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Magnetic cusp confinement in low- plasmas revisited  
Y. Jiang, G. Fubiani, L. Garrigues, J.P. Boeuf a 

LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 118 Route de Narbonne, 31062 Toulouse, France 

ABSTRACT 

Magnetic cusps have been used for more than 50 years to limit charged particle losses to the walls and confine the 

plasma in a large variety of plasma sources or ion sources. Quantification of the effective loss area has been the subject 

of many experimental as well as theoretical investigations in the 1970-1990’s. In spite of these efforts there is no fully 

reliable expression of the effective wall loss as a function of cusp magnetic field, electron temperature, ion mass, gas 

pressure, etc… We describe in this paper a first attempt at obtaining scaling laws for the effective loss width of 

magnetic cusps, based on two-dimensional PIC MCC (Particle-In-Cell Monte Carlo Collisions) simulations. The 

results show that the calculated leak width follows a 1/B scaling in the collisionless low B limit, is approximately 

proportional to the hybrid gyroradius with an ion velocity equal to the Bohm velocity and is proportional to the square 

root of gas pressure in the collisional limit.  

 

 

I.  INTRODUCTION 

Plasma confinement by magnetic cusps has been studied 

since the 1970’s when Limpaecher and MacKenzie1 showed 

that they could increase the plasma density in a low pressure 

discharge by two orders of magnitude by employing 

multipolar cusp confinement. A number of experimental as 

well as theoretical papers were published in the 1970-1980’s 

on magnetic cusps. They were initially studied as possible 

confinement methods for thermonuclear fusion2, 3, but they 

were actually more used for basic plasma studies.  Magnetic 

cusps are now commonly used in different types of ion 

sources or in plasma processing reactors, but, in spite of the 

important efforts to quantify the role of magnetic cusps on 

plasma confinement, there is still no clear scaling laws that 

give the effective charged particle loss area or loss width in 

the presence of cusps, as a function of plasma parameters 

such as electron temperature, gas pressure, magnetic field and 

ion mass. In their 1975 paper, Hershkowitz et al.4 mention 

(and this is still true today) that “Although the motion of 

charged particles in magnetic cusps has received considerable 

attention, a satisfactory description of how plasma leaks 

through cusps has not yet emerged. In particular, there seems 

to be considerable disagreement between theory and 

experiments”. 

Semi-empirical theories have been proposed to quantify the 

effective loss area and their predictions have been compared 

with numerous experimental results but the agreement 

between theory and experiments was only qualitative and in 

a limited parameter range. The availability of powerful 

simulation tools and computers should allow us to progress 

toward a more quantitative description of the confinement by 

magnetic cusps. This paper presents an attempt at obtaining 
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scaling laws for the effective loss width of magnetic cusps, 

based on 2D PIC MCC simulations. 

One difficulty in trying to extract scaling laws from the 

experiments is that the results may depend on the type of 

plasma source and on the magnetic cusp arrangement. In most 

early experiments the plasma was generated by hot filaments. 

In the experiments of Limpaecher and MacKenzie1 the 

magnetic cusps were produced by lining the inner wall of the 

vacuum chamber with permanent magnets1 while in those of 

Hershkowitz et al.4-6 they were formed by a “picket fence”, 

i.e. an arrangement of parallel water-cooled conductors with 

current in adjacent conductors flowing in alternate directions. 

The picket fence was placed between two single multidipole 

chambers, the “driver chamber” (where the plasma was 

generated by hot filaments) and the “target chamber”. In 

practical applications, multicusp plasma sources are used in 

plasma processing or in ion sources, e.g. for satellite 

propulsion7-9 or negative ion sources for accelerators10 

(including neutral beam injectors for fusion). In these sources 

the plasma can be generated by filaments or by 

radiofrequency or microwave coupling. The multicusp 

magnets are generally placed behind metallic chamber walls 

but in some devices11 they are covered with a dielectric 

material. Clearly the electron velocity distribution functions 

and the localization of ionization with respect to the magnetic 

cusps can be very different in the different multicusp plasma 

source configurations used in the applications. In this paper 

we choose to model, using a 2D PIC MCC simulation, an 

ideal situation where the electron distribution function is 

Maxwellian with a fixed temperature, where the ionization 

source is sufficiently far from the cusp region, and with 

multicusp magnets covered with a dielectric material. The 

model is purely kinetic and is able to describe quasi-neutral 
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regions as well as sheaths. Although electron-neutral and ion-

neutral mean free paths are larger than the dimensions of the 

simulation domain in most of the conditions considered here, 

the results show that electron-neutral collisions significantly 

contribute to cross-field diffusion leading to an increase of 

the leak width with gas pressure above 0.1 mtorr. Electrons 

reflected by the cusp or the sheath back into the plasma are 

supposed to be thermalized. This procedure prevents trapping 

of low energy electrons and can represent, for example, the 

effect of Coulomb collisions. 

The paper is organized as follows. 

Section II presents a brief overview of previous experimental 

and theoretical work on magnetic cusps. Details about the 

assumptions of the 2D PIC MCC model of magnetic cusps 

used in this paper are given in section III. In section IV we 

show typical results concerning the general properties of the 

plasma in the cusps regions (distribution of charged particle 

densities, electric potential, charged particle fluxes etc…). 

Section V summarizes the scaling laws deduced from a 

parameter study of the leak width as a function of different 

parameters such as magnetic field, gas pressure, electron and 

ion temperatures, ion mass. In section VI we briefly discuss 

the question of convergence and accuracy of the simulation. 

II.  BRIEF OVERVIEW OF PREVIOUS WORKS 

 We summarize below the experimental and modeling efforts 

that have been devoted to the characterization of cusp 

confinement. We are considering here only low- plasmas, 

i.e. plasmas where the plasma pressure is much less than the 

magnetic pressure. In these plasmas the external magnetic 

field is not modified by the charged particles currents. In the 

following, we note 𝑤∗, the leak width defined as the Full 

Width at Half Maximum (FWHM) of the profile of the 

current density to the wall (see Figure 1). This definition of 

the leak width is used in experiments but we will use a slightly 

different definition in the simulations (see section III.G).   

For a metallic surface the electron and ion current density 

profiles are not necessarily identical, and one could define 

specific leak widths for electrons and ions. As shown in the 

experiments of Bosch and Merlino12, the electron and ion leak 

widths should however become close to each other when the 

plasma density increases (because the plasma becomes 

quasineutral in a larger volume and close to the surface). For 

a dielectric surface one expects the electron and ion loss 

widths to be identical at steady state.  

Most theories for high- plasmas2-4 predicted a loss aperture 

or leak width 𝑤∗ between the electron gyroradius 𝜌𝑒 and the 

hybrid gyroradius defined as (𝜌𝑒𝜌𝑖)
1/2 (geometric mean of 

the electron and ion gyroradii ρe and ρi) while experiments 

found different results lying between the ion gyroradius, the 

hybrid gyroradius and the electron gyroradius. 

 

Figure 1: Schematic of a line magnetic cusp. To the first order in 

Δ 𝑑⁄  the magnetic field decreases exponentially from the wall 

surface to the plasma. The red line is the charged particle current 

density J to the wall. The leak width 𝑤∗ is defined in experiments 

as the Full Width at Half maximum of the current density profile. 

In the model of Bosch and Merlino12 (see text) ions flow toward 

the cusp along the magnetic field lines at the ion acoustic 

velocity; collisional cross-field diffusion of electrons tends to 

spread the current density in the cusp and increases the leak 

width. 

The first measurements of the leak width in low- plasmas 

where performed in 1975 by Hershowitz et al. 4. They found 

that the electron leak width (FWHM) at low enough gas 

pressures was about four times the hybrid gyroradius: 

 𝑤𝐻
∗ ≈ 4(𝜌𝑒𝜌𝑖)1/2                   (1) 

The measured ion leak width was slightly larger than the 

electron leak width. As said in the introduction, the 

measurements were performed in a plasma source divided in 

two regions, the driver and the target, separated by a “picket 

fence” structure consisting of an array of parallel conductor 

wires with currents in adjacent conductors flowing in 

alternating directions. The plasma was sustained by high 

energy electrons emitted from hot filaments in the driver. The 

leak width was deduced from measurements of the electron 

and ion current through the picket fence (i.e. between the 

wires of the picket fence). The measurements were performed 

in helium, argon, and xenon, and confirmed the 𝑚𝑖
1/4 

dependence of the leak width present in the expression of the 

hybrid gyroradius (𝑚𝑖 is the ion mass). The 1/𝐵 dependence 

of this expression was also checked (over a limited range of 

values of the magnetic field, between 50 and 200 G). We 

write the electron and ion gyroradii as: 

𝜌𝛼 = 𝑣𝛼 𝜔𝑐𝛼⁄   , 𝛼 = 𝑒, 𝑖, where 𝑣𝛼 = (𝑘𝑇𝛼 𝑒𝑚𝛼⁄ )1/2 is  the 

charged particle velocity, and  𝜔𝑐𝛼 = 𝑒𝐵 𝑚𝛼⁄  is the 

corresponding cyclotron frequency. Since  
𝜌𝑖

𝜌𝑒
= (

𝑇𝑖

𝑇𝑒

𝑚𝑖

𝑚𝑒
)

1/2

, 

the leak width of Herskowitz et al.  can also be written as: 

𝑤𝐻
∗ ≈ 4𝜌𝑒 (

𝑇𝑖

𝑇𝑒

𝑚𝑖

𝑚𝑒
)

1/4

∝ 𝑇𝑒
1/4𝑇𝑖

1/4𝑚𝑖
1/4𝐵−1      (2) 

Note that the ion gyroradius in the experiments of 

Hershkowitz et al. is on the order of 3.5 cm for argon, and 5.6 

cm in xenon for a magnetic field of 100 G (see Table I in Ref. 
4). Since the distance between wires (or cusps) was 2.2 cm in 

this paper, it appears that ions are practically not magnetized 

in these experiments. Therefore the fact that the ion 
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gyroradius appears in eq. (1) seems purely fortuitous and does 

not have a real physical meaning. We see below that Bosch 

and Merlino12 obtained a similar scaling based on an 

empirical theory that does not invoke the ion gyroradius. 

Bosch and Merlino12 performed similar experiments in ring 

and point cusps over magnetic field strengths between 10 and 

260 G and neutral gas pressures between 10-2 and 10 mtorr. 

The magnetic field was generated by two water-cooled coils 

of 17 cm inner diameter that produced a spindle cusp and a 

ring cusp magnetic field using currents of up to 1000 A. The 

maximum magnetic field in the center of the ring cusp was 

160 G, while the maximum field in the center of the point 

cusp was 260 G. The measured current profiles presented a 

sharp maximum in the cusp center. The ion leak width was 

larger than the electron leak width, but the current profiles 

became closer together when the plasma density was 

increased. The measurements of Bosch and Merlino showed 

that the variations of the leak widths with gas pressure was 

close to 𝑝1/2 and that the leak widths varied as 𝐵−1 at 

relatively low magnetic field, and as  𝐵−1/2 at higher 

magnetic fields. The breakdown of the 𝐵−1 dependence of the 

leak width at high magnetic field and low pressure was 

attributed to the fact that collisional, ∝ 𝐵−2 diffusion was 

replaced by anomalous or Bohm, ∝ 𝐵−1 diffusion at higher 

magnetic field. Considering ambipolar diffusion across the 

magnetic field and assuming that the plasma in the cusps is 

flowing outward at approximately the ion acoustic speed, 

Bosch and Merlino12 derived the following approximate 

expression of the ring cusp leak width: 

𝑤𝐵𝑀
∗ ≈ (2𝐷̅𝑅 𝐶𝑠⁄ )1/2  

where 𝐷̅ is the electron cross-field diffusion coefficient, and 

𝐶𝑠 is the ion Bohm velocity. 𝑅 was the radius of the ring cusp. 

We generalize this expression to a picket fence or a multicusp 

geometry with a distance 𝑑 between cusps, by taking 𝑑 ≈ 2𝑅  

and the leak width becomes: 

𝑤𝐵𝑀
∗ ≈ (𝑑𝐷̅ 𝐶𝑠⁄ )1/2  

This expression is derived semi-empirically but it is 

interesting to look at the scaling of this expression with the 

different plasma parameters. 

The collisional diffusion coefficient 𝐷̅ can be written as: 

𝐷̅ =  
𝑘𝑇𝑒

𝑒

𝑒

𝑚𝑒

𝜈𝑒𝑁

𝜔𝑐𝑒
2
 

where 𝜈𝑒𝑁 is the electron-neutral collision frequency (the 

electron-ion Coulomb collision frequency should be added at 

high plasma densities). Introducing the electron mean free 

path 𝜆𝑒𝑁 = 𝑣𝑒 𝜈𝑒𝑁⁄ , we get: 

𝑤𝐵𝑀
∗ ≈ (

𝑑

𝜆𝑒𝑁
)

1/2

𝜌𝑒 (
𝑚𝑖

𝑚𝑒
)

1/4

                                             (3) 

The scaling of the leak width in that case is:  

𝑤𝐵𝑀
∗ ∝ 𝜆𝑒𝑁

−1/2𝑇𝑒
1/2𝑚𝑖

1/4𝐵−1 

The expression of Bosch and Merlino of eq. (3) can also be 

written 𝑤𝐵𝑀
∗ ≈ (

𝑑

𝜆𝑒𝑁
)

1/2

(𝜌𝑒𝜌𝑖,𝐵𝑜ℎ𝑚)
1/2

 i.e. is proportional to 

the hybrid gyroradius as in the expression of Hershkowitz et 

al. but if the hybrid radius in 𝑤𝐻
∗   is calculated for an ion 

velocity equal to the Bohm velocity and if the electron mean 

free path 𝜆𝑒𝑁 does not depend on electron temperature (which 

is generally not the case). If the  electron mean free path 𝜆𝑒𝑁 

is constant, the leak width scales as 𝑇𝑒
1/2 but if the electron 

collision frequency 𝜈𝑒𝑁 is constant, the leak width scales as 

𝑇𝑒
1/4. In argon, because of the Ramsauer minimum, the 

electron cross-section increases significantly between 0.1 and 

10 eV so the mean free path decreases with electron 

temperature. According to the expression above, the leak 

width 𝑤𝐵𝑀
∗  should therefore increase faster than 𝑇𝑒

1/2. 

The advantage of the Bosch and Merlino’s expression of the 

leak width is that it takes into account the gas pressure and 

distance between cusps. It is clear that the leak width should 

increase with gas pressure due to the increased collisional 

diffusion of electrons across the magnetic field. Since the 

electron mean free path is inversely proportional to the gas 

density or to the gas pressure 𝑝, the leak width of Bosch and 

Merlino scales as 𝑝1/2. Numerically, if the magnetic field in 

the electron and ion Larmor radii is taken as the maximum 

magnetic field (i.e. 𝐵0) in the expression of the leak width, 

the value of 𝑤𝐵𝑀
∗  can be actually much smaller than the 

measured one. For example, at 0.1 mtorr, the electron mean 

free path is several meters, much larger than  𝑑 (17 cm) in the 

experiment of Bosch and Merlino so that 𝑤𝐵𝑀
∗ =

(
𝑑

𝜆𝑒𝑁
)

1/2

𝑤𝐻
∗ ≪ 𝑤𝐻

∗ .  Bosch and Merlino12 and other authors11, 

13, 14 argue that in the expression of 𝑤𝐵𝑀
∗  , the diffusion 

coefficient (or the Larmor radii) should not be estimated at 

the point of maximum magnetic field. Bosch and Merlino 

estimate the diffusion coefficient at a point midway between 

the cusp and the filament. Cooper et al.11  mention that the 

Bosch and Merlino model uses “ill-defined fitting parameters 

𝐵 and 𝑑 which can always be selected to fit the data over a 

small scaling”. These authors developed a 1D numerical 

model based on the 0D model of Bosch and Merlino (i.e., with 

perpendicular cross-field diffusion and outward plasma flow 

through the cusp at the Bohm velocity). This allows to get a 

more self-consistent dependence of the leak width on the 

magnetic field. They find a good scaling with their 

experiment on the WiPAL multicusp plasma source11. 

Unfortunately, this paper does not show the measured 

variations of the leak width as a function of the different 

parameters (magnetic field, electron temperature, pressure 

…) that could be very useful for model comparisons. 

In recent experiments Hubble et al.15 were able to measure 2D 

electron density profiles around magnetic cusps using an 

original, non-intrusive diagnostic technique (Laser-Collision 

Induced Fluorescence). They deduce from these 

measurements that the leak width scaled as the hybrid 

gyroradius, with a scaling constant of proportionality 

increasing with pressure. 

Finally, a third expression of the leak width was derived by 

Koch and Mathieussent16: 
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𝑤𝐾𝑀
∗ =

2𝑑

𝜋
(

𝜌𝑒𝜌𝑖

𝜆𝑒𝜆𝑖
)

1/2

                                                       (4) 

The scaling of this expression with ion mass and magnetic 

field is 𝑚𝑖
1/4𝐵−1, i.e. is identical to that of Herskowitz et al. 

and Bosch and Merlino. However the leak width of Koch and 

Mathieussent is proportional to the gas pressure  𝑝 instead of  

𝑝1/2 in the expression of Bosch and Merlino. Note also that 

this leak width is proportional to the distance 𝑑 between cusps 

while the expression of Bosch and Merlino varies as 𝑑1/2.  

Bosch and Gilgenbach17 give a simple and interesting 

discussion of the scaling laws deduced from the different 

models. For example, they show that the expression 𝑤𝐾𝑀
∗  of 

Koch and Mathieussent can be considered as the continuation 

of that of Bosh and Merlino, 𝑤𝐵𝑀
∗ , when the pressure is large 

enough so that particle losses parallel to the magnetic field, 

in the cusps, can no longer be described by ions at the Bohm 

velocity, but must be represented by parallel ambipolar 

diffusion. In that case the expression of Bosch and Merlino 

can be re-written by replacing 𝐶𝑠 by 𝐷∥ 𝑑⁄  , with 𝐷∥ =
𝑘𝑇𝑒 (𝑚𝑖𝜈𝑖𝑁)⁄  where 𝜈𝑖𝑁 is the ion-neutral collision frequency 

and 𝑤𝐵𝑀
∗  becomes: 

 𝑤𝐵𝑀
∗ ≈ (𝑑𝐷̅ 𝐶𝑠⁄ )

1

2 → 𝑤𝐾𝑀
∗ ≈ 𝑑 (

𝑚𝑖

𝑚𝑒

𝜈𝑒𝑁𝜈𝑖𝑁

𝜔𝑐𝑒
2 )

1/2

= 𝑑 (
𝜌𝑒𝜌𝑖

𝜆𝑒𝜆𝑖
)

1/2

 

where we have used 𝜆𝑒𝑁 = 𝑣𝑒 𝜈𝑒𝑁⁄  and 𝜆𝑖𝑁 = 𝑣𝑖 𝜈𝑒𝑁⁄  . 

This expression is similar to that of Koch and Mathieussent. 

Again, the coefficients in front of these expressions are not 

accurate since these derivations are very approximative and 

only the scaling with the different parameters should be 

considered. The above derivation of Bosch and Gilgenbach 

provides a good justification of the (𝑑𝑝)1/2 scaling of the leak 

width of Bosch and Merlino, in comparison with the 𝑑𝑝 

scaling of Koch and Mathieussent. Note also that, for 

consistency, if the expression of Koch and Mathieussent is 

used, the velocity in the ion Larmor radius should be the ion 

thermal velocity and not the Bohm velocity. Therefore, the 

scaling of 𝑤𝐾𝑀
∗  𝑤ith temperatures is as (𝑇𝑒𝑇𝑖)

1/4 instead of 

𝑇𝑒
1/2 for 𝑤𝐵𝑀

∗ . 

It is interesting to look at the ranges of pressure where the 

leak width 𝑤𝐵𝑀
∗  or 𝑤𝐾𝑀

∗  should be used, for example in argon. 

The charge exchange cross-section 𝜎 of argon ions is on the 

order of 4x10-19 m2. Therefore, for a pressure of 1 mtorr (gas 

density 𝑁𝑔 on the order of 3.5x1019 m-3), the ion mean free 

path 𝜆𝑖𝑁 = 1 (𝑁𝑔𝜎)⁄   is about 7 cm. If the distance between 

magnets is on the order of 1 to 2 cm, the expression 𝑤𝐿,𝐵𝑀 of 

Bosch and Merlino should provide a good scaling up to 

several mtorr, while the expression 𝑤𝐾𝑀
∗  of Koch and 

Mathieussent would be probably better above 10 mtorr (i.e. 

for  pressures where cusp confinement is actually not 

efficient). 

Apart from these semi-empirical analytical determinations of 

the leak width of magnetic cusps, we can mention the particle 

simulations of Marcus et al.18 and of Takekida and Nanbu19. 

Marcus et al. .18  performed a 2D PIC simulation of a periodic 

“picket fence” for Maxwellian electron and ion velocity 

distribution functions and a collisionless plasma. The 

assumptions of this model were very similar to those of the 

resent paper (periodicity, Maxwellian distribution functions, 

method of generation of the plasma, see section III  below). 

Due to limitations on the computing power available at that 

time, they used unrealistic mass ratios  𝑚𝑖 𝑚𝑒⁄  (between 64 

and 256) and did not perform systematic parameter studies of 

the leak width. Nevertheless, they were able to confirm that, 

in their collisionless conditions, the ion leak width was on the 

order of the hybrid gyroradius and that the electron leak width 

was about twice smaller than the ion leak width (this however 

should depend on the plasma density, as shown by Bosch and 

Merlino12). 

The assumptions of the particle model of Takekida and 

Nanbu19 were different from those of Marcus et al.. The 

plasma was generated by a hot plasma filament placed in the 

center of a 2D cylindrical multicusp grounded plasma reactor. 

The computation domain included a section between two 

successive magnetic cusps of the circular cross-section of the 

reactor, assuming periodic boundary conditions. In this 

configuration of plasma generated by hot filament at a 

negative potential with respect to the chamber walls, there is 

a net current between the filament and the chamber walls. 

This is different from the conditions of the paper of Marcus 

et al. where the total electron and ion fluxes through the picket 

fence must be equal, or from the configuration of the present 

paper where the chamber walls are covered with a dielectric 

layer. Takekida and Nanbu used this model to study the 

variations of the plasma density and the potential distribution 

with magnetic field, number of magnets and pressure but did 

not provide information about the effective leak width of the 

chamber as a function of these parameters. 

III.  PIC MCC MODEL OF A MULTICUSP PLASMA 
SOURCE 

A. Simulation domain 

We consider a 2D rectangular geometry with line cusps 

infinite in the direction perpendicular to the simulation 

domain and periodic in the direction parallel to the walls, as 

shown in Figure 2. 

The walls are made of dielectric materials, i.e. the electron 

and ion fluxes to the wall must be identical at steady state. 

The dimensions of the domain in the simulations presented 

here are 𝐿𝑥 = 4 cm and 𝐿𝑦 = 2  cm . The distance between 

cusps is 𝑑 = 1  cm . The magnetic field intensity (top) 

decreases exponentially from the walls. Electrons are 

thermalized (see section III.E) inside the region indicated by 

the dashed lines. 
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Figure 2: Simulation domain for the 2D PIC MCC simulation of 

magnetic cusps. The axial distribution of the magnetic field 

intensity is shown on top of the simulation domain  

Because of the symmetries of the problem, the simulation 

domain can be divided in two in each direction. Most 

simulations have been performed in the grey domain of 

Figure 2, with symmetry boundary conditions on the right 

boundary, periodic boundary conditions for the potential and 

charged particle reflection on the top and bottom boundaries 

(we checked that these boundary conditions lead to the same 

results than the simulation of the whole domain). This can 

significantly speed up the simulations. The boundary 

condition for the wall potential in Poisson’s equation is 

obtained from the calculated surface charge (see sections 

III.C and III.E). 

B. Magnetic field distribution 

We use an analytical expression of the magnetic field derived 

by Lieberman and Lichtenberg20 based on a first order 

development in the assumed small parameter Δ 𝑑⁄  where Δ is 

the width of the magnets and 𝑑 their distance (see Figure 2). 

In this approximation, the x and y components of the 

magnetic field due to the magnets on the left side of the 

simulation domain can be written as: 

𝐵𝑥 = 𝐵0sin (
𝜋𝑦

𝑑
) 𝑒−

𝜋𝑥

𝑑         𝐵𝑦 = −𝐵0cos (
𝜋𝑦

𝑑
) 𝑒−

𝜋𝑥

𝑑  

 
Figure 3: Distribution of the magnetic field (color scale)  and 

magnetic field lines (black lines) used in the simulations. B0 is 

the magnetic field intensity on the dielectric wall. 

Note that the magnetic field intensity 𝐵 = √𝐵𝑥
2 + 𝐵𝑦

2
=

𝐵0𝑒−
𝜋𝑥

𝑑   does not depend on  𝑦. The magnet width Δ does not 

affect the magnetic field distribution but only the value of 𝐵0. 

Since we assume low 𝛽 plasma conditions, the magnetic field 

is not modified by the plasma and is not re-calculated during 

the simulation. This is justified since the electron pressure 

𝑝𝑒 = 𝑒𝑛𝑒T𝑒 (the electron temperature T𝑒 is expressed in eV) 

in our conditions is typically less than 2x10-3 Pa (plasma 

density of a few 1015 m-3 and electron temperature of a few 

eV) while the magnetic pressure 𝑝𝐵 = 𝐵2 2𝜇0⁄  is on the order 

of 5x10-3𝐵𝐺𝑎𝑢𝑠𝑠
2 . Therefore 𝛽 = 𝑝𝑒 𝑝𝐵⁄  is much smaller than 

1 in our conditions, even for magnetic fields where the 

magnetization of electrons is negligible. For larger plasma 

densities, typical of low temperature plasma sources, i.e. on 

the order of 1018 m-3, 𝛽 becomes closer to 1 for magnetic 

fields of about 5 G, i.e. at the entrance of the cusp region. The 

study of possible consequences of larger values of 𝛽 in this 

region is outside the scope of this paper.  

C. Particle-In-Cell Monte Carlo Collision model 

The particle simulation code used in this paper is the same as 

the one described in previous publications21-25.  It is an 

explicit electrostatic 2D Particle-In-Cell Monte Carlo 

Collisions code. The code is parallelized in the Open MP 

framework and has been run on multi-core processors with up 

to 12 cores. The results of the simulations have been cross-

checked with those obtained from two other similar codes 

developed separately26, 27 and using a hybrid Open MP + MPI 

parallelization method. The agreement between the different 

codes was better than 5 % for the leak width over the range 

of parameters considered in this paper. The parallelization of 

these codes is based on particles (i.e. similar number of 

particles are treated in parallel on each core). 

The model uses a classical leap-frog Buneman-Boris 

algorithm28 for the time integration of the charged particles 

trajectories. Time integration is explicit, i.e. the electric field 

is calculated from Poisson’s equation at the beginning of each 

time step and is supposed to be constant when the particles 

are moved over one time step. Charged particle reaching the 

dielectric wall are not reflected. The surface charge is 

calculated by integrating the current densities to the dielectric 

wall and the potential boundary conditions on the wall is 

calculated as described in section III.E. Explicit simulations 

imply constraints on the time step and grid spacing28, 29. We 

used a 192x96 nodes grid over the 2 cm x 1 cm simulation 

domain in the simulations presented here. The grid spacing 

𝛿𝑥 (≈ 100 μm) and integration time step 𝛿𝑡 (= 5x10-11 s)  

were such that 𝛿𝑥 𝜆𝐷 ≈ 0.7⁄  and 𝜔𝑝𝛿𝑡 ≈ 0.2 where 𝜆𝐷 and 

𝜔𝑝 are respectively the electron Debye length and plasma 

frequency. For large values of the magnetic field (on the order 

of 0.1 T), the time step was therefore such that 𝜔𝑐𝛿𝑡 ≈ 1 

where 𝜔𝑐 is the maximum electron cyclotron frequency. This 

corresponds to about 6 integration time steps over one 

electron gyroradius (the cyclotron period is 2𝜋 𝜔𝑐⁄ ). We 



 

 

6 

checked that decreasing the time step by a factor of 2 did not 

change significantly the collected current and leak width. We 

also performed simulations with larger number of grid points 

(256x128 and 512x256). The maximum differences in the 

calculated potential distribution was less the 0.5 V, and the 

change in the collected current was not significant. The 

average number of charged particles per cell was about 50 in 

the results presented below. We checked the convergence of 

the results with the number of particles per cell. The results 

of these tests are shown in section VI. 

The Monte Carlo Collisions module is implemented as 

described in Ref. 29. Electron and ion collisions with atoms in 

the ground state are considered (atoms are supposed to be at 

ambient temperature and the atom velocity is neglected with 

respect to the electron and ion velocities in the collision 

process). The collision cross-sections and others parameters 

are described in section III. D below.  

D. Collisions cross-sections and characteristic length and 

time scales. 

The electron-argon cross-section are taken from the 

simplified set of A.V. Phelps in the LXcat database30 plotted 

in Figure 4. In this cross-section set the electronic excitation 

cross-sections are grouped in one single cross-section of 

threshold 11.5 eV.  Therefore, three electron cross-sections 

are considered, momentum exchange, excitation and 

ionization (ionization is treated as an excitation, see III.F)). 

In this paper we consider gas pressures from 0.01 mtorr to a 

few mtorrs. The gas density 𝑁𝑔 at 1 mtorr is about 3.5x1019 

m-3 and the electron-neutral momentum cross-section of a 3 

eV electron is on the order of 𝜎 ≈ 2x10-20 m2 (Figure 4). The 

mean free path 𝜆𝑒𝑁 = 1 𝑁𝑔𝜎⁄  of a 3 eV electron therefore 

varies from 150 m at 0.01 mtorr, to 0.5 m at 3 mtorr, while 

the electron-neutral collision frequency 𝜈 = 𝑁𝑔𝜎𝑣 varies 

approximately from 3x104 s-1 to 107 s-1 in the same pressure 

range. Note that because of the Ramsauer minimum in argon, 

the electron-neutral momentum cross-section increases by a 

factor of 10 between 1 eV and 10 eV, so the momentum 

collision frequency also increases by a factor of 10 while the 

electron mean free path decreases by a factor of 10 in this 

energy range. 

 
Figure 4: Simplified set of electron-argon cross-section (from the 

Phelps data base in LXcat 30). 

The ion-neutral charge exchange cross-section is taken as a 

constant in the smulations, equal to 4x10-19 m2. The ion mean 

free path for charge exchange collisions therefore varies from 

10 m at 0.01 mtorr, to 3 cm at 3 mtorr. These dimensions are 

larger than the dimensions of our simulation domain. Since 

the ions are practically not magnetized in our conditions, and 

are not trapped by the magnetic field, we can consider that the 

ion-neutral collisions do not play an essential role in our 

pressure range. 

For electron and ion temperatures of 2 eV and 0.5 eV 

respectively, which are typical of the simulations below, the 

electron and ion gyroradii, 𝜌𝑒 and 𝜌𝑖,  in argon and for a 

magnetic field of 100 G are respectively on the order of 0.25 

mm and 5 cm (and are smaller for larger magnetic fields). 

Since the cusp length 𝑑 is 1 cm in our simulations, we can say 

than the ions are not magnetized for  𝐵 = 100 G. For the 

largest magnetic fields used in the simulation, on the order of 

𝐵 = 1000 G, the minimum ion gyroradius is about 5 mm. 

Since the leak width in that case is smaller than the ion 

gyroradius we can still consider that ions are not or are only 

weakly magnetized.  

The electron Debye length 𝜆𝐷 in the simulations is about 0.1 

mm, is close to the electron gyroradius for low magnetic 

fields and about 4 times larger than 𝜌𝑒  for 𝐵 = 1000 G.  

Finally, note that because electrons returning to the plasma 

center (electron thermalization region of Figure 2) are 

thermalized at a relatively high frequency (i.e. their velocity 

is modified according to an isotropic Maxwellian distribution 

at 𝑇𝑒), electrons cannot be trapped in the simulation, even if 

their velocity is not in the loss cone. The thermalizing 

frequency was 109 s-1 in the simulations. Since the transit time 

of a 2 ev electron from the cusp to the plasma is on the order 

of 10-8 s, most electrons outside the loss cone are reflected 

only once before their velocity is changed. We performed 

simulations with a lower thermalization frequency of 108 s-1 

without significant changes in the results, even at low 

pressures, but a more systematic study of this parameter 

would be useful in the collisionless case. 

E. Charging of the dielectric walls 

The presence of dielectric walls is approximated in the 

simulation by capacitances placed at each segment of the grid 

along the dielectric surface. For example, if a particle reaches 

the left dielectric surface between the nodes (i=1, j), and (i=1, 

j+1), the potential at (i=1,j) is incremented as follows: 

𝑉1,𝑗 = 𝑉1,𝑗 ± 𝑝𝑗𝛼𝛿𝑡 

where 𝛼 is a constant (in V/s), 𝛿𝑡 is the time step, and the 

± sign corresponds to ions or electrons. Physically, 𝛼𝛿𝑡 ≡
𝛿𝑄 𝐶⁄  is proportional to the charge carried by the 

superparticle and inversely proportional to a capacitance 

 𝑝𝑗 is an interpolating factor associated with the 𝑦 position of 

the particle reaching the surface: 𝑝𝑗 =

(𝑦𝑗+1 − 𝑦) (𝑦𝑗+1 − 𝑦𝑖)⁄ .  At the same time the potential at  

𝑉1,𝑗+1 is incremented as:  𝑉1,𝑗+1 = 𝑉1,𝑗+1 ± (1 − 𝑝𝑗)𝛼𝛿𝑡. 
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F. Plasma generation and electron heating 

In these simulations the plasma is not generated according to 

a specific type of electron heating, and ionization is not 

treated self-consistently (ionization is considered as an 

electronic excitation collision in the Monte Carlo module). 

We start the simulation with a given, uniform, plasma 

density. Each time an ion is lost to the walls, an electron-ion 

pair is randomly generated in the center of the plasma (the 

region defined by dashed lines in Figure 2). Nothing is done 

when an electron is lost to the walls. Doing this, the total 

number of ions in the domain, i.e. the averaged ion density is 

kept constant. This procedure (similar to that used by Marcus 

et al.18) is much easier to handle than describing self-

consistently the plasma generation since the plasma density 

is somewhat imposed. In order to impose a constant electron 

temperature, in the simulation domain, electrons present in 

the “electron heating” region of Figure 2 (identical to the 

plasma generation region) are thermalized at a constant 

frequency (109 s-1 in the present simulations). This means that 

their velocity is changed at this frequency according to a 

Maxwellian distribution at 𝑇𝑒. Of course, this is equivalent to 

imposing fictitious collisions in this region, which contributes 

to un-trapping the electrons from the magnetized trajectories. 

If the electron thermalization region is sufficiently far from 

the walls, the magnetic field is low in that region and the 

electron heating only represents a small perturbation. 

G. Definition of the leak width 

The leak width in the experiments is defined as the full width 

at half maximum (FWHM), 𝑤∗ , of the profiles of electron 

and ion fluxes to the walls. It is also possible to use this 

definition in the simulations.  

Another, more useful and more precise way of defining the 

leak width (noted  𝑤 in the following) in the simulations is to 

say that the losses to the wall are reduced by a factor 𝑤 𝑑⁄  in 

the magnetic case compared with the unmagnetized case for 

the same plasma density 𝑛 and electron temperature 𝑇𝑒 (i.e. 

same Bohm velocity 𝑢𝐵). This definition is used for example 

in the text book of Liebermann and Lichtenberg20 (page 158).   

𝑤 𝑑⁄  is obtained by calculating the total electron (or ion) 

current to the walls (per unit length in the perpendicular 

direction), 𝐼𝐵 , and to compare it with the current 𝐼0 calculated 

in the same plasma conditions without magnetic field. 𝑤 𝑑⁄  

is equal to the ration 𝐼𝐵 𝐼0⁄ .  𝐼𝐵 is deduced from the simulation 

by  𝐼𝐵 = ∫ 𝑗(𝑦)𝑑𝑦 , where 𝑗(𝑦) is the current density profile 

and the integral is performed over a cusp length 𝑑. 𝐼0 is 

deduced from a simulation without magnetic field and should 

be close to  𝐼0 = 𝑗0𝑑 = 𝛼𝑒𝑛𝑢𝐵𝑑, with 𝛼 ≈ 0.6 (𝛼𝑛  is the 

plasma density at the sheath edge).  

The ratio or loss fraction,  𝑟 = 𝑤 𝑑⁄ = 𝐼𝐵 𝐼0⁄   fully 

characterizes the confinement capability of the cusps. This 

way of defining the leak width is more useful than the FWHM 

because 𝑟 can be directly used in fluid models or global 

models to characterize the losses to the walls. In a global 

model of a cusped plasma source of density 𝑛 and Bohm 

velocity 𝑢𝐵, the number of charged particles lost to the walls 

per unit time and per unit length in the perpendicular direction 

would simply be 𝛼𝑟𝑛𝑢𝐵. 

The relation between the loss fraction 𝑟 = 𝑤 𝑑⁄  defined 

above and the loss fraction 𝑟∗ = 𝑤∗ 𝑑⁄  defined from the 

FWHM leak width can be obtained if one assumes that the 

peak of the current density profile (i.e. in the cusp center, 

where the magnetic field is perpendicular to the wall) is close 

to the current density without magnetic field. In that case, one 

can write 𝑟 = ∫ 𝑗(𝑦)𝑑𝑦 (𝑗0𝑑)⁄ .  

Obviously, for the same total loss to the wall, 𝑟∗ will depend 

on the shape of the current density distribution (while 𝑟 will 

not). For example, if 𝑗(𝑦) is a Gaussian, i.e.  𝑗(𝑦) =

𝑗0exp [−
(𝑦−𝑦0)2

2𝜎2 ], where 𝑦0  is the position of the cusp center, 

one can easily show that  𝑟∗ = 2√2ln (2)𝜎, and 𝑟 ≈ √2π𝜎 

(provided that that 𝜎 be sufficiently small with respect to 𝑑). 

Therefore, 𝑟∗ 𝑟 = 2√ln (2) π⁄ ≈ 0.94⁄ . 

For a sinusoidal profile 𝑗(𝑦) = 𝑗0cos [−
π(𝑦−𝑦0)

𝑑
], with 

𝑗(𝑦0 ± 𝑑 2⁄ ) = 0 between cusps, one can show that 

𝑟∗ 𝑟 = √π 3⁄ ≈ 1.02⁄   In both cases the two definitions give 

leak widths that are relative close to each other, with a relative 

difference smaller than 5%. However this difference depends 

on the current density profile (which varies with magnetic 

field), may be significantly larger for other profiles, and the 

assumption that the peak of the current density profile is close 

to the current density without magnetic field becomes invalid 

when the magnetic field increases and the leak width 

decreases, as will be seen in the result section IV.   

For the above reasons, we choose to calculate the leak width  

𝑤 and loss fraction 𝑟 instead of 𝑤∗ and 𝑟∗ in the rest of the 

paper. We will compare the calculated 𝑟 and 𝑟∗ in a few cases 

in section V.E. 

IV.  ANALYSIS OF THE SIMULATION RESULTS 

In this section we discuss the space distribution of the plasma 

properties for a particular but typical case: argon, 0.1 mtorr, 

B0=400 G, Te=2 eV, Ti=0.5 eV. Results for different values 

of these parameters are qualitatively similar. 

 

Figure 5: Contour plot  of the electric potential (color and black 

lines).  B0=400 G, Argon, 0.1 mtorr, Te= 2 eV, Ti=0.5 eV 

(magnetic field of Figure 3). Some magnetic field lines are also 

shown for y>5 mm (blue lines). 
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Figure 6 : Electric potential profiles as a function of transverse 

position y for different axial positions x. Same conditions as 

Figure 5: B0=400 G, Argon, 0.1 mtorr, Te= 2 eV, Ti=0.5 eV 

(magnetic field of Figure 3). 

Figure 5 shows a contour plot of the electric potential around 

one cusp, in the greyed region of Figure 2. We see that the 

potential along the left dielectric wall is about 3 V above the 

plasma potential between the cusps and is about 11 V below 

the plasma potential in the cusps. Therefore, positive ions 

tend to be pushed away from the wall by the electric field 

between the cusps and are guided by the potential toward the 

cusps. Between cusps, the electric field tends to attract 

electrons toward the wall and to repel ions. In the cusps, 

where the magnetic field is perpendicular to the wall, the 

situation is opposite. Electrons are moving along the 

magnetic field lines and the field accelerates ions toward the 

wall and repel electrons, as in a usual, un-magnetized sheath. 

Some magnetic field lines are superimposed to the electric 

potential contours of Figure 5 for comparisons. In a 

magnetized plasma it is often assumed that the electric force 

per unit volume is balanced by the electron pressure gradient 

along a magnetic field line. This implies that the electron 

density along a magnetic field line is related to the potential 

along this line though a Boltzmann distribution i.e. the 

potential can be written as  𝑉 = 𝑉∗ +
𝑘𝑇𝑒 𝑒⁄ ln(𝑛𝑒 𝑛0⁄ ) where 𝑉∗  is constant along a magnetic field 

line and 𝑛0 is a constant. Magnetic field lines and 

equipotential contours therefore tend to be aligned for small 

electron temperatures or small plasma density gradients. In 

the conditions of Figure 5, the difference between 

equipotential contours and B-field lines is associated with the 

large electron density gradients in the cusps and between 

cusps. 

Figure 6 displays the profiles of the electric potential as a 

function of the y position, for different axial positions. We 

can clearly see how ions are guided to the cusps by the 

potential. Note that the maximum potential drop from the 

plasma to the cusp is slightly larger than 10 eV. This is close 

to the theoretical potential drop in an un-magnetized sheath-

presheath, which is 𝑇𝑒 2⁄ [1 + 𝑙𝑛 (
𝑚𝑖

2𝜋𝑚𝑒
)], i.e. about 5.2𝑇𝑒 in 

argon. The total potential drop for a 2 eV electron temperature 

is therefore 10.4 eV, close to the  simulation results. 

The existence of potential maxima along the wall between the 

cusps, i.e., in the region where the magnetic field is parallel 

to the surface (regions in red color in Figure 5) is consistent 

with the electric potential measurements of Hershkowitz et 

al.6 in the picket fence configuration, and with the particle 

simulations of Marcus et al.18.  

The electron and ion fluxes to the dielectric wall are very 

small between the cusps and increase sharply around the 

cusps, as can be seen in Figure 7 which displays the profiles 

of electron current density to the walls for different values of 

the magnetic field B0. The ion current density to the wall is 

identical with an opposite sign at steady state (the total current 

to the wall must be zero at each position on the dielectric). As 

expected, the full width at half maximum of the current 

density to the wall decreases when the magnetic field 

increases (a detailed study of the magnetic field dependence 

of the leak width is done in section V). The current density in 

the center of the cusp in Figure 7 is on the order of 0.6 A/m2 

for magnetic fields lower than 200 G. As was assumed in the 

discussion of section III.G, this is close to the current density 

in the absence of magnetic field (for a plasma density of 

3x1015 m-3 and a Bohm velocity of 2x103m/s, the current 

density to the wall would be 𝑗0 ≈ 0.6𝑒𝑛𝑢𝐵 ≈ 0.6 A/m2). 

However this is no longer true for larger magnetic fields and 

the peak current density increases to 0.8 A/m2 for a magnetic 

field of 1200 G. 

It is often mentioned, in the literature on magnetic cusps (see, 

e.g., Leung et al.5), that the leak width corresponding to high 

energy electrons tend to be smaller than the leak width of bulk 

electrons. This is important when the plasma is sustained by 

hot filaments, since the filaments are usually at a potential 

significantly lower than the plasma potential, e.g. -60 V with 

respect to the plasma potential. Therefore, at low pressure 

electrons of energy up to 60 eV are likely to interact with the 

cusps.  

 

Figure 7: Profiles of the electron current density on the dielectric 

surface (the ion density is identical) in argon, 0.1 mtorr, Te=2 eV, 

Ti=0.5 eV, for different values of the magnetic field B0. 
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Figure 8: Profiles of the electron current density to the wall for 

electrons in different energy ranges. B0=1200G, 0.1 mtorr, Te=2 

eV, Ti=0.5 eV. The normalized current is also plotted in a linear 

scale for the electron energy ranges 0-5 eV and above 20 eV. 

In our case, the electron velocity distribution is Maxwellian 

but it is possible to estimate the leak width as a function of 

electron energy. In the PIC MCC simulation, this can be done 

by calculating the electron flux or current density to the wall 

as a function of electron energy. 

Figure 8 shows the current density profiles on the dielectric 

surface, of electrons in different energy ranges. The 

simulations confirm that the leak width decreases with 

increasing electron energy. For electrons with energy higher 

than 20 eV, the average leak width is about twice smaller than 

the leak width of electrons of energy below 5 eV. Figure 9 

shows a contour plot of the ion density and Figure 10 displays 

the axial profiles of the electron and ion densities at different 

y positions. The electron and ion density are very close 

together and very small in the region between cusps. In the 

cusp (y=5 mm and y=5.8 mm, Figure 10) an ion sheath is 

present next to the dielectric surface. Plasma ions start to be 

accelerated (presheath) toward the cusp at the limit of plasma 

generation region. 

 

 

Figure 9: Contour plot of the ion density in the conditions of 

Figure 5: B0=400 G, Argon, 0.1 mtorr, Te= 2 eV, Ti=0.5 eV. 

 

Figure 10: Electron and ion densities profiles as a function of axial 

position x for different transverse positions y. The symbols 

correspond to the electron density profiles. Same conditions as 

Figure 5: B0=400 G, Argon, 0.1 mtorr, Te= 2 eV, Ti=0.5 eV. 

The sheath in the cusp center (y=5 mm) can be seen in more 

detail in Figure 11. For low magnetic fields (100 G) the sheath 

is very similar to a classical unmagnetized sheath. The 

potential drop in the presheath is close to 𝑇𝑒 2⁄  as in an 

unmagnetized plasma and the total potential drop in the 

sheath-presheath is consistent with the theory for an 

unmagnetized plasma, as mentioned above. When the 

magnetic field is increased to 400 G and 800 G, the sheath 

structure is different and we observe on Figure 11 a space 

charge inversion or double layer. A region of negative space 

charge appears between the ion sheath and the plasma.  

 

 
Figure 11: Top: profiles of the charged particle densities and 

electric potential close to the dielectric surface in the cusp center 

(y=5 mm) showing the wall sheath for three values of the 

magnetic field B0  (argon, 0.1 mtorr). The dashed black line 

corresponds to a potential drop of 1 eV (Te/2) from the plasma 

center. Bottom: 2D distribution of the space charge density (ni -

ne) in the 400 G case plotted between -0.2 and +0.2x1015 m-3 

(maximum is 0.6x1015 m-3). 
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Figure 12: Contour plot of the electron temperature in the 

conditions of Figure 5: B0=400 G, Argon, 0.1 mtorr, Te= 2 eV, 

Ti=0.5 eV. 

The change of sign of the space charge in the cusp can be 

clearly seen on the 2D distribution displayed at the bottom of 

Figure 11. This unusual structure of the sheath region is due 

to the mirror effect in the cusp, i.e. to the reflection of 

electrons that are out of the loss cone. In spite of this different 

structure of the sheath we note that the total potential drop 

from the plasma to the wall is not strongly affected. For 

𝐵0=400 G, the potential drop is close to the potential drop of 

an unmagnetized sheath-presheath. For 𝐵0=800 G the 

potential drop is larger by about 1 V. In both cases, the 

potential at the sheath entrance (where 𝑛𝑒 = 𝑛𝑖 ) is slightly 

larger than 𝑇𝑒 2⁄ . 

The space distribution of the electron temperature is 

displayed in Figure 12. We see that the electron temperature 

is well maintained at 2 eV in a large part of the plasma region 

up to the cusp region, except between cusps, in the region just  

before the decay of the charged particle densities toward the 

wall. In this region the electron temperature is larger, on the 

order of 3 eV. This is due to the fact that the potential 

increases from the plasma to the dielectric wall, between 

cusps (see Figure 9). 

 

Figure 13: Axial profiles of the ion mean kinetic energy at two y 

locations; in the center of a cusp, y=5 mm and at  a mid-position 

between two cusps, y=10 mm. Same conditions as Figure 5: 

B0=400 G, Argon, 0.1 mtorr, Te= 2 eV, Ti=0.5 eV. 

The axial profile of the ion mean energy is shown in Figure 

13 at two y locations, in the middle of the cusps (y=5 mm), 

and between two cusps (y= 10 mm). In the cusp, we clearly 

see the ion acceleration toward the wall in the presheath and 

in the sheath. The sheath entrance is located at about 1 mm 

from the surface (see the electron and ion density profiles at 

y= 5 mm in Figure 10 and Figure 11). The 1 mm sheath length 

in the cusp center i.e. about 10 electron Debye lengths. The 

ion mean kinetic energy at the sheath entrance is between 1 

and 2 eV, which consistent with an energy gain of 1 eV in the 

presheath (the potential drop in the presheath should be on the 

order of Te/2, i.e. close to 1 eV).  

We also note that the ion mean kinetic energy in the plasma 

and between cusps is slightly less than 0.4 eV, i.e. 

significantly lower than the mean energy (3/2Ti=0.75 eV) 

corresponding to the temperature (Ti=0.5 eV) at which ions 

are injected in the plasma. This is attributed to the fact that 

the high energy ions of the plasma are lost to the dielectric 

wall between cusps (in contrast with electrons, ions are not 

thermalized  in the plasma generation region; we checked that 

this had no significant consequences on the results).   

V.  SCALING LAWS 

We performed systematic PIC MCC calculations in order to 

compare the scaling laws that can be deduced from the 

simulations to those of the different (empirical) theories. The 

parameters that can be varied in the simulations are the 

magnetic field intensity at the surface, B0, the gas pressure p, 

the electron temperature, ion temperature and ion mass.  

A. Scaling with magnetic field 

 

Figure 14: Leak width normalized to the distance between cusps 

as a function of magnetic field at the dielectric surface, for 

different values of the gas pressure. Argon, Te=2 eV, Ti=0.5 eV. 

The variations of the normalized hybrid radius (1 𝐵⁄  dependence) 

and a 1 𝐵1/2⁄  curve are also shown for comparisons.  The hybrid 

radius is calculated for an ion velocity equal to the Bohm 

velocity. A useful parameter to characterize collisional cross-

field transport is the Hall parameter ℎ = 𝜔𝑐𝑒 𝜈𝑒𝑁⁄  . The electron 

collision frequency 𝜈𝑒𝑁 is on the order of 2x105 s-1 at 1 mtorr, so 

the Hall parameter at 1 mtorr and 100 G is about 104 (and ℎ is 

proportional to𝐵 𝑝⁄  ). 
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All the calculations were performed in argon (when the ion 

mass was used as a parameter, the argon cross-section were 

kept the same, and the ion mass was varied). We used the 

numerical model described in section III. As in the previous 

sections the simulation domain was reduced to the grey 

region of Figure 2  to take into account the symmetry of the 

problem while reducing the computation time.  

In the results below, unless indicated otherwise, the leak 

width is deduced, as described in section III.G, from the ratio 

of the total collected electron or ion current , 𝐼𝐵  , at the 

dielectric wall with magnetic field to the current collected 

without magnetic field, 𝐼0. 𝐼𝐵  is calculated with the PIC MCC 

simulation in the cusp configuration while 𝐼0 , is calculated 

with the PIC MCC simulation for a zero magnetic field. We 

plot the dimensionless ratio  𝑤 𝑑⁄ = 𝐼𝐵 𝐼0⁄ . 𝑤 𝑑⁄  should tend 

to 1 when there is no confinement (low values of the magnetic 

field, or high pressure).  

 Figure 14 displays the variations of the normalized leak 

width with magnetic field, for different values of the pressure 

in argon, and for fixed electron and ion temperatures (2 eV 

and 0.5 eV, respectively). The hybrid radius (𝜌𝑒𝜌𝑖)
1/2 (with 

the ion velocity in the ion gyroradius taken as the Bohm 

velocity) is also shown for comparisons. 

As expected, 𝑤 𝑑⁄ → 1 when the magnetic field goes to zero 

(no confinement). The decrease of leak width with magnetic 

field at constant pressure does not scale perfectly with 1 𝐵⁄  , 

as seems to be the case in the experiments and “theory” 

reported by  Hershkowitz et al. or Bosch and Merlino (see 

section II) at low pressures.  

We recall here that the measurements of Hershkowitz et al. 

were in agreement with the expression 𝑤𝐿,𝐻 ≈ 4(𝜌𝑒𝜌𝑖)
1/2 of 

the leak width, while Bosch and Merlino proposed a leak 

width of the form 𝑤𝐿,𝐵 ≈ (2𝐷̅𝑅 𝐶𝑠⁄ )1/2. Both expressions 

lead to a 1 𝐵⁄  dependence of the leak width with the magnetic 

field.  The results of Figure 14 show that the leak width 

variations at low pressure (0.1 mtorr) could be fitted by a 𝐵−1 

curve at low magnetic fields, but that the variations with 𝐵 

are slower than 𝐵−1 (and get closer to 𝐵−1/2) at high 𝐵 fields. 

At higher pressure (see the 1.6 mtorr case in Figure 14) the 

variations with B are much slower than 1 𝐵⁄  at low magnetic 

fields and the confinement is less effective. 

B. Scaling with gas pressure 

The results are plotted as a function of gas pressure 𝑝 for 

different values of the magnetic field in Figure 15. We see 

that the normalized leak width scales well with 𝑝1/2 at high 

enough pressure. This is consistent with the scaling of the 

expression of the leak width provided by Bosch and Merlino, 

𝑤𝐵𝑀
∗ ≈ (𝑑𝐷̅ 𝐶𝑠⁄ )1/2 where 𝐷̅ is the classical, collisional 

electron diffusion across the magnetic field and is 

proportional to the electron collision frequency, and hence to 

the gas pressure.  

 

Figure 15: Leak width normalized to the distance between cusps 

as a function of gas pressure for different values of the magnetic 

field at the dielectric surface. Argon, Te=2 eV, Ti=0.5 eV. The 

full black lines correspond to 𝑝1/2 variations.   

The 𝑝 dependence of the leak width predicted by the 

expression of Koch and Mathieussent does not appear in the 

range of pressure considered in Figure 15. 

At low pressures, the normalized leak no longer depends on 

pressure and reaches a constant value, which is the 

collisionless leak width.   

C. Scaling with electron and ion temperatures 

 In the expression of  Bosch and Merlino, the leak width 

scales as 𝑇𝑒
1/2 with electron temperature assuming a constant 

electron mean free path. It is therefore interesting to look at 

the predictions of the PIC MCC simulation for the 

dependence of the leak width with electron and ion 

temperature.  

 

 
Figure 16: Leak width normalized to the distance between cusps 

as a function of electron temperature,  for different values of the 

gas pressure. Argon, 400 G, Ti=0.5 eV. The full black lines 

correspond to 𝑇𝑒
1/2 variations.   
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Figure 16 displays the normalized leak width as a function of 

electron temperature for different gas pressures. We see on 

this figure that the variations of the leak width with electron 

temperature is slightly faster than  𝑇𝑒
1/2 in some cases and is 

always much faster than 𝑇𝑒
1/4. As discussed in section II, the 

expression 

 𝑤𝐵𝑀
∗ ≈ (

𝑑

𝜆𝑒𝑁
)

1

2
𝜌𝑒 (

𝑚𝑖

𝑚𝑒
)

1

4
= (

𝑑

𝜆𝑒𝑁
)

1

2
(𝜌𝑒𝜌𝑖,𝐵𝑜ℎ𝑚)

1

2  

of Bosch and Merlino varies as 𝑇𝑒
1/2 if the electron mean free 

path 𝜆𝑒𝑁 is constant. In argon 𝜆𝑒𝑁  decreases with electron 

temperature because of the Ramsauer minimum so the fact 

that the calculated leak width is faster than  𝑇𝑒
1/2 is consistent 

with the theory of Bosch and Merlino. 

We also performed simulations with a constant electron 

temperature of 2 eV, and for ion temperatures between 0.05 

eV and 1 eV. The leak width was found to be practically 

independent of ion temperature. Therefore, the use of the 

hybrid radius gives a good scaling of the leak width (see 

Figure 14) if the ion velocity in the expression of the ion 

Larmor radius is taken as the Bohm velocity and not the 

thermal velocity.  

D. Scaling with ion mass 

Finally, we looked at the influence of the ion mass on the leak 

width. Figure 17 shows the variations of the normalized leak 

width with ion mass for different combinations of magnetic 

field and pressure. It is interesting (and surprising) to note that 

the calculated leak width does not scale as 𝑚𝑖
1/4  as suggested 

by the experimental results and empirical model of 

Herskowitz et al. and Bosch and Merlino. 

 

 

Figure 17: Leak width normalized to the distance between cusps 

as a function of ion mass, 𝑚𝑖, for different combinations of 

magnetic field at the dielectric surface and gas pressure. Te=2 eV, 

Ti=0.5 eV. The full black lines indicate 𝑚𝑖
1/4 variations 

(suggested by the results of Hershkowitz et al.4 and Bosch and 

Merlino12), and   𝑚𝑖
0.1 variations (best fit to the PIC MCC results 

in these conditions). 

 

Figure 18: Normalized leak width in argon at 0.1 mtorr as a 

function of magnetic field. The red lines and symbols 

corresponds to the PIC MCC simulations presented in this paper 

(open red symbols are the same as in Figure 14 at 0.1 mtorr and 

are obtained as described in section III.G, i.e. from 𝑤 𝑑⁄ = 𝐼𝐵 𝐼0⁄   

; full red symbols are deduced from the FWHM of the simulated 

current density profile, which can be obtained for example from 

Figure 7). The blue line corresponds to the measured FWHM leak 

width of Hershkowitz et al.4 (obtained from Table I of their 

paper) normalized to the wire separation of 2.2 cm. The green 

square symbol corresponds to the measurement of Bosch and 

Merlino12 in a ring cusp, normalized to the 17 cm diameter of the 

ring cusp. The green triangle symbol is a corrected value of this 

normalized leak width, for a cusp separation of 1 cm (see text). 

The variations of the leak with the ion mass 𝑚𝑖 is slower than 

𝑚𝑖
1/4 and close to a 𝑚𝑖

0.1 law in the examples of Figure 17. 

This result has been carefully checked with the three different 

PIC MCC simulation codes used in this paper. We do not 

have, at the moment a clear explanation of this result. 

E. Comparisons with experiments 

The scaling of the leak width with different parameters such 

as magnetic field, gas pressure, electron temperature can be 

easily compared with available experimental measurements, 

as done above. The values of the leak width in simulations 

and in different experiments are more difficult to compare 

because of the variety of geometry and magnetic field 

configurations. For example, Hershkowitz et al. used a picket 

fence configuration with a separation of 2.2 cm between 

wires, Bosch and Merlino did their experiments in a 17 cm 

diameter ring cusp and in a point cusp. To our knowledge the 

only published systematic measurements with multicusp 

magnets have been performed in the WiPAL plasma source 

and reported by Cooper et al. in Ref.11. However, as said 

above, Cooper et al. presented global comparisons with 

previous empirical models and with a more accurate model 

that they developed, but did not show in this paper the 

variations of the measured leak width with the different 

parameters. 

In spite of the differences in geometry and magnetic 

configuration of the cusps, we have plotted in Figure 18  some 

of the results of Refs.  4 and 12 together with our simulations 

results in argon at 0.1 mtorr. First we can compare the leak 
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width obtained from the simulations with the definition used 

in the results presented above, i.e. 𝑤 𝑑⁄ = 𝐼𝐵 𝐼0⁄  (open red 

symbols) with the FWHM value that can also be deduced 

from the simulations (full red symbols). Although the 

difference between the two values is not very large, we see 

that this difference depends on the magnetic field (because, 

as discussed in section III.G and as can be seen in Figure 7, 

the profile of the current density changes with magnetic 

field). The results of Hershowitz et al., which corresponds to 

about four times the hybrid gyroradius, are twice larger than 

the simulated values. Note that we compare the leak width 

normalized to the distance between cusps or wires although 

we do not know how the leak width should scale with this 

distance in the collisionless limit. The leak width normalized 

to the ring cusp diameter in the experiment of Bosch and 

Merlino is also shown in Figure 18 (green square symbol). 

Since the ring cusp diameter is large (17 cm) in this 

experiment, it is likely that collisions play a more important 

role even for this relatively low pressure conditions. In the 

theory of Bosch and Merlino the leak width scales with the 

distance between cusps 𝑑 (or the ring cusp diameter) as 𝑑1/2. 

Therefore, for comparisons with the 𝑑1 =1 cm case of the 

simulations, the normalized leak width for 𝑑2 =17 cm should 

be multiplied by  √𝑑2 𝑑1⁄ ≈ 4. This “corrected” value of the 

normalized leak width is represented by the green triangle 

symbol in Figure 18.   

It is difficult to draw any definitive conclusion from these 

comparisons of the values of the normalized leak width and it 

is clear that the comparisons of the trends (scaling laws) are 

more meaningful. More detailed comparisons would however 

be possible with the results of Ref.11 when these results are 

available. 

VI.  CONVERGENCE AND ACCURACY OF THE 
SIMULATIONS 

We performed convergence tests of the simulations by 

increasing the number of particles per cell and the number of 

grid points. Figure 19 shows some examples of convergence 

tests for different numbers of charged particles per cell (the 

usual constraints of explicit PIC simulations on time step and 

grid spacing are satisfied).  

Figure 19b corresponds to simulations with a dielectric wall 

(i.e. results reported in this paper). The convergence with the 

number of particles is satisfying and we note that steady state 

in the conditions of the simulations (0.1 mtorr, 400 G) is 

reached in a few 100 s. Most of the results presented in this 

paper correspond to a time around 500 s.  

Figure 19a shows a convergence test with a metallic wall. 

Surprisingly, the convergence was much more difficult in 

these conditions.  

 

Figure 19: Convergence test showing the time variations of the 

total electron (or ion) current collected by the wall; 0.1 mtorr, 400 

G. (a): metallic wall: the number of particles per cell (ppc) is 

increased by a factor of two at different times of the simulation? 

(b), dielectric wall: three simulations with 50,100, and 200 

particles per cell.  

We see on this figure that each time the number of particles 

per cell is multiplied by two the current converges toward a 

larger value. It seems necessary to use a number of particles 

per cell larger than 800 to reach convergence. This 

corresponds to relatively expensive simulations in term of 

computation time. 

We did not elucidate the reasons for the much slower 

convergence in the case of a metallic wall and this is one of 

the reasons why all the results presented in this paper 

correspond to a dielectric wall.  Another reason for choosing 

a dielectric wall instead of a metallic wall in the simulations 

is that the electron and ion current density profiles to the wall 

are not identical in the case of a metallic wall so that the 

electron and ion leak widths are different (and their difference 

depends on the plasma density).    

VII.  CONCLUSION 

In this paper we have addressed the question of confinement 

by magnetic cusps in a low- plasma, using 2D PIC MCC 

simulations. The leak width 𝑤 of a line cusp defined in the 

simulation is an effective loss length, i.e. in the presence of 

magnetic cusps, the number of particles lost to the wall per 

unit time is reduced by a factor 𝑤 𝑑 ⁄ with respect to the 

unmagnetized case. The confinement is better for lower 

values of 𝑤 𝑑⁄ . This definition of the leak width is slightly 

different from the Full Width at  Half Maximum 𝑤∗ used in 

experiments but is more precise and more practical for use in 

fluid models or global models of cusped plasma sources.  

The simulation results can be summarized as follows: 

- In the region where the magnetic field is parallel to the 

wall, between the cusps, the electric potential increases 

from the plasma to the wall while the potential decreases 

from the plasma to the wall in the cusp. This forms a 
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potential well that guides the ions to the cusp region and 

to the wall. The potential drop from the plasma to the wall 

in the cusp center is close to the potential drop in an 

unmagnetized plasma although the structure of the sheath 

is different, especially at high magnetic fields, with the 

formation of a double layer that can be attributed to the 

reflection of electrons by the cusp into the plasma (mirror 

effect). 

- At low enough pressure, the hybrid gyroradius calculated 

with Bohm velocity in the ion gyroradius, 

(𝜌𝑒𝜌𝑖,𝐵𝑜ℎ𝑚)
1/2

= 𝜌𝑒(𝑚𝑖 𝑚𝑒⁄ )1/4  provides a reasonable 

scaling of the simulated leak width with magnetic field and 

electron temperature. The leak width is practically 

independent of the ion temperature 𝑇𝑖  and scales relatively 

closely to 𝑇𝑒
1/2 with the electron temperature.   The 1 𝐵⁄   

scaling of the hybrid gyroradius is satisfied in the 

calculated leak width only at low pressure and low 

magnetic fields. The variations of the leak width with 

magnetic field are slower than 1 𝐵⁄  at high magnetic 

fields. 

- The leak width becomes practically independent of 

pressure below 0.1 mtorr and increases as 𝑝1/2 with 

pressure above 0.5 mtorr. This is consistent with a leak 

width proportional to the square-root of the cross-field 

diffusion coefficient, as in the theory of Bosch and 

Merlino, which predicts a leak width proportional to 

𝑤𝐵𝑀
∗ ≈ (𝑑𝐷̅ 𝐶𝑠⁄ )1/2. 

- The expressions of the leak width of Hershkowitz et al. 

and of Bosch and Merlino both predict a  𝑚𝑖
1/4 

dependence with the ion mass. This comes from the square 

root of the inverse of the ion acoustic velocity in the 

expression of Bosch and Merlino, and from the square root 

of the ion Larmor radius in the hybrid gyroradius of 

Hershkowitz et al. Surprisingly, the simulations do not 

reproduce this 𝑚𝑖
1/4 dependence, and the calculated leak 

width varies only like 𝑚𝑖
0.1 with the ion mass.  

 

Although we tried to study the leak width over a large range 

of parameters, more investigations would be useful. More 

systematic simulations are needed to understand the 

dependence of the leak width on the ion mass, to better 

characterize the role of the specific Ramsauer shape of the 

electron momentum cross-section in argon (it would be useful 

to perform simulations with constant collision cross-section 

or constant collision frequency) and to study the dependence 

of the leak width with the cusp length. Another issue is the 

possibility of the development of instabilities and their 

consequences on cross-field transport between cusps. The 2D 

simulations presented in this paper did not show evidence of 

the development of instabilities but such instabilities are more 

likely to form in a direction perpendicular to the magnetic 

field, for example due to ExB drift. Further investigation is 

needed to address this question. 
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