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Electro- and diffusio- phoresis of particles correspond respectively to the transport of
particles under electric field and solute concentration gradients. Such interfacial transport
phenomena take their origin in a diffuse layer close to the particle surface, and the
motion of the particle is force-free. In the case of electrophoresis, it is further expected
that the stress acting on the moving particle vanishes locally as a consequence of local
electroneutrality. But the argument does not apply to diffusiophoresis, which takes its
origin in solute concentration gradients. In this paper we investigate further the local
and global force balance on a particle undergoing diffusiophoresis. We calculate the local
tension applied on the particle surface and show that, counter-intuitively, the local force
on the particle does not vanish for diffusiophoresis, in spite of the global force being
zero as expected. Incidentally, our description allows to clarify the osmotic balance in
diffusiophoresis, which has been a source of debates in the recent years. We explore
various cases, including hard and soft interactions, as well as porous particles, and provide
analytic predictions for the local force balance in these various systems. The existence of
local stresses may induce deformation of soft particles undergoing diffusiophoresis, hence
suggesting applications in terms of particle separation based on capillary diffusiophoresis.

1. Introduction

Phoresis corresponds to the motion of a particle induced by an external field, say
O: typically an electric potential for electrophoresis, a solute concentration gradient for
diffusiophoresis, or a temperature gradient for thermophoresis (Anderson|[1989; Marbach|

& Bocquet|2019)). The particle velocity is accordingly proportional to the gradient of the
applied field, writing in the general form

Vp = up X (—V@oo) (1.1)

with © the applied field infinitely far from the particle. Phoretic motion has several
key characteristics. First the motion takes its origin within the interfacial diffuse layer
close to the particle: typically the electric double layer for charged particles, but any
other surface interaction characterized by a diffuse interface of finite thickness. Within
this layer the fluid is displaced relatively to the particle due e.g. to electro-osmotic or
diffusio-osmotic transport; see Fig.[I]for an illustration (Derjaguin[1987;[Anderson|1989).
Second, motion of the particle is force-free, i.e. the global force on the particle is zero, the
particle moves at a steady velocity. This can be understood in simple terms for example
for electrophoresis: the cloud of counter-ions around the particle experiences a force due
to the electric field which is opposite to that applied directly to the particle, so that the

1 Email address for correspondence: lyderic.bocquet@ens.fr
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Figure 1: From diffusio-osmosis to diffusiophoresis: (a) Schematic showing diffusio-
osmotic flow generation. A surface (gray) is in contact with a gradient of solute
(red particles). Here the particles absorb on the surface creating a pressure in
the fluid (represented by yellow arrows). This pressure build-up is stronger where
the concentration is highest, and induces a hydrodynamic flow vpo from the high
concentration side to the low concentration side. (b) If this phenomenon occurs at the
surface of a particle, the diffusio-osmotic flow will induce motion of the particle at a
certain speed vpp in the opposite direction. This is called diffusiophoresis.

total force acting on the system of the particle and its ionic diffuse layer experiences a
vanishing total force. Both electro- and diffusio- phoresis and correspondingly electro-
and diffusio-osmosis can all be interpreted as a single osmotic phenomena, since the two
are related via a unique driving field, the electro-chemical potential (Marbach & Bocquet)|
2019).

Interestingly these phenomena have gained renewed interest over the last two decades,
in particular thanks to the development of microfluidic technologies which allow for
an exquisite control of the physical conditions of the experiments, electric fields or
concentration gradients. However, in contrast to electrophoresis, diffusiophoresis has been
much less investigated since the pioneering work of Anderson and Prieve. Its amazing
consequences in a broad variety of fields have only started to emerge, see
Bocquet| (2019) for a review and [Abécassis et al.| (2008)); [Palacci et al| (2010, [2012);
Velegol et al| (2016); Moller et al| (2017); [Shin et al| (2018) as a few examples of
applications. The diffusiophoretic velocity of a particle under a (dilute) solute gradient
writes

vpp = pp X (—kpTVcs) (1.2)
where ppp is the diffusiophoretic mobility, V¢ is the solute gradient far from the sphere,
kp Boltzmann’s constant and 7' temperature. For example, for a solute interacting with

a spherical particle via a potential U(z), where z is the distance to the particle surface,
the diffusiophoretic mobility writes (Anderson & Prieve|[1991)

Kpp = —% /00o z <exp (—;;(;)) — 1> dz. (1.3)

In this work, we raise the question of the local and global force balance in phoretic
phenomena, focusing in particular on diffusiophoresis. Indeed, while such interfacially-
driven motions are force-free, i.e. the global force on the particle is zero, the local force
balance is by no means obvious. For electrophoresis, it was discussed by [Long et al| (1996)
that local electroneutrality ensures that the force acting on the particle is also vanishing
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locally in the case of a thin diffuse layer. Indeed the force acting on the particle is the sum
of the electric force dq x E).c, with dq the charge on an elementary surface and FEj. the
local electric field, and the hydrodynamic surface stress due to the electro-osmotic flow.
To ensure mechanical balance within the electric double layer, this hydrodynamic stress
has to be equal to the electric force on the double layer, which is exactly —dq E).. since
the electric double layer carries an opposite charge to the surface. Therefore the local
force on the particle surface vanishes. The absence of local force has some important
consequences, among which we have the fact that particles such as polyelectrolytes
undergoing electrophoresis do not deform under the action of the electric field (Long
et al.|[1996)).

Such arguments do not obviously extend to diffusiophoresis. The main physical reason
is that diffusiophoresis involves the balance of viscous shearing with an osmotic pressure
gradient acting in the diffuse layer along the particle surface (Marbach & Bocquet
2019). While such a balance is simple and appealing, it led to various mis-interpretations
and debates concerning osmotically-driven transport of particles (Cérdova-Figueroa &
Brady]| 2008} [Julicher & Prost|[2009; [Fischer & Dhar|[2009; [Cérdova-Figueroa & Brady
2009allb; [Brady|[2011)), also in the context of phoretic self-propulsion (Moran & Posner
2017). A naive interpretation of diffusiophoresis is that the particle velocity vpp results
from the balance of Stokes’ viscous force F,, = 6mnRvpp and the osmotic force resulting
from the osmotic pressure gradient integrated over the particle surface. The latter scales
hypothetically as F,q,, ~ R? x RVII, with IT = kpTc,, the osmotic pressure. Balancing
the two forces, one predicts a phoretic velocity behaving as vpp ~ R2E2L Ve . Looking
at the expression for the diffusiophoretic mobility in the thin layer limit, Eqgs. (1.2)
and , the latter argument does not match the previous estimate by a factor of order
(R/)\)?, where X is the range of the potential of interaction between the solute and the
particle. The reason why such a global force balance argument fails is that flows and
interactions in interfacial transport occur typically over the thickness of the diffuse layer,
in contradiction with the naive estimate above.

A second aspect which results from the previous argument is that the interplay between
hydrodynamic stress and osmotic pressure gradient for diffusiophoresis may lead to a
non-vanishing local surface force. Indeed in the absence of an electric force, only viscous
shearing acts tangentially on the particle itself, while particle-solute neutral interactions
are mostly acting on the orthogonal direction. A force tension may therefore be generated
locally at the surface of the particle. This is in contrast to electrophoresis.

The question of global and local force balance in diffusiophoretic transport is therefore
subtle and there is a need to clarify the mechanisms at stake. In the derivations below
we first relax the hypothesis of a thin diffuse layer, and consider more explicitly the
transport inside the diffuse layer, as was explored by various authors, using e.g. con-
trolled asymptotic expansions (Sabass & Seifert|2012; |Sharifi-Mood et al.[[2013;|Cordova-
Figueroa et al.[2013). Then on the basis of this general formulation, we are able to write
properly the global and local force balance for diffusiophoresis. Our results confirm the
existence of a non-vanishing surface stress in diffusiophoresis, in spite of the global force
being zero. To illustrate the underlying mechanisms, we consider a number of cases:
diffusiophoresis under a gradient of neutral solutes, diffusiophoresis of a charged particle
in an electrolyte bath, and diffusiophoresis of a porous particle. We also consider the
situation of electrophoresis as a benchmark where the surface force on the particle is
expected to vanish. We summarize our results in the next section and report the detailed
calculations in the sections hereafter.
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2. Geometry of the problem and main results: surface forces on a
phoretic particle

2.1. Diffusiophoretic velocity

We consider a sphere of radius R in a solution containing one or multiple solutes,
charged or not. The surface of the sphere interacts with the species over a typical
lengthscale A, via e.g. electric interactions, steric repulsion or any other interaction.
In the case of diffusiophoresis, a gradient of solute, V¢, is established at infinity along
the direction z. The sphere moves accordingly at constant velocity vppe, and we place
ourselves in the sphere’s frame of reference. We consider that the interaction between
the solute and the particle occurs via a potential U, so that Stokes’ equation for the fluid
surrounding the sphere writes

nV3v — Vp+ c(r)(—=VU) = 0. (2.1)

The boundary conditions on the particle’s surface are the no-slip boundary condition
(note that the no-slip boundary condition may be relaxed to account for partial slip
at the surface, in line with |Ajdari & Bocquet| (2006)), complemented by the prescribed
velocity at infinity (in the frame of reference of the particle):

v(r=R)=0 and v(r - o) = —vpp (2.2)

The solute concentration profile obeys a Smoluchowski equation in the presence of the
external potential U, in the form

0=-V.|-D,Vc+ D, c(—VU) (2.3)
kT

where D; is the diffusion coefficient of the solute, with the boundary condition at infinity
accounting for a constant solute gradient c(r — oo) ~ ¢cg + rcosOVes; g is a reference
concentration. Note that we neglected convective transport here, assuming a low Péclet
regime. In this case, the Smoluchowski equation is self-consistent and provides a solution
for the solute concentration field, which therefore acts as an independent source term for
the fluid equation of motion in Eq. .

In this paper we report analytic results in various cases as represented in Fig. [2| First
(see Fig. 2}a), we show that for any radially symmetric potential (), one may compute
an exact solution of for the velocity profile and the local force. Second, going to more
general electro-chemical drivings, like electrophoresis (see Fig. b) or diffusiophoresis of a
charged sphere in an electrolyte solution (see Fig. c), it is also possible to compute exact
solutions, assuming a weak driving force with respect to equilibrium. Finally, we come
back to simple diffusiophoresis of a porous sphere with a radially symmetric potential I ()
(see Fig. d) and give similar analytic results. The porosity of the sphere is accounted
for by allowing flow inside the sphere with a given permeability.

2.2. Phoretic velocity

We summarize briefly the analytic results for the phoretic velocity in the various cases
considered. Results are reported in Table

Diffusiophoresis under gradients of a neutral solute. For any radially symmetric potential
U(r), one may compute an exact solution of for the velocity profile by extending
textbook techniques for the Stokes problem in [Happel & Brenner| (2012)) (see also
Ohshima et al| (1983) for a related calculation in the context of electrophoresis). It
can be demonstrated that the solution for v(r) involves a Stokeslet as a leading term,
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Figure 2: Geometries considered in this paper: (a) diffusiophoresis under neutral
solute gradients: a spherical particle moving in a (uncharged) solute gradient. (b)
electrophoresis: a spherical particle with surface charge 3’ moving in an electric field in a
uniform electrolyte. (¢) diffusiophoresis under ionic concentration gradients : a spherical
particle with surface charge X' moving in an electrolyte gradient. (d) diffusiophoresis of
a porous particle: a porous spherical particle moving in an uncharged solute gradient.

which allows to calculate the force along the axis of the gradient as the prefactor of the
Stokeslet term (v ~ F/r). This allows to deduce the global force on the particle as

o0
F =6mRnupp — 27rR2/ co(r)(—=0:U)(r) x p(r)dr (2.4)
R
with ¢(r) = 5 — % — % (%)2 a dimensionless function, the factor % originating from
the angular average, and the function c¢y(r) is such that the concentration profile writes
e(r,0) = ¢o + co(r) cos 6. Eq. decomposes as the sum of the classic Stokes friction
force on the sphere and a balancing force of osmotic origin, taking its root in the
interaction U of the solute with the particle. The steady-state diffusiophoretic velocity
results from the force-free condition, F' = 0, and therefore writes

B 2nR? [
a 67T77R R

vpp co(r)(=0:U)(r) x p(r)dr (2.5)

Remembering that ¢o(r) o« RVcso, this equation generalizes Eq. (1.2]) obtained in the

thin layer limit. Note that (2.5)) is very similar to Eq. (2.7) in [Brady| (2011), with the

r-dependent term 27 R? x ¢(r) replaced in (2011)) by the prefactor L(R). However
the integrated "osmotic push" is weighted here by the local factor ¢(r) (in contrast to

(2011)) and this detail actually changes the whole scaling for the mobility.
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R
Diffusiophoresis of colloids vpp = /

neutral solutes
with soft interaction potential U(r) with o(r) = & — & — 27

kgT
with the thin layer approximation* UDPA = VcooL (e‘ﬁu(z) - 1) zdz

nm Jo
. . R _
Generalized formulation vp = 3 Z Orpo,i X fi; | (r)dr
N species @

see Sec. 4 with o(r) = £ — % - g};

. . . . R
Diffusiophoresis of porous colloid |vpp, = 0 ( o) &(r)dr
cos
neutral solutes

with soft interaction potential U(r) with &(r) defined in Eq. (5.18)

Table 1: Main results for the phoretic velocity of plain and porous colloidal particles.
Here fi; is field which is the perturbation to the chemical potential of species ¢ under the
applied field, i.e. fi; x Voo the applied electro-chemical gradient at infinity; pg; is the
concentration profile of specie 4 in equilibrium. *Note that this result is similar to the
diffusio-osmotic velocity over a plane surface reported in |Anderson & Prieve| (1991)).

Generalized formula for phoresis under electro-chemical gradients. It is possible to gener-
alize the previous results to charged species under an electro-chemical potential gradient.
The general expression for the diffusiophoretic velocity is written in terms of the electro-
chemical potential y; (where ¢ stands for each solute specie 7). One may separate the
electro-chemical potential as p; = po,; + fli, where pg; is the equilibrium chemical
potential and fi; the perturbation due to an external field, so that f; « Ve, the
applied electro-chemical potential gradient at infinity. The derivation assumes a weak
perturbation, fi; < po,;. This leads to an expression of the generalized expression for the
diffusiophoretic velocity in a compact form

R [ N
vp = % Z 3rpo,i X g <P(7“)d7“ (2.6)

species ¢

where pg; is the concentration profile at equilibrium. Details of the calculations are
reported in Sec. 4.

Diffusiophoresis of a porous sphere. It is possible to extend the derivation to the case
of a porous colloid. This may be considered as a coarse-grained model for a polymer.
We assume in this case that the solute is neutral and interacts with the sphere via a
radially symmetric potential U. In that case the Stokes equation is extended inside
the porous sphere with the addition of a Darcy term:

nV3v — Zv —Vp+c(r)(-VU) =0 (2.7)

where k, expressed in units of a length squared, is the permeability of the sphere. The
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expression for the diffusiophoretic velocity can be calculated explicitly, with an expression
formally similar to the diffusiophoretic velocity,

R [ ¢c(r0)—co

3r | aasg (SO Py (2.8)

UDppPp =
where the details of the porous nature of the colloid are accounted for in the weight &(r),
as reported in Eq. (5.18)). The latter is a complex function of k. R, where k., = 1//k is
the inverse screening length associated with the permeability of the colloid, with radius
R. Details of the calculations are reported in Sec. 5.

2.3. Local force balance on the surface

Beyond the diffusiophoretic velocity, the theoretical framework also allows to compute
the global and local forces on the particle. Writing the local force balance at the particle
surface, we find in general that the particle withstands a local force that does not vanish
for diffusiophoresis. The local force df on an element of surface dS of a phoretic particle
can be written generally as

2 1
df = <—po + g cos 0) dSe, + <37Ts sin 9) dS eg (2.9)

where the local force is fully characterized by a force per unit area - or pressure - 7.
In this expression pg is the bulk hydrostatic pressure and e, and ey are the unit vectors
in the spherical coordinate system centered on the sphere. We report the value of 7 in
the table below for the various cases considered, see Table 2] While the surface force is
found to be non-vanishing for all diffusiophoretic transport, our calculations show that
ws = 0 for electrophoretic driving: a local force balance is predicted for electrophoresis
in agreement with the argument of in [Long et al.| (1996) (see the details in Sec. 4).
Let us report more specifically the results for the local force in the different cqses.

Local force for diffusiophoresis with neutral solutes — For solutes interacting with the
colloid via a soft interaction potential U(r), one finds that the surface force takes the
form
oo

Ty = /R co(r)(—=0,U) (r)(r)dr (2.10)
where ¢(r) = % — g—z is a geometrical factor. As we demonstrate in the following sections,
in the case of a thin double layer, the local force reduces to a simple and transparent
expression:

Mg gchTLSVCOO (2.11)
where Lg = f;o (e‘ﬁu(z) — 1) dz has the dimension of a length and quantifies the excess
adsorption on the interface.

Local force for phoresis under small electro-chemical gradients — As for the velocity, it is
possible to generalize the previous results to the case of a general, small, electro-chemical
driving. In the case of a thin diffuse layer, the result for w, takes the generic form

Ty = /00 Z Orpo,i X fi; | Y(r)dr (2.12)

R species ©

with ¢(r) = % — }%22 and we recall that fi; o< Ve the gradient of the electro-chemical

potential far from the colloid. This result applies to both diffusio- and electro- phoresis.
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As reported in the Table [2] the local force is non-vanishing for diffusiophoresis but for
electrophoresis one predicts 75 = 0.

0 e(r,0) — co
Diffusiophoresis of colloids T = / —————0,.(-U) Y(r)dr
R cos
neutral solutes
with soft interaction potential U(r) with ¢(r) = & — ;—22
. N 9
thin layer approximation s = =LskpT Ve

with L, = fooo (e‘ﬁu(z) —1)dz

Generalized formulation Ty = / Z Orpo,i X fi | ¥(r)dr
R ~
species 1
thin layer approximation
see Sec. 4 with ¢(r) = g — ;—22
Electrophoresis ms =0
Diffusiophoresis Ty = %kBT)\DVcOO
charged colloid with surface charge X
(thin Debye layer limit) Du = X/elpcy

oo ¢(r,0) — co
Diffusiophoresis of a porous colloid| 75 = / W@T(—L{) (r)dr
R

neutral solutes

with soft interaction potential U(r) with ¥(r) defined in Eq. (5.24)

Table 2: Main results for the local surface force on plain and porous colloidal particles
undergoing phoretic transport. Here fi; is the perturbation to the chemical potential of
species ¢ and pg,; its concentration profile in equilibrium. Note that Ap is the Debye

length (A2 = :,:BCS}) and Du = X' /eApcy is a Dukhin number.

Local force for diffusiophoresis of a porous particle — Finally for a porous colloid under-
going diffusiophoresis, the local force is a function of the permeability and the diffusion
coefficient of the solute inside and outside the colloid, say D; and Ds. The general formula
writes as
+oo
e(r,0) — ¢
= ———0,.(—U) ¥(r)d 2.13

mo= [ SR ) vy (213)
where the expression for the function ¥(r) is given in Eq. (5.24]). This is a quite cumber-
some expression in general, but in the thin diffuse layer limit, and small permeability s
of the colloid, the local force takes a simple form

Dy 2
s(k = 0) = m4(k = 0) x Ds 5 D12 <1 - k,.;R) (2.14)

where 75(k = 0) = gLskBTVcoo; k. = 1/4/k is the inverse screening length associated
with the Darcy flow inside the porous colloid, and R is the particle radius.
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Figure 3: Schematic of the coordinate system for the diffusiophoretic sphere.
The sphere interacts with the solute via a potential U(r) over a range .

In the next sections we detail the calculations leading to the results in Tables [[]and [2|

3. Diffusiophoresis of a colloid under a gradient of neutral solute

We focus first on diffusiophoresis of an impermeable particle, see Fig. Pla, under a
concentration gradient of neutral solute. The solute interacts with the particle via a soft
interaction potential I (r) which only depends on the radial coordinate r (with the origin
at the sphere center). In order to simplify the calculations we will consider that the
interaction potential is non-zero only over a finite range, from the surface of the sphere
r = R to some boundary layer » = R + A: the range A is finite but not necessarily small
as compared to R, see Fig.[3] One may take A — oo at the end of the calculation.

In the far field, the solute concentration obeys Vel 00 = Vesey. The geometry is
axisymmetric and in spherical coordinates, one may write ¢(r — 00, 0) = cog+Vcoor cosf.
Considering the boundary conditions for the concentration and the symmetry of the
potential U, one expects that the concentration can be written as ¢(r,0) = ¢o +
RVco x f(r)cos@ where f(r) is a radial and dimensionless function, which remains
to be calculated.

Note that in the following we neglect convection of the solute within the interfacial
region, which may modify the steady-state concentration field of the solute around the
particle. However such an assumption is generally valid because the Péclet number built
on the diffuse layer is expected to be small. Our results could however be extended to
include this effect on the mobility as a function of a (properly defined) Péclet number,
as introduced in |Anderson & Prieve| (1991)); [Ajdari & Bocquet| (2006); [Sabass & Seifert|
(2012); Michelin & Laugal (2014). Similarly the effect of hydrodynamic fluid slippage at
the particle surface may be taken into account, in line with the description in (Ajdari &

Bocquet|[2006).
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3.1. Flow profile
3.1.1. Constitutive equations for the flow profile

The flow profile around the sphere is incompressible div(¥) = 0 and obeys Stoke’s
equation, Eq. (2.1]). The projection of the Stokes equation along the unit vectors e, and
ey gives

20, vg cos O 2 Ovg
A r T T o5 25— 5| = rl — ,8 r\
T\ =Y r2 r2sinf  r2 00 ) Orp = c(r, )0, (-U) (3.1)
Nvo — Vg 2 Ov, 18 :
K o7 12sin%0 12 00 op

The boundary conditions for the flow are (i) the prescribed diffusiophoretic flow far from
the sphere, and (ii) impermeability and no slip condition on the particle surface:

vp(r = 00,0) = —vppcosf and vy(r — 00,0) =vppsind (3.2)
vp(r=R,0) =0 and vg(r = R,0) =0 )
3.1.2. Solution for the flow profile
We define a potential field ¥ such that
1
d — 0, .
T2 sm@aaq/} and vo = 7"sin€a v (3:3)

so that the incompressibility condition div(v) = 0 is accordingly verified. We can rewrite

the Stokes equations using the operator E? = 7’2 + Slrnf 599 (Slrlle é(?e) as
n 2
Oy |FE =0p —c(r,0)0.(-U
sz})na o [E*Y] | p—c(r,0)0,(-U) (3.4)
B ar [E21/1] = 78917'
rsin 6 r

Adding up derivatives of the above formula allows to cancel the pressure contribution
and obtain the simple equation for the potential field

0
ity = —sing 20D g oy (3.5)
00
Using the general expression for ¢(r, 8), one obtains
nE*) = sin® 0RV oo f(r)0.(—U) (3.6)
We may therefore look for ¢ as ¢ = F(r)sin? @ and we note that E%¢ = E?F(r)sin? 0
where E? = % — 2 so that
. R
B'F(r) = Vcn F(r)0,(~U) (3.7)

We introduce f(r) = Wf(r)ar(—b{). Like the potential U(r), f(r) is a compact
function that is non-zero only over the interval [R; R + A]. The general solution of this
equation is

F(T)=§+BT+TQC+DT4 /f Ldr 4 / f)a?

" f@)x " f(z)
—7"2/]%76 do + rt R%da@
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where A, B,C" and D are integration constants to be determined by the boundary
conditions. Note that the integrals do not diverge since f is defined on a compact interval.
The condition that the flow has to be finite far from the sphere r — oo yields immediately

R+ f(l’) R+ f(x)x Vpp

Impermeability and no slip boundary conditions are equivalent to F(R) = F'(R) = 0.
This gives the values of A and B and the flow is now fully specified as

A r? T re? ot oo ré x
F(r)= —|—BT—5’UD0—|-/ f(z) <_r> dz + f(x) <_T26) dx

T R 6 30 Rix 30z
R? A (RPz RS
ith A =—— LA
A 4“DO+/R f(x)<12 20x> v
3R it (R* Rz
dB=— ———d
an 1 vDo—}—/R f(z) <12x ) ) x
(3.10)
This provides an explicit expression for the flow profile as
v, =sinf (2@ + —Qfg” + QC(T) + 2D(T)T2>
(3.11)

vg =cosf (—@ + % —20(r) — 4D(r)r)

Analytical expressions can be obtained for all coefficients but we report here only the
expression for B:

B(r) =B+ /RT éf(x)xde (3.12)

This is the coefficient in front of the Stokeslet term, scaling as 1/r, hence directly related
to the force acting on the particle. As we discuss below, the diffusiophoretic velocity is
deduced from the force-free condition, which amounts to writing B(r — oo) = 0.

3.2. Forces on the sphere
3.2.1. Pressure field and hydrodynamic force
The pressure field p can be computed from its full derivative

dp = 0,pdr + 9pp dé. (3.13)
Using Egs. (3.4) and (3.5) we can integrate the pressure field and find
p = po +ncosb0, [E*F(r)] (3.14)
The components of the hydrodynamic stress can be written as
rr  — 2 vy
’ pl—i_a'u ! BTBU v (315)
o =n(;% + 5 — )
This leads to the expression of the normal and tangential hydrodynamic forces as
dfhydro
L = Grr‘r:R = —Po — 1 COS eaTTTF(T”T:R (316)
ds
and
dfiydro sin 6
o = oralven = 1"l 0, P = (3.17)
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where we took into account that derivatives in F' at order 0 and 1 cancel at the sphere
surface.

3.2.2. Force from solute interaction

In the force balance, we have also to take into account the force exerted directly
by the solute on the sphere via the interaction potential U/. Because of the symmetry
properties of U, this force has only a normal contribution. For a given unit spherical
volume d7 = r? sin dpdfdr, this osmotic force writes

dfos™ (M) = —pf(r)cosf x dr. (3.18)

and the total osmotic force acting on a unit surface dS = R?sin #dfdy on the sphere is

deduced as
REX 2
dfs™ = —dS x 77/ f(r)ﬁdr cos 6. (3.19)
R

3.2.3. Total force on the sphere and diffusiophoretic velocity

The total force acting on the fluid is along the z axis (the contribution on the
perpendicular axis vanishes by symmetry) and takes the expression

T 27
F, = / / (df:lydro cosf — df;]ydrO sin @ + df>*™ cos 9) (3.20)
6=0 J =0

This can be rewritten as

F, = —8mB(R + \)

R+A 2
_ 2 z r R 2r
= —6nRnupp + 27 R 77/R f(r) (R —3. W) dr (3.21)
Requiring that the total force on the sphere vanishes, F, = 0, we then obtain
R [BE+* r R 222
_R T8 2y 3.22
vor 3/R f(x)<R 3z 3R2> “ (3:22)
Inserting the detailed expression of f, one gets
R [BF ¢(r,0) — ¢ r R 2
== AL A N 7) ) (S, 3.23
or =3,/ cosg Ol )(R 3r 332) " (3:23)

Limiting expressions for a thin diffuse layer — We now come back to the thin diffuse layer
regime where A < R, which is the regime of interfacial flows. We need to prescribe the
solute concentration profile ¢(r, ) to calculate the diffusiophoretic velocity in Eq. .
In the absence of external potential, the concentration verifies

Ac=0
e(r = 00) = ¢p + Veoor cost (3.24)
Ve(r=R)=0

and searching for a solution respecting the symmetry of the boundary conditions as
c(r,8) = co + Ve Rf (1) cos 6, one finds

1 /R 2+ r

2\ r R

c(r,8) = co + RVcoo cos b (3.25)
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Now, in the presence of the external field U (r), one may simply extend the previous result
by correcting the concentration profile by the Boltzmann weight as

1 /R\?> r U
(= — -z 2
5 (r> + 7 exp< kBT> (3.26)

which is a proper approximation in the regime of a small diffuse layer, valid both close
to and far from the particle. In the limit where A < R, one obtains ¢(R + z,0) = ¢y +

3RVcoo(1+ 1"’?{—22) cos 6 exp (—kBLT) +o(2?) and this allows to simplify the diffusiophoretic
velocity as

c(r,0) ~ cg + RV e cos

R2Veo, [ x? 5 u 22 5
ooe = T [0 2t o ep (— 57 ) 0u(-t) (i +ole) ) o (320
yielding
A
vpp = Vcoo@ (e‘ﬁu(w) — 1) zdx (3.28)
m Jo

With a similar reasoning one may also obtain

A
F, =6mnR(vpp — vsip) = 6mnRupp — GWRICBTVCOC/ (e*ﬁu(“ - 1) zdx  (3.29)
0

where vy, defines the osmotic contribution. Note that in the previous expressions, the
upper limit A can now safely be put to infinity: A — oco.

3.2.4. Local force on the diffusiophoretic particle

From Egs. (3.16])-(3.19)), the total radial and tangential components of the local force
on a surface element dS = R?sin fdfdy are

3 R+X T R 2
df, = —podS — dSn +ﬁ'UDP - /R f(z) <2R + o R2> dx | cost (3.30)

and

R+
dfg = dSn (23RUDP — /R f(2) (22 — ;;) dx) sin 6. (3.31)

We can express vpp using Eq. (3.22) and this allows to write the local force in the
compact form

2
df, = —podS + —msdS cosb
1 3 (3.32)
dfy = +§7TstSin9

where the local force is fully characterized by the pressure term

Ty = n/:{+A f(r) (f - ;:2) dr (3.33)

It is interesting to express this pressure in the thin layer approximation:

T = —gRVcoo /O)\(l + %22 +o(z?)) exp (_kZlT> 9:(—U) (3% + 0(172)> dr  (3.34)
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and we finally obtain the local force as

E— LokpT ~
{dfr podS + 3LskpTV o, cos 0 dS (3.35)

dfe =+3LskpTVessinddS

where

L, = /0A (e—W(@ - 1) dz (3.36)

is a characteristic length scale of the interaction. We find in particular that AIl =
LskpT Ve is the relevant osmotic pressure, indicating that the relevant extension of
the osmotic drop is the potential range Lg, and not the radius of the sphere R as one
may naively guess.

4. Phoresis under electro-chemical gradients: general result and
applications

We generalize these calculations to the phoretic motion of a sphere under a gradient
of electro-chemical potential.

4.1. Assumptions and variables

The main working assumption here is that the perturbation to the electro-chemical
potential p is small, so that we may write

pi(r,0) = kpT'In(p;) + Vi(r,0) = poi(r) + fii(r, 0)
pi = pio(r) + pi(r,0) (4.1)
Vi = Vou(r) + Vi(r,0)

where 7 is the index of the solute specie, p; is the concentration of that specie, V; is
the general potential acting on the specie (typically V; = ¢;V. + U where V, is the
electric potential, g; the charge of the specie, and U a neutral interaction potential). All
quantities denoted as yg and § correspond respectively to the equilibrium quantity and
the perturbation under the applied field. In particular fi; = kBTp‘:’) — + V;. Equilibrium
quantities only depend on the radial coordinate r for symmetry reasons.

At equilibrium we have radial chemical equilibrium 0,p; = 0 and therefore

V() Z(T)
() — ERATAS, 4.2
i) = coesp (20 (42)
Additionally, Poisson’s equation and the relevant electric boundary conditions allow to
determine completely pg and Vj.

In the presence of a small external field, we have the following linearized equation for
the flux of specie i

D; _ D; ~ )
v <k:BT’Oi(VVO) + k,BiTpO,z(V‘/z) + Dszz> =0 (4.3)

where D; is the diffusion coefficient of specie i. Since VV; o = —kpT'Vpo,i/po,; we may
simplify the first equation to

- D; ~ ~
v (_DiinpO,i/pO,i + mpo,i(v‘/z‘) + Dz‘VPz‘) =0 (4.4)
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which simplifies to
V (p0,i Vi) =0 (4.5)
The applied field far from the particle surface is written in terms of a concentration or
electric potential gradient, and /i; < Vs the applied gradient of the electro-chemical
potential. Due to the symmetry, one expects all perturbations to write as f (r,0) =
f(r)cos @ and the r dependence of the perturbation /i; thus obeys the equation

1 0 9 i 2 .
20 (T PO,zar) - Tjﬂz(r)PO,z =0 (4.6)

4.2. Flow profile

Going to the flow profile, the projection of the Stokes equation along the unit vectors
e, and ey leads to (following the same steps as in the previous section)

ﬁa (2] = lrp—zipiaré—(mif |
. [E*y] Z;aep—Zm%

From then on, and in order to simplify notations, we drop the sign corresponding to the
sum over all particles. We obtain to first order in the applied field

T 9y [E2)] = 0,p — po.i(r)0n(—Vi:)

(4.7)

rsmﬁ

r2sin
— i (=Vo1) 050 — po.i ()0 (= Vi) cos6 (4.8)
1 -Vi) .
/i —— 0y [ 21/)] =789p+p0,1—( )sm9
rsin 6 r r

Using the equilibrium distribution —0,Vy; = kBTM, one gets

L9y [E2)] = 0,p — kpT0rpo.s(r)

r2sin 0
~ arpO,i >
— piksT ; cos — po.i ()0 (—V;) cos (4.9)
0,i
7 a’r [EQ’(/}] 789p+p07,( V) sin 6

rsin @

Introducing p' = p — kgT'po,; + Vipo,i cos 6, one gets the compact formula

Nl 2
5 (B2 = B ‘
r2sin 6 O [E*4] = 0,p" — [1i(r)0ypo,i cos O (4.10)
" 5. [E2 1, :
rsing O, [B*¢] = 89p

Eq. (£.10) has the exact same symmetries as Eq. (3.4), here with f(r) = %ﬂi(r)&.poﬂ.
The flow profile therefore can be written as in Eq. (3.11]) and the pressure field is written
similarly as in Eq. (3.14)

p=po+ksTpo;— Vipw cos 0 + 1 cos 00, [EQF(r)] . (4.11)

4.3. Phoretic velocity
To simplify things, we consider first that there is no neutral potential. This contribution
is easily added considering the previous section. To infer the phoretic velocity, we need
to use the fact that the flow is force-less. For that, it is simple to write the total force
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acting on a large sphere of fluid say of radius Rs > R + A along the z axis. The local
hydrodynamic stresses write

dfhydro -
TdS (Rs) = —po — kBTpo.i + Vipo,i cos
37 , [FTY r R 2r?
+2R§ <—3RUP+R /R fr) 73 3R dr | cos@
(4.12)
and
d hydro
o (R =0 (4.13)

and we note that Vipoi(Rs) = +q+Vpo.+(Rs) + q_Vpo._(Rs) = 0 since the solution
is uncharged far from the sphere. Also since the large sphere of radius R, is globally
uncharged, the total force on the z axis on this large sphere is therefore only the integral
of the hydrodynamic stresses. Taking the condition that the flow is force-less we find a

similar formula as in Eq. (3.23)

R R+A

2
vp = — fi (r)0rpo.i (T - E — 27") dr (4.14)
3 Jr

In Eq. (4.14)) the potential fi;(r) can be straightforwardly extended to account for both
electric and neutral interactions.

4.4. Local force balance

The local force balance on the colloid is the sum of the hydrodynamic stresses and the
electric force as

df N R+ R r2

T — 0 — knTon s 00+ COS Z o 50 — YO..
T =kt Vineoost v [ g0 (T 5o ) dreoso - so,v,
dfy 1 (B R 1 ) 1

-— == —— = |d 0— =20V,

1S g /R flr) gz ) drsin = A%

(4.15)
where we used the expression for the phoretic velocity Eq. (4.14). Eq. (4.15) gives the
expression of the local force balance in full generality. To simplify things further we
assume a thin diffuse layer which allows to write

R+
/ (gip))r*drd® Q2(—=V V. (r)) = —R*2d*Q2(—VV.(R)) (4.16)
R

where the main approximation here is (—=VV,(r)) >~ (—=VV.(R)) and the rest is granted
by electroneutrality. d2(2 is the solid angle on the sphere. After a number of easy steps
one finds

dfr - 2 R+X R 7"2 R+ 2T ~
g~ Po— ksTpg; + ng/R flr) (r - RQ) dr cosf — /R ﬁpo,iVidr cos 6
d 1 R R ) Ry oo
% = ng /R flr) (r — Rz) drsin 6 —&—/R ﬁpo’ﬂ/;dr sin 0

(4.17)

Finally one remarks that terms in f If’ A Bz p07i‘~/id7“ are of order \/R in front of the others,
and therefore may be neglected in the thin layer approximation. Finally one arrives to
the usual formulation, with the local force on a sphere surface element described by
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Eq. (3.32) and the pressure 7, associated with the local force:

RtX/rp o 2 -
s = / <r — R2) Zui(r)&po’idr. (4.18)

R

4.5. Applications

We now apply these results in various cases.

4.5.1. Application 1 : diffusiophoresis with neutral solute

In the case of diffusiophoresis with one neutral solute specie, one has (using the
notations above) V; = U(r) and p; = coe 4/F8T 1 5 with j the perturbation under
the external field. The local force thus writes

R+ 2 ~
_ R r p
7TS—/ (7‘ f€2> p07i( 8,«U)p0,zd7“ (419)

Since p(r) = m7 one recovers the previous result in Eq. (2.10)).

cos 6

4.5.2. Application 2 : electrophoresis in an electrolyte

We consider the case of electrophoresis: namely a particle with a surface charge moving
in an external applied electric field. Far from the particle the electric field is constant and
reduces to the applied electric field, but it is modified (or screened) by the electrolyte
solution close to the surface. For simplicity we consider here two monovalent species, but
the reasoning can be generalized easily. The local force on the particle is determined as

RN /p 42
= [ (- ) G000 (0 ) dn (4.20)

R r

One can simplify 7, by integrating by parts pg +:

R 2\ R+ R+ R AN
(e[ a2 G
R

Rearranging the terms and integrating again by part, one obtains

R+ R+
R 2r\ _ R r -
mom [ e (o g i [ (G4 ) Gosr st @

2
R r R

. £+L 20,7 (0 R+)\+ E_i i R+
27’2 2 pO,:t T’:u:t R r R2 :u’:tpo,:t R

(4.22)
From Eq. (4.6) we find that the integrals cancel each other and 74 reduces to

3R _ 1 (R+)N?
Tg = — 7p()$i(R)8TM:|:(R) + R (2 + %

+( R (R+ )2

> p()’:t(R + )\)arﬂi (R + )\)
(4.23)

R+  R?

Note that 0,4+ (R) is actually the radial flux of particles at the boundary, and therefore
is equal to 0. Now we are interested in the far field expressions. In this electrophoretic
case, one expects that there is no perturbation to the concentration field at distances
beyond R+ A (p = 0 and electroneutrality implies po + = po,—). Therefore fir (R + \) ~
i@%ef// cosf. In the far field, V is simply V = Ercosf and we have fie(R + \) ~

) e (R + Npo.s (B + )
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j:kBLTeE (R + )\). As a consequence, the cation (+) and anion (—) terms cancel in the
above expression and one obtains the remarkable result:

T =0 (4.24)

In other words, no local surface force is applied on a particle undergoing electrophoresis.
This is fully consistent with the expectations for the local force balance of [Long et al.
(1996).

4.5.3. Application 3 : diffusiophoresis in electrolyte

We now consider the case of diffusiophoresis in an electrolyte solution. For simplicity
we take an electrolyte solution made of only one specie of monovalent anion and cation
and identical diffusion coefficient. We also perform the derivation in the Debye-Hiickel
limit, in order to obtain a tractable approximate result for the local force.

Concentration profile — We consider first the equilibrium electrolyte profile in the absence
of an external concentration field. The concentration profile obeys the simple Boltzmann
equilibrium

P (1) = (co/2) exp (—,ZB(T)) and o 4 (1) = (co/2) exp (+6Z;(T’")) (4.25)

and the potential V5 (r) obeys the Poisson-Boltzmann equation

_ C0° iy [ V0
AVy = . Smh(kBT) (4.26)

where € = €ge, is the permittivity of water. In the Debye-Hiickel limit, one linearizes the
Poisson equation Eq. (4.26) to obtain

_ApX R R pnpo

Vi 4.27

O(T) e R+ )\D r ( )
where X is the surface charge of the sphere and the Debye length is defined as A;,? = s‘iBCOT.
Chemical potential — The chemical potential is obtained by solving perturbatively

Eq. (4.5) as fi = 2(® + (M) + .. where the expansion is in powers of the electrostatic
potential due to the particle, eV /kgT. The boundary condition at infinity writes

RV T
co

fx(r — o00) =kgT cosf (4.28)

To lowest order, one has V (C()Vl,l/~+(0)) = 0 and therefore

RV R?
il = kTl <T+ ) (4.29)

Co R ﬁ

using the no-flux boundary condition at the surface of the particle. This is similar to the
result for diffusiophoresis with a neutral solute.
For the next order one needs to solve

v (Vi) =+v <c0 <6V°(T)> Vﬂg_))) (4.30)

kT
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giving

o _ R(r R /wM _(0)
Pyt =73 (R+2r2> : T Oy’ (v)dx

R (" (1 a®\ ed,Vo(z), (0
_ﬁ/R <2+RS> B0, () o

where we used the no-flux boundary condition at the particle surface and also the
condition of a bound value for the chemical potential at infinity.

(4.31)

Local force on the surface — The expression for the local force acting on the sphere is
written as

Rt R 2

=t [ (B 5) 0000+ 000 ar (432)
We expand the term in parenthesis as a function of eVy/kgT. At lowest order we get

—e0:Vo . _(0) €0, Vo eV
4.
T + iz’ (r)eo T +o0 i T (4.33)

= ﬁf). Going to the next order we have

i () 0rpo.+ + fim (r)dppo— = A (r)eq

(0)

N N . eVod Vo —ed, V; eVo \°
i (1)0rpo.y + fim (r)Orpo.— = 2" (r)eo " + 20 (r)co O+O<< 0>>

and this order vanishes since fi

(kpT)? kpT kT
(4.34)

These terms may be formally integrated to calculate ms. The expression for mg is
cumbersome and we do not report it here. Simpler forms are however obtained in some
asymptotic regimes. In the limit where the Debye length is small compared to the radius
of the sphere A\p < R we get the approximated result

92 X%V NS

Introducing Du = X¥'/eApcg, a Dukhin number, the expression for 74 can be rewritten as
9
7s(Ap < R) = Zk;BTvcooADDu2 (4.36)

Gathering all contributions in concentration gives a scaling of 7w, o< V (1/4/c). This non-
trivial dependence on the concentration differs from the scaling of the diffusiophoretic
velocity, which scales as the gradient of the logarithm of the concentration for diffusio-
phoresis with electrolytes.

5. Diffusiophoresis of a porous sphere

We consider now the case of diffusiophoresis of a porous sphere. This could also be
considered as a minimal model for an entangled polymer. We will consider the case where
the solute is neutral in order to simplify calculations. The calculations could however be
generalized to charged systems.

5.1. Flow profile

Outside the sphere, for r > R, the flow profile is described by the Stokes equation,
projected on the radial and tangential directions, see Eq. (3.1). Inside the sphere, for
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r < R, the Stokes equation now contains a supplementary Darcy term associated with
the permeability of the sphere. Projecting along e, and ey gives

po, 2 pucosd 2 0u
n T2 r2sinf r? 00

vy 2 Ov, n 1
Mg — ——— + = — —vg = -0
" ( Y 2 sin% g i r2 00 > PRUE

) — Zv,« = Orp — c(r,0)0,(—U)
(5.1)

where £ is the permeability of the porous material, in units of a length squared. For the
porous sphere, the boundary conditions at the sphere surface impose the continuity of
the flow and stress. At infinity, the velocity should reduce to —vpp e, in the reference
frame of the particle. Using indices 1 for inside the sphere and 2 for outside, this gives

Vo, (r — 00,0) = —upppcosf and vgp(r — 00,6) = vpp,,sinf
Vi (r=R,0) =vy,(r=R,0) and vi9(r =R,0) = v29(r = R,0) (5.2)
o1r(r=R,0) =02, (r=R,0) and o1,9(r = R,0) = 02,0(r = R, 0)

We use a similar method as in Sec. |3 defining a potential field 1) = F(r)sin? § in each

domain and operator E such that
E4F1(r) — %EzFl(r) = f(r) (5.3)
E1Fy(r) = f(r)

Outside the sphere, the general solution of this equation is

A 1" f(z)a? " fla)a?

Fy(r) ==2 4 Bor + r2Cy + Dyr* — f/ Mdx + r/ @) dx
—r2/ f(x)xdx—i—r‘l f(m)dx
R 6 R 30x
Inside the sphere, we introduce the following adjunct functions
_ sinh(kyr)
k.t

cosh(k,r)
k.r

aq(r) = cosh(kgr)
(5.5)
ap(r) = sinh(k,r) —

where k, = 1/y/k is the screening factor for the Darcy flow (inverse of a length). The
solution inside the sphere thus writes

A .
Fl(T’) :71 + 1"201 + Bloéa(’)") + Dlab(r) + ?/ f(fE);E2d:C
R
(5.6)

- % /RT f(a:)xda; - a};g) /T ab(m)f(x)dx + abkg) /RT aa(x)f(x)dx

R

The integration constants A;s,...D;j o are determined by the boundary conditions
above. Also, the flow must be finite when 7 — oo, as well as when r — 0. Note that the
integrals do not diverge since f is defined on a compact interval. Therefore we obtain

(for finite flow at infinity)
R+X f(.’b)
Dy = — ——d 5.7
2 /R 302 " (5.7)
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and we also have (for finite flow at small distances)

1R, 1 [ .
A=< f(z)x*dx and Dy = — aq(x) f(z)dx (5.8)
3 Jo k3 Jo
The boundary condition at infinity yields
R+X
02 = / f(x)xdl' — UDPyp (59)
R 6 2

The boundary conditions at the sphere surface impose continuity of vg(R), v,.(R) and
o and o,.9. The continuity of the velocities leads to the continuity of F' and F’ so that
Fi(R) = F3(R) and F{(R) = Fj(R). The continuity of o, leads to the continuity of
F”, and the continuity of o, to the continuity of the pressure. Some straightforward
calculations allow to show that the pressure takes the form

p1 = po + 1 cos 00, <E2F1 - iF1> (5.10)
such that the continuity of pressure amounts to
F{'(R) ~ 2 F{(R) ~ LF{(R) = F{'(R) ~ = Fy(R) (511)
and because we already have F{(R) = Fj(R), we are left with
F{"(R) ~ ~F{(R) = F{/(R) (512)

Altogether the boundary conditions are equivalent to the system of equations

Fi(R) = (R)
Fi(R) - Fy(R)
F(R) - F(R) 19

F"(R) = . F{(R) = F3"(R)

With 4 equations and 4 left undetermined integration constants, this system allows us
to completely calculate all left unknowns and determine the flow field. We do not report
here the full expressions for all constants, except for Bs which is the prefactor of the
Stokeslet term

3R RT/R“ (390 6 R _R 2cosh(k.R)R

By =0, (2% & D I ght, 2CORT) I d
2 ( 4 PP Ty R R kK2R%2:z x + aq(R) x) f(@)du

1 R ag(r) 2
- 3= 2 —|d
), 10 (2 + 1) )
where 0, is a dimensionless function characterizing the effect of porosity

[ cosh(k,R) 3\
b= (o ammy) (519

(5.14)

where the function «, is defined in Eq. (5.5)). Note that §, — 1 in the limit where the
sphere is perfectly impermeable x — 0, allowing to recover the proper expression of B
as obtained for the plain sphere in Sec. [3}
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5.2. Global force balance and diffusiophoretic velocity
We define in a similar way as in Sec. |3, B(r) = Ba+ % I f(r)r2dr and one may deduce
the force from the asymptotic value for B(r — c0):

. An Rtx
F. =—-8mB(R+ \) = —8mnBy — ?77/ f(r)yridr (5.16)
R
Interestingly the viscous contribution to the force writes Fiyaro = —6m0,nRvUpP)p

with 0, defined in Eq. . This indicates that 6, tunes the effective friction on
the porous sphere. For any sphere permeability, we have §, < 1, and the effective
friction is accordingly decreased (therefore increasing in fine the diffusiophoretic velocity).
This effect is rather intuitive and is in agreement with the classical sedimentation of
a porous sphere, where Stoke’s friction is decreased as compared to the plain colloid
case (Sutherland & Tan |[1970; [Joseph & Tao|(1964). We will discuss further these results
in the following subsections.
The motion is force-free F, = 0 and one obtains the expression for vppp:

_R/RJFA r R 1 2R fr)d
=y e \RT 7T RRERR Rr2r )T

2R cosh(k.R) [f** (R 2\ .
_—— e~ d 5.17
sl [ (5 ) Foar (517)
R R ag(r)  r?
2 — | d
v [, 10 () @
This equation can be rewritten in a compact form vpp, = % I %&(—M}@(r)dr

where the function &(r) takes the expression:
r R 1 7 2 R n 2cosh(k,R) (R r?
R r Kk2R2R? K2R?’r 3 w.(R)

C R
1 ag(r)  r?
+ 1(’/“ < R)Rzk,% <2aa(R) + m)

Taking the impermeable limit £ — 0 (and thus k, — oo) allows to recover the result
of the non-porous sphere of Sec.

(5.18)

" 9R? " 3R 9r
We can also expand for small permeabilities to get

2R 1 R4\ R 2 5
vppy(k = 0) =vpp + ( - T) f(r)dr (5.20)

R+
va’p(nzo):R/R i < 2 + R) f(rydr =vpp (5.19)

9 kxR Jr r  R2
Working out the variations of the two terms one finds that the two geometrical contribu-
tions (% — 1%) and (—921222 + 35 — E) are of the same sign (negative) for » > R. This

9r

means that the sphere porosity is increasing the diffusiophoretic mobility. This effect
is consistent with the reduction of friction and leads to a higher phoretic velocity. In
the case of electrophoresis of porous particles and in the regime of a thin Debye-Hiickel
layer, a variety of behaviors are predicted and the effect of porosity is often entangled with
other effects (Hermans|[1955; (Ohshimal[1994; Huang et al.[[2012). The result is simpler for
diffusiophoresis.

It is also interesting to explore the regime of a highly permeable sphere (kx — oo or
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kx — 0). In that case we find

RHA 2 R 2 _
vppp(k — 00) = ﬁ (—/R ﬁf(r) dr+/0 ﬁf(r) dr) (5.21)

The term in bracket can change sign depending on the conditions and parameters and
the velocity may accordingly reverse.

5.3. Local surface force on the particle

We now compute the local force on the particle. The radial and tangential components
take the following expressions in the present geometry:

dfr < r?
25 = Oom —/R nf(r)ﬁdTCOSH
F. ® o 2
= —pg — 108 00,y Fa ()| = — 61 cOs 00, ( i(;")) _ / n f(r)%dr cos 6
r=R R
(5.22)
and
dfy sin 6 sin 6 sin 6
% = O0r9p — 727’@FQ(R) + QT]FaT-FQ(THr:R — n?arrFQ(r)“:R (523)

The local forces hence write exactly as in Eq. (2.9)), with the characteristic surface force

Ts as
6 R ag(r) 7r?
s = kgm/o /) <aa(R) - 32) dr

B ) (2 )

When the sphere is perfectly impermeable we easily recover the expression of Sec. [3]

7s(k =0) = /R+A (f — ;22) f(rydr (5.25)

R

(5.24)

and going to the next order leads to

7a(k = 0) = ma(k = 0) (1 _ ij> (5.26)

Porosity decreases friction and hence also the local force.

5.4. Results in the thin diffuse layer limit

In the thin diffuse layer limit, one may further approximate the previous results.
Concentration profile — The concentration profile in the absence of the external poten-
tial verifies the Laplace equation together with boundary conditions

Aci =0 for r <R

Acy =0 for r >R

ca(r — 00) = ¢g + Veoor cost (5.27)
ca(r=R)=c(r=R)

DVe(r = R) = D3Ve(r = R)
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where the last equation represents conservation of flux at the porous interface; the
indices 1 and 2 denote the solution inside and outside the sphere respectively. This set of
equations is easily solved with the general form ¢; 2(r,0) = co + Ve Rf (1) cos 0 (taking
into account the fact the concentration profile should not diverge at the origin).
Now, in the presence of an external potential, one may approximate the concentration
field by adding the Boltzmann weights (as in Sec. :
2
~U(r)/ksT %% + ;] cos for r >R

D
c(r,0) ~ co + RVeooe U/ FeT 32T] cos 6 for r <R

e(r,0) ~ ¢y + RVesoe
(5.28)

D, +2Dy; R
For a thin layer A < R, the concentration c outside the sphere may be approximated as

3
(D1 +2D>)

2
RV¢ooe U/keT [DQ + D1% +(Dy — Dl)% cos
(5.29)
Diffusiophoretic velocity and local force — Performing expansions in k, — oo allows to
find

¢(R+x,0)=cy+

92D, 9D, 1 2 Do kpT
0)= —"— 1 RL,Vcoo —
vopp(k = 0) = (5= s vor < D, kﬁR> kxR (D1 + 2D3) o
(5.30)
where we recall that
kgT [
Upp = VcooL (e‘u(“’)/kBT — 1) xdzx (5.31)
n Jo
and L, = fo)\ (efu(m)/kBT — 1) dz.
The characteristic local force per unit surface can also be simply expressed as
D, 2
\ 0) = ms(k =0 1— 5.32
mn 0 = mle =0 5575 (1 27 (5.32)

where we recall that w4(k = 0) = %Lsk BT Vcoso. We find that in any case the local surface
force is decreased as compared to the completely impermeable case. Note that in the limit
where the solute diffuses extremely slowly in the porous sphere, D; — 0, it can be seen
as impermeable to the solute and we recover Eq. .

6. Summary and discussion

Our calculations allow to obtain an in-depth understanding of the local and global
force balance obeyed by particles undergoing diffusiophoresis. While we considered in
this paper the general situation of phoretic transport with neutral or charged solutes, we
focus in this discussion on the results for diffusiophoresis.

First, we showed that, at the global scale, the force balance for a particle moving under
solute concentration gradients writes in a rather transparent form as

F =6nRnupp — 271'R2/ co(r) (=0, U)(r) X p(r)dr =0 (6.1)
R
with ¢(r) = & — & — %(%)2 a dimensionless function, and the function co(r) is

proportional to the driving force, i.e. the solute concentration gradient far from the
colloid: ¢o(r) < RVceo. Eq. (6.1) is the sum of the classic Stokes friction force on
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the sphere and a balancing force of osmotic origin, taking its root in the differential
interaction U of the particle with the solute. In the limiting case of a thin diffuse
layer, the osmotic term simplifies to 67 RkgT Voo fooo (e*ﬁu(z) — 1) zdz and the global
force balance allows to recover the known expression for the diffusiophoretic velocity
Upp = Vcoo’”*—Tfooo (e‘ﬁu(z) — 1) zdz (Anderson & Prieve |[1991). However the force
balance in Eq. (6.1) shows that one cannot simply predict the particle velocity by writing
a balance between the viscous term 6w Rnvpp and a global osmotic force which would
scale as Fgm ~ R% x RVII, with IT = kpTcs the osmotic pressure. As discussed in the
introduction, this estimate leads to a wrong prediction for the diffusiophoretic velocity, by
a huge factor of order (R/))? where X is the size of the diffuse layer. This factor originates
in the fact that the osmotic push takes its origin in the thin diffuse layer, and not at the
scale R of the particle. One has to account for the system dynamics at the scale of the
diffuse layer in order to get a proper description of the osmotic transport. Discussions
based on the naive force balance have led to considerable debates and misinterpretations
of osmotically-driven transport of particles (Cordova-Figueroa & Brady||2008; |Jiilicher
& Prost|[2009; [Fischer & Dhar||2009} |(Cérdova-Figueroa & Brady||20094l/b; Brady| 2011
Moran & Posner||2017)). Our results fully resolve these concerns.

Beyond the global force balance, a second outcome of our analysis concerns the local
force balance. We have shown that particles undergoing phoretic transport experience a
local force on their surface which takes the generic form

) 1
df = <—po + s cos 9) dSe, + (STFS sin 9) dS eg (6.2)

where the local force is fully characterized by the force per unit area 75 (po is the bulk
hydrostatic pressure and e, and ey are unit vectors in the spherical coordinate system).

In the case of electrophoresis (with a thin diffuse layer), we have shown that 7, vanishes
identically: s = 0. This simple and remarkable result is the consequence of the local
electroneutrality which occurs for the {particle + diffuse layer}, so that the viscous and
electric stresses balance each other locally. This result is in agreement with the seminal
work of |Long et al.| (1996).

In the case of diffusiophoresis however, the local force does not vanish. For a neutral
solute and a thin diffuse layer, one gets the simple and transparent result

g o gk‘BTLSVCOO (6.3)
where L, = f;o (e*ﬁu(x) — 1) dx is a length quantifying the excess adsorption of the
solute on the sphere surface. This local force can be interpreted in simple terms. The
osmotic force on the particle is actually expected to scale as dVint X VII = dVint V(kpTcso)
where dVipnt is the interaction volume. In terms of the length Lg, which is the typical
interaction lengthscale, one has dVi,y ~ LsdS and we recover the result of Eq. (6.3).
Alternatively one may realize that 7 is of the order of the viscous surface stress and scales
as ms ~ vppn/A. We emphasize however this apparent simple reasoning is somewhat
misleading and conceals the fact that a global force balance occurs at the scale of the
particle leading to a zero force once integrated on the particle surface.

We have extended this result for the local force to a system of charged electrolytes,
which in the limit of a thin Debye layer reduces to

9 Du?
4
where Ap is the Debye length and Du can be interpreted as a Dukhin number, here

Mg =

kpTApVea (6.4)
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— (b increasing deformation

Absorbing

sphere

Force
field

Figure 4: Local force acting on a diffusiophoretic sphere. (a) Local force field
defined in Eq. acting on a sphere during diffusiophoresis with absorption at its
surface in a solute gradient. The local force is plotted with an arbitrary amplitude factor
(the same for each vector). (b) Resulting axisymmetric deformation of the sphere, when
the deformation is assumed to be proportional to the local force, with an increasing
amplitude from left to right. The dotted lines indicate the initial shape of the particle.

defined as Du = X /eApcy, where X is the surface charge of the particle. This shows
interestingly that the local osmotic push on the particle surface is a rather subtle
combination of osmotic pressure and direct electric forces on the particle surface. Another
remark is that the local force, 7, scales non-linearly with the electrolyte concentration,
as ms < V (1/4/c), and may induce a rather complex surface stress field on the particle
surface.

Last but not least, the surface stresses in Eq. generate an inhomogeneous local
tension at the surface of the particle undergoing diffusiophoresis. We plot in Fig. [{la
the corresponding force map. Accordingly, if one assumes that the particle may deform
under a surface stress, this osmotic force field will induce a deformation of the particle.
In Fig. [d}b, we sketch the deformation of a particle whose surface deforms elastically
under a surface stress. We emphasize that this result is specific to diffusiophoresis and in
strong contrast to the case of electrophoresis where the particle does not deform under
the external field because of the local electroneutrality as discussed above
1996).

Let us estimate orders of magnitude for the deformation of a particle undergoing
diffusiophoresis. We consider for simplicity a deformable droplet with radius R and
surface tension «: as a rule of thumb, the overall maximum deformation AR of the droplet
is expected to scale as YRAR ~ msR?. Now one has typically the scaling 75 ~ vppn/\
in the thin diffuse layer limit. Therefore one expects AR/R ~ vppn/(yA). Using typical
values for the diffusiophoretic velocity vpp ~ 0.1um.s™! (Palacci et al|2010), surface
tension v ~ 10.107® N.m~! (Pontani et al|2012)), fluid viscosity n ~ 107% Pa.s and
diffuse layer thickness, A ~ 10 nm, then one predicts AR/R ~ 1. Large deformations are
thus expected for the diffusiophoresis of droplets. We are not aware of an experimental
study of this effect for deformable particle undergoing diffusiophoresis. However, we note
that in the context of thermo-phoresis, DNA molecules were reported to stretch under a
temperature gradient (Jiang & Sano|[2007). Altough we did not explore thermophoretic
transport in the present study, one may expect that similar surface stresses build up
in this case. In a different context, a self-phoretic spherical cell with assymetric water
pumps was predicted to substantially deform in a rather similar way (Yao & Mori|[2017)).

An interesting consequence of this deformation is that these effects may allow to
separate deformable particles undergoing diffusiophoresis, for example if the deformation
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depends on the particle size. This would suggest to explore diffusiophoresis under solute
gradients as an alternative (or complement) to separation techniques involving capillary
electrophoresis, hence developing a capillary diffusiophoresis technique.
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