is sometime more difficult for students to develop software in assembly language than with high-level languages such as C or Java. Memory transfers and addressing techniques are specific and fundamental concepts that require large amounts of experiments in order to improve students' know-how.

Some tools had been implemented in order to enable students' auto evaluation in the field of assembly language [START_REF] Paget | Giroire H -Auto evaluation in 8086 assembly language programming[END_REF]. According to our tool we enable students to test their software by means of an Internet connection to the Microprocessor IP.

Students design their software on their laptops, upload their text file to the server and get a real time feedback if the hardware is available; that is to say if the development kit is not currently used by another student.

Our target is not to replace traditional practical activities but to increase students' personal work. This way, we hope to make students' performance as best as possible during face-to-face activities.

MICROPROCESSOR ARCHITECTURE

The internal structure of the Microprocessor IP (Fig. 2.) is based on the Von Neumann Architecture [START_REF] Lilen | Microprocesseurs du CISC au RISC[END_REF].

Our system is composed of tree blocs: a control and treatment unit, a memory and Input-Output ports. All blocs are connected through a bus. Instructions and data are stored in the memory. To read memory content, the processor send memory address on the address bus. After a delay time, the requested memory content is available on the data bus. More Input-Output ports are mapped on the memory plan. The result is stored into the accumulator. This is a register that contains data available for the processor. The program counter contains the memory address of the next instruction to perform.

All these components have been implemented in VHDL language except memory modules that have been created with the custom mega-function of the Quartus software from Altera.

WEB DEVELOPMENTS

Web developments have been achieved in PHP language.

Network architecture is built according to a classical client-server concept.

The user interface is a web page that contains four main parts (Fig. 4.).

Fig. 4. User interface

On the left side, students can view the instruction set that is available with the Microprocessor IP. Details about the current instruction set are shown in table 1.

The central part of the interface gives a WebCam feedback from the development kit. This enables students to view results from their programs through the sevensegment displays.

On the right side, data are provided about the last client who was using the development kit: IP (Internet Protocol) address, MAC address, date and time, etc.

The lowest part of the interface is dedicated to file management. It enables a student to choose a file on its computer and then upload this file to the server. On the server side (Fig. 5.), when a request occurs from a client the first step is to check if the resource (development kit) is available.

In that case, the server locks the resource, receives client program file in assembly language and checks that program syntax is correct according to the Microprocessor IP instruction set.

This program file is translated in hexadecimal format and affected to a ROM (Read Only Memory) component of the Microprocessor IP.

Finally all components of the VHDL application are compiled and uploaded to the development kit for execution. The web server performs these last tasks through a batch file that includes Quartus command lines. The resource is unlocked when the server receives a disconnection request from the client or when a timeout occurs. Timeout settings avoid the blocking of resource by one client.

CONCLUSIONS AND FUTURE WORKS

This application has been successfully tested with basic programs in assembly language for our 8-bit Microprocessor IP.

Pedagogical experiments with students will start by the beginning of September 2006.

We are also working on another Microprocessor IP based on a pipeline Architecture. Within a classical architecture, the processing of an instruction requires four sequential steps: 1) Extract instruction from memory 2) Decode instruction 3) Execute instruction 4) Write results

Pipeline architecture enables parallel processing so that it increases significantly computation speed.

We should use a new Altera development kit with a new FPGA generation. So we could add more functionalities to our microprocessor.

On a technical point of view, the interest would be to enable re-usability of old software without having to maintain old hardware.

On a pedagogical point of view, the teacher would be able to choose the best processor for practical activities according to the concepts he has to teach about.

Fig. 1 .

 1 Fig. 1. Pedagogical platform dedicated to Assembly Language Programming

Fig. 2 .

 2 Fig. 2. Von Neumann Architecture

Fig. 3 .

 3 Fig. 3. Quartus functional Diagram of Microprocessor IP Control Unit The Arithmetic and Logical Unit performs computation on data according to the current instruction.

Fig. 5 .

 5 Fig. 5. Server behaviour

Table 1 .

 1 Microprocessor IP Instruction Set

	Instruction	Code	Description
		Hexa.	
	NOP	27	No operation
	TFRA	00	Transfer data from register A to B
	TFRB	01	Transfer data from register B to A
	LDA_ADR	06	Load data from RAM to register A
	LDB_ADR	07	Load data from RAM to register B
	STA_ADR	08	Store data from register A to RAM
	STB_ADR	09	Store data from register B to RAM
	LDA_CST	0C	Load constant into register A
	LDB_CST	0D	Load constant into register B
	ROLA	02	Shift to the left (1 bit) register A
	RORA	03	Shift to the right (1 bit) register A
	DECA	11	Decrement register A
	INCA	12	Increment register A
	NOTA	10	NOT register A
	ADDA_CST	0E	Add constant to register A
	SUBA_CST	1D	Subtract constant from register A
	ANDA_CST	0F	AND between constant and register A
	ORA_CST	1B	OR between constant and register A
	XORA_CST	1C	XOR between constant and register A
	ADDA_ADR	0A	Add register A and memory data
	SUBA_ADR	1A	Subtract memory data from register A
	ANDA_ADR	0B	AND between register A and RAM
	ORA_ADR	18	OR between register A and RAM
	XORA_ADR	19	XOR between register A and RAM
	ROLB	16	Shift to the left (1 bit) register B
	RORB	17	Shift to the right (1 bit) register B
	DECB	14	Decrement register B
	INCB	15	Increment register B
	NOTB	13	NOT register B
	ADDA_B	21	Add register B to register A
	SUBA_B	22	Subtract register B from register A
	ANDA_B	1E	AND between register B and register A
	ORA_B	1F	OR between register B and register A
	XORA_B	20	XOR between register B and register A
	BEQ	04	Jump to address if flag zero = 1
	BEN	05	Jump to address if flag zero = 0
	BN	23	Jump to address if flag negative = 1
	BP	24	Jump to address if flag negative = 0
	BC	25	Jump to address if flag carry = 1
	BNC	26	Jump to address if flag carry = 0