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We report a numerical study of the diffusiophoresis of short polymers using non-

equilibrium molecular dynamics simulations. More precisely, we consider polymer chains

in a fluid containing a solute which has a concentration gradient, and examine the variation

of the induced diffusiophoretic velocity of the polymer chains as the interaction between

the monomer and the solute is varied. We find that there is a non-monotonic relation be-

tween the diffusiophoretic mobility and the strength of the monomer-solute interaction. In

addition we find a weak dependence of the mobility on the length of the polymer chain,

which shows clear difference from the diffusiophoresis of a solid particle. Interestingly,

the hydrodynamic flow through the polymer is much less screened than for pressure driven

flows.
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I. INTRODUCTION

In a bulk fluid, concentration gradients cannot cause fluid flow. However, a gradient in the

chemical potential of the various components in a fluid mixture, can cause a net hydrodynamic

flow in the presence of an interface that interacts differently with the different components of the

mixture. Such flow induced by chemical potential gradients is usually referred as diffusio-osmosis

(see e.g.1). The same mechanism that causes diffusio-osmosis can also drive the motion of a col-

loid, or other mesoscopic moiety, under the influence of chemical potential gradients in embedding

fluid. Clearly, if the mesoscopic particle (say a colloid) is very large compared to the character-

istic length scale on which adsorption or depletion occurs, it is reasonable to use the Derjaguin

approximation2,3, i.e. to describe the colloid-fluid interface as locally flat, and thus estimate the

speed of diffusiophoresis. However, the Derjaguin approach is likely to fail if the particles that are

subject to phoresis are no longer large compared to the range of adsorption/depletion. There is yet

another situation where the Derjaguin approach is obviously questionable, namely in the case of

particles that do not have a well-defined surface. One particularly important example is the case

of diffusiophoresis of polymers: molecules that have a fluctuating shape and an intrinsically fuzzy

surface. One manifestation of this fuzziness is the fact that the magnitude of the Kirkwood ap-

proximation for the hydrodynamic radius Rh of a long self-avoiding polymer is about 63% of the

radius of gyration Rg
4: for a smooth sphere, this ratio would be≈ 107% (the Kirkwood expression

for Rh is only an approximation: the point is that the averages are different and that hydrodynamic

radius is smaller than for a corresponding solid object). This difference implies that the density

inhomogeneity of a self-avoiding polymer results in penetration of hydrodynamic flow fields into

its outer “fuzzy ” layer. In addition, solutes can diffuse through the polymer. This fuzziness clearly

makes it difficult to describe a polymer as a solid sphere surrounded with pure liquid, and hence a

Derjaguin approach is questionable. The lack of predictive power of the colloidal approximation

was pointed out previously by experiments with λ -DNA by Palacci et al5,6.

There is another factor that makes diffusiophoresis of polymers unusual: since the driving force

for diffusiophoresis comes from an excess (or deficit) of solute in the fluid surrounding the poly-

mer, the stronger a solute is attracted to a polymer, the larger this excess will be. However, a

strongly binding solute may result in the collapse of the polymer to a compact globule (scaling

exponent 1/3). Hence, unlike in the case of colloids, one cannot assume that the size of polymers

subject to diffusiophoresis is independent of the polymer-solute interaction. Furthermore, a so-
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lute excess/deficit may not be sufficient for the occurrence of diffusiophoresis: if the solutes are

strongly adsorbed onto the polymer, they become effectively immobile relative to the polymer, in

which case the excess/deficit do not contribute to diffusiophoresis.

In this paper, we report systematic molecular dynamic simulations of diffusiophoretic transport

of short polymers. Specifically, we apply non-equilibrium molecular dynamic simulations using

a microscopic force acting on each species, and examine the effect of interaction parameters be-

tween the monomer and the solute on the induced diffusiophoretic velocity of the polymer. Our

simulations indeed reveal a non-monotonic dependence of the phoretic mobility Γps on εms, the

interaction strength between the polymer and solute. We have investigated the influence of the size

of the polymer on its diffusiophoretic mobility. We find a weak polymer-size dependence of the

mobility. We compare these findings with the corresponding theoretical predictions for a colloidal

particle.

II. THERMODYNAMICS FORCES AND THEIR MICROSCOPIC

REPRESENTATION

Conceptually the most straightforward way of simulating diffusiophoresis would be to carry

out a Non-Equilibrium Molecular Dynamics (NEMD) with an imposed concentration gradient,

following a procedure similar to Heffelfinger and Van Swol7 and Thompson and Heffelfinger8.

Nonetheless, there are several drawbacks associated with this approach for modeling diffusio-

phoresis, the most significant being that periodic boundary conditions are incompatible with the

existence of constant concentration gradients as advection deforms the concentration profiles (see

Supplementary Material). However, in analogy with simulations of systems in homogeneous elec-

trical fields, we can replace the gradient of a chemical potential by an equivalent force per particle

that can be kept constant, and therefore compatible with periodic boundary conditions9,10. This

field-driven non-equilibrium approach has been often applied in other contexts11. The idea is to

impose a mechanical constraint (i.e an external field) that mimics the effect of the force12. To

see how this approach works in the systems that we study, we first consider diffusio-osmosis in a

binary mixture of solvent ( f ) and solute (s) particles, which are subjected to a gradient of chem-

ical potential of one of the species (e.g. s), and a gradient in the pressure (in bulk fluids in the

absence of external body forces, the pressure gradient will typically vanish). We assume that the

system is at constant temperature. Ajdari and Bocquet13 derived an expression for the transport
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matrix Γ that relates the fluxes,viz. the total volume flow Q and the excess solute flux Js− cB
s Q,

with the gradient of pressure−∇P and the gradient of the chemical potential of one of the species;

where cB
s is the solute concentration in the bulk . There are only two independent thermodynamic

driving forces as, at constant temperature, only two of the three quantities ∇P, the solute ∇µs and

the solvent ∇µ f are independent. In fact, it is convenient to define a slightly modified chemical

potential gradient ∇µ ′s by ∇µ ′s ≡ [1+ cB
s /cB

f ]∇µs, in which cB
s /cB

f is the ratio between the solute

(s) and solvent (f) concentrations in the bulk. With this definition, the linear transport equations

can be written as


 Q

Js− cB
s Q


=


Γqq Γqs

Γsq Γss




−∇P/T

−∇µ ′s/T


 , (1)

where Γi j’s are the Onsager transport coefficients connecting the different fluxes with the ther-

modynamic driving forces. In what follows, it is convenient to replace ∇µi the gradient of the

chemical potential on species i by an equivalent external force Fµ
i , such that Fµ

i = −∇µi. This

approach to replace the chemical potential gradient by an equal (and opposite) “color” force was

previously used in the context of diffusion and transport in microporous materials by Maginn

et al.14,15. In the context of diffusio-osmosis, Liu et al.10 showed that simulations using color

forces yield the same results as those obtained with explicit gradients of concentration. Further-

more, Yoshida et al.9 used the Green-Kubo formalism16 to show that Onsager’s reciprocity is

also fulfilled. Ganti et al. have applied and validated a similar approach in the context thermo-

osmosis17,18.

Having considered the case of a binary solvent-solute mixture, we now add a third component,

namely the polymer, to the system. Again, not all chemical potential gradients are independent, as

it follows from the Gibbs-Duhem equation:

V dP = SdT +∑
i

Nidµi. (2)

In what follows, we assume there are no global pressure and thermal gradients in the system. As a

consequence, we can write:

Fµ
p =−(Fµ

s Ns +Fµ
f N f ), (3)

where Fµ
p ,Fµ

s ,Fµ
f denote the equivalent forces on the polymer, solute and solvents mimicking the

corresponding chemical potential gradients. Ns, N f refer to the total number of solutes and solvents

in the system as a whole. This equation simply expresses the fact that there can be no net external
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force on the fluid: if there were, the system would accelerate without bound, as there are no walls

or other momentum sinks in the system. In simulations, it is convenient to work with a force

per monomer, rather than a force on the center-of-mass of the polymer: Fm = Fµ
p/Nm, where Nm

denotes the number of beads in the polymer. Equation (3) establishes a connection between all

chemical potential gradients (or the corresponding microscopic forces), which must be balanced

throughout the system as phoretic flow cannot cause bulk flow.

We will now compute the rate of polymer diffusiophoresis using Eq. (3) as our starting point.

III. MOLECULAR DYNAMICS (MD) SIMULATIONS

We performed non-equilibrium Molecular Dynamics (NEMD) simulations using LAMMPS19.

In most simulations, particles interact via a 12-6 Lennard-Jones potential (LJ) VLJ(r)= 4εLJ
i j [(σ

LJ
i j /r)12−

(σLJ
i j /r)6] shifted and truncated at r = rc, such that

VT S(r) =





VLJ(r)−VLJ(rc), if r ≤ rc

0, otherwise.
(4)

The indices i and j denote the particle types in our simulations: solutes (s), solvents ( f ) and

monomers (m). To keep the model as simple as possible, we assume that in the bulk the solute and

solvent behave as an ideal mixture. We therefore choose the same Lennard-Jones interaction for

the particle pairs ss, s f , f f with εLJ
i j = ε0 and σLJ

i j = σ0. We use these same parameters also for

the monomer-solvent interaction ms. However, the monomer-solute interaction strength εLJ
ms was

varied to control the degree of solute adsorption or depletion around the polymer. Yet, we kept σLJ
ms

equal to σ0. For the monomer-monomer interaction, we use a purely repulsive Weeks-Chandler-

Andersen potential20, i.e. a Lennard-Jones potential truncated and shifted at the minimum of the

LJ potential, rc = 21/6σ0. For all other interactions, rc = 2.5σ0. Finally, neighboring monomers

are connected by a finite extensible, nonlinear elastic (FENE) anharmonic potential UFENE(r),21,22

UFENE(r) =−
kR2

0
2

ln

[
1−
(

r
R0

)2
]
, (5)

with k = 7ε0/σ2
0 and R0 = 2σ0. In what follows, we use the mass m0 of all the particles (s, f and

m) as our unit of mass and we set our unit of energy equal to ε0, whilst our unit of length is equal

to σ0, all other units are subsequently expressed in term of these basic units. As a result, forces

are expressed in units ε0/σ0, and our unit of time is τ ≡ σ0
√

m0/ε0.
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A. Equilibration

We studied the diffusiophoresis of a single polymer chain composed of 30 monomers, Nm = 30,

suspended in an equimolar ideal mixture of solute and solvent molecules. The initial simulation

box dimensions were Lx = 20σ0, Ly = 20σ0, Lz = 30σ0 and the number of fluid particles was 8748.

After equilibration, chemical potential gradients were applied along the x-axis. We distinguished

two types of domains in the simulation box: one periodically repeated domain with width 20σ0 in

the z-direction centered around the polymer’s center of mass in the z-coordinate. The remainder

of the system ( a domain with width 10σ0), contains only bulk fluid (see Fig 1 – note that because

this figure is centered around the polymer, one half of the bulk domain is shown above and one

half below the polymer domain). We verified that the composition of the mixture in this bulk

domain is not influenced by the presence of the polymer in the other domain (See Supplementary

material). The system is periodically repeated on each direction.

Our aim was to carry out simulations under conditions where the composition of the bulk

fluid was kept fixed, even as we varied the monomer-solute interaction. Moreover, we prepared

all systems at the same hydrostatic pressure. Therefore, we performed NPT simulations using a

Nosé-Hoover thermostat/barostat23. The equations of motion were integrated using a velocity-

Verlet algorithm with time step t = 0.005τ . After the relaxation of the initial configuration, the

box was allowed to fluctuate in the y direction, fixing kBT/ε0 = 1.0 and Pσ3
0/ε0 = 1.0 for 2×104

steps.

During the NPT equilibration, fixing the bulk concentration of the liquid requires a careful pro-

tocol, in particular in cases where the solute binds strongly to the polymer. In our simulations, we

accelerated the equilibration of the solute adsorption on the polymer by attempting to swap solvent

and solute molecules 104 times for every MD step throughout the simulation box. Simultaneously,

we swapped solutes and solvents in the bulk, to ensure that adsorption on the polymer does not

deplete the solute concentration in the bulk. To this end, we swapped solutes and solvents in the

bulk every 200 steps such that the bulk solute concentration remained fixed at cB
s ≈ 0.376. Note

that these swaps were only carried out during equilibration.

6
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𝒙

𝒛

Bulk

Bulk

FIG. 1: Simulation box showing solutes (red), solvents (blue) and monomers (orange). The bulk

regions are shown inside black boxes. In the bulk, the solute and solvent concentrations are as-

sumed to be unperturbed by the presence of the polymer.

B. Field-driven simulation

Having prepared a system of polymer in a fluid mixture with a pre-determined pressure and bulk

composition, we now consider the effect of chemical potential gradients on the phoretic motion

of the polymer in NVT simulations. As discussed above, we represent the chemical potential

gradients by equivalent external forces that are compatible with the periodic boundary conditions.

Importantly, the forces are chosen such that a) there is no net force on the system as a whole and

b) there is no net force on the bulk solution away from the polymer. These two conditions imply

that there is only one independent force that can be defined in the system. In the present case, we

chose to fix the force on the solutes Fµ
s , which was varied between 0 and 0.1 ε0/σ0 for different

runs. During all the field-driven simulations, we employed a dynamical definition of the bulk and

polymer domains such that the z-coordinate of the center of mass of the polymer is always in the

middle of the polymer domain. This procedure ensures that the “bulk” region remains unperturbed

by the polymer. Having specified the force on the solute, the force on the solvent particles follows

from mechanical equilibrium in the bulk in Eq. (3) (see Fig. 1):

Fµ
s NB

s +Fµ
f NB

f = 0, (6)

7
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where NB
s , NB

f denote the number of solutes and solvent in the bulk region. Once the forces in

the bulk have been specified, the phoretic force on the polymer Fµ
p is obtained by imposing force

balance on the system as a whole (Eq. (3)).

Due to the finite size of the bulk domain there are inevitably fluctuations in the composition

of this domain. These fluctuations would lead to unphysical velocity fluctuations in the bulk

(unphysical because in the thermodynamic limit this effect goes away). These velocity fluctuations

would contribute to the noise in the observed phoretic flow velocity. To suppress this effect, we

could either adjust the composition in the bulk domain at every time step, or adjust the forces on

solute and solvent (Fµ
p and Fµ

f ) such that the external force on the bulk domain is always rigorously

equal to zero. We opted for the latter approach, because particle swaps would affect the stability

of the MD simulations.

IV. RESULTS AND DISCUSSION

A. Phoretic velocity

In Fig 2 the polymer velocities in the direction of the gradient vx
p are plotted for three different

pair of LJ parameters. When there is adsorption of solutes around the polymer (εLJ
ms = 1.5), the

polymer follows the gradient, migrating towards regions where the solute concentration is higher.

Conversely, when there is depletion (εLJ
ms = 0.5) the polymer will move in the opposite direction.

As a null check, we also performed simulations for the case where the εLJ
ms = εLJ

m f . In that case,

there should be no phoresis, as is indeed found in the data shown in Fig. 2. The inversion of

the velocity depending on the sign of the monomer-solute interaction is expected on the basis of

irreversible thermodynamics1 and has previously been observed in simulations of for nano-dimers,

using hybrid molecular dynamics-multiparticle collision (MD-MPC) dynamics24,25.

The figure also shows that our simulations appear to be in the linear regime, as the magnitude

of the phoretic velocity increases linearly with the strength of the applied field.

8
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0.02 0.04 0.06 0.08 0.10
F µ
s = −∇xµs[ε/σ]

0.00

0.02

0.04

v
x p
[σ
/τ

]

εms=0.5 σms=1.0

εms=1.0 σms=1.0

εms=1.5 σms=1.0

FIG. 2: Polymer velocities in the direction of the gradient for different LJ interactions (εLJ
ms,σLJ

ms )

vs the force applied on the solute particles.

B. Mobility dependence on the interaction

The mobility Γps of a polymer moving under the influence of a gradient in the solute chemical

potential is defined through:

vx
p = Γps∇xµs. (7)

We can compute Γps as a function of the polymer-solute interaction strength from the slope of the

vx
p vs. ∇xµs plots, such as the ones shown in Fig 2. This procedure allows us to obtain Γps as a

function of the monomer-solute interaction strength εLJ
ms . We stress that, whilst we determine Γps

by varying ∇xµs, we keep the bulk composition of the mixture fixed (as well as the temperature

and the pressure). The resulting relation between εLJ
ms and Γps is shown in Fig 3. As expected, Γps

is linear in εLJ
ms when εLJ

ms/εLJ
m f is close to one. However, as the monomer-solute interaction gets

stronger, Γps saturates, and subsequently decays with increasing εLJ
ms .

The observed decrease of Γps for large values of εLJ
ms suggests that when solute particles bind

strongly to the polymer, they become effectively immobilised and hence cannot contribute to the

diffusio-osmotic flow through and around the polymer. This argument would suggest that the diffu-

siophoretic velocity should vanish as εLJ
ms becomes much larger than the thermal energy. However,

that does not seem to be the case: rather Γps seems to level off at a small but finite value. This sug-

gests that not all fluid particles involved in the phoretic transport are tightly bound to the polymer.

One obvious explanation could be that the LJ potential that we use is sufficiently long-ranged to

interact with solute particles that are in the second-neighbour shell around the monomeric units of

9
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the polymer. To test whether this is the case, we repeated the simulations with a shorter-ranged

short-ranged Lennard-Jones-like potential (SRLJ)26 that has a smaller cut-off distance (rc = 1.6 )

where the potential and its first derivative vanish continuously. In the insert of Fig. 3 this narrower

potential is shown compared with the standard truncated and shifted LJ potential with rc = 2.5,

εLJ = 1 and σLJ = 1. In our simulations we only used the SRLJ potential for the monomer-solute

interactions. For all other interactions we still use the standard LJ potential.

0 2 4 6 8 10 12
εms

−0.2

−0.1

0.0

0.1

0.2

Γ
ps

[τ
/m

]

SRLJ

LJ

1.0 1.5 2.0 2.5
r

−1

0

1

V
(r

)

FIG. 3: Mobilities for different LJ interaction energies (εms). All the simulations were performed

keeping the thermodynamic conditions in the bulk constant (T ,P, cB
s ). The insert shows a LJ

potential for rc = 2.5, εLJ = 1 and σLJ = 1 and a SRLJ potential, showing the narrow range of the

monomer-solvent interaction.

Figure 3 shows a comparison of the results obtained with the LJ and the SRLJ potentials. Inter-

estingly, even with the short-ranged monomer-solute interaction for which next-nearest neighbour

interactions are excluded, Γps still does not decay to zero at large εLJ
ms . This suggests that the

phoretic force is not just probing the excess of solute particles that are directly interacting with the

polymer, but also the density modulation of solutes (and solvent) that is due to the longer-ranged

structuring of the mixture around the polymer coil. In Fig. 4, we show an extreme case (εLJ
ms = 8.0)

where the polymer has collapsed and particles within a hydrodynamic radius Rh from the center of

mass do not contribute to phoresis as they are tightly bound. In contrast, particles in the structured

liquid layer further away from the center of the polymer (r > RH) are mobile and can therefore

contribute to the diffusio-osmotic flow.
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(a)

0 2 4 6 8

r[σ]

0.0

0.5

1.0

1.5

2.0

c[
σ
−

3
]

Solvent

Solute

Solution

(b)

0 2 4 6 8

r[σ]

0.0

0.5

1.0

1.5

2.0

c[
σ
−

3
]

Solvent

Solute

Solution

FIG. 4: Distribution of solutes, solvents and the total solution measured from the center of mass

of the polymer for (a) LJ, (b) SRLJ. The vertical line represents the hydrodynamic radius Rh of

the polymer, in both cases εLJ
ms = 8.0. Mobile particles in the heterogeneous region outside the

collapsed polymer coil contribute to the diffusio-osmotic flow in a similar way for both ranges of

interaction.

C. Scaling of the phoretic mobility with the length of the polymer

For colloidal particles with a radius much larger than the range of the colloid solute interaction,

the diffusiophoretic mobility is independent of the colloidal radius27. As the diffusion of a poly-

mer in a fluid is often described as that of a colloid with an equivalent “hydrodynamic radius” Rh,

one might be inclined to assume that the diffusiophoretic mobility of a sufficiently large polymer

might also be size independent. To our knowledge, this size dependence has not been tested in

simulations. However, experiments by Rauch and Köhler28 showed that thermophoretic mobility

of polymers varies with the molecular weight Mw for short polymers (fewer than 10 monomers),

but very little for longer polymers (10-100 monomers).

For colloids, Anderson27 derived an expression for the diffusiophoretic mobility of colloids in

the case where the interfacial layer thickness L is smaller, but not much smaller than the radius a of

the colloid. Introducing the small parameter λ ≡ L/a, Anderson derived the following asymptotic

expression for the diffusiophoretic velocity v of a colloidal particle:

11



Studying polymer diffusiophoresis with Non-Equilibrium Molecular Dynamics

v = v0

[
1− (K +H)

L
λ +O(λ 2)

]
. (8)

In this approximation, the first term corresponds to the Derjaguin limit L� a:

v0 =
α

βη
L∗K, (9)

where α is the magnitude of the concentration gradient, β = 1/(kBT ), η is the shear viscosity

and φ is the potential of mean force experienced by solutes at a distance y = r− a from the

surface of the colloid. K, L∗, H are proportional to moments of the excess solute distribution

cs(y) = cB
s exp[−βφ(y)],

K =
∫ ∞

0
[exp[−βφ(y)]−1]dy, (10)

L∗ =
∫ ∞

0 y[exp[−βφ(y)]−1]dy
K

, (11)

H =

∫ ∞

0

1
2

y2[exp[−βφ(y)]−1]dy
∫ ∞

0
y[exp[−βφ(y)]−1]dy

. (12)

The corrections terms in Eq. (8) account for the effect of the curvature of the particle. All the

above equations apply to the case where there is no hydrodynamic slip on the surface of the colloid.

However, if solute particles are strongly adsorbed to the colloid, they become immobile and the

result is simply that the surface of no slip, and hence the effective colloidal radius, increases.

Eq. (8) was derived assuming no-slip boundary conditions to solve the Navier-Stokes equation.

However, Ajdari and Bocquet13 showed that a correction due to the hydrodynamic slip captures

the transport enhancement at interfaces. Including the amplification factor due the surface slip, for

moderate adsorption or depletion of solutes, the corrected diffusiophoretic velocity v′ reduces to:

v′ = v
(

1+
b
L

)
. (13)

where b is the hydrodynamic slip length.

To study the dependence of the phoretic motion of a polymer on the number of monomers of

the chain Nm, simulations were performed for a range of Nm from 5 to 60. As our polymers are

fully flexible (but self-avoiding) a chain of 60 beads corresponds to a medium-sized polymer. The

simulation box was scaled accordingly with the Flory exponent for a polymer in a good solvent

ν ≈ 0.6 thus ensuring that the chain could not overlap with its periodic images. All the NEMD

simulations were carried out for 108 time steps.
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20 40 60
Nm

0.00

0.05

0.10

0.15

0.20

|Γ
ps
|

1 + b/L = 6.54

1 + b/L = 14.11

Simulation εms = 0.5

Simulation εms = 1.5

20 40 60

0.01

0.02

0.03

FIG. 5: Diffusiophoretic mobility Γps of a polymer vs the number of monomers in the polymer

Nm. The results εLJ
ms = 1.5 are shown in red and in blue for εLJ

ms = 0.5. The simulations results are

represented as dots and the theoretical predictions (Eq. (8), including the amplification due to the

hydrodynamic slip), are shown as squares. The insert shows the theoretical predictions without

the slip correction. In the theoretical calculations a = Rh, where Rh is the hydrodynamic radius

estimated, for the specific interaction εms and thermodynamic conditions, using Stokes-Einstein

relation (Eq. (14))

In Fig. 5, the simulation results are shown together with theoretical predictions replacing the

polymer by an equivalent hard sphere with a radius a = Rh, with the hydrodynamic radius Rh given

by Stokes-Einstein relation (Comparison with the Kirkwood approximation for Rh
29 are shown in

SI ),

Rh ≡
kbT

6πηD
, (14)

where η denotes the viscosity of the solution in the bulk, which was computed independently,

using the Green-Kubo expression relating η to the stress auto-correlation function, in an equilib-

rium simulation of the bulk fluid (see, e.g.16). The diffusion coefficient D was also computed from

equilibrium simulations30 taking into account the different interactions εms. Fig. 5 shows that

the diffusiophoretic mobility of the polymer increases with Nm. The large quantitative differences

between the simulations and the theoretical approximations for a colloid with the same hydrody-

namic radius are to be expected: First of all, the assumption that the polymer coil behaves as a

hard sphere with a = Rh is rather drastic. To be more precise, this approximation (that was also

used by Kirkwood29) assumes that the liquid molecules within the coil region move together, such

that the whole assembly moves as a rigid sphere (see e.g.31). This might be a good approximation
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for the diffusion of long polymer coils, but in the case of phoresis, it is unrealistic to assume that

no solute/solvent can be transported through the polymer at distances less than Rh. The second

(but related) questionable approximation is that Rh defines the surface of the equivalent colloid

in the integrals in Eqs. (10)-(12). As a consequence, the contribution of any excess solute at a

distance less than Rh from the polymer center is ignored. As is clear from Fig. 4 this assumption

is incorrect and is likely to underestimate the real diffusiophoretic flow, in view of the fact that

Fig. 6b shows that there can be considerable solute advection for r < Rh.

Our simulations suggest that better theoretical models for polymer diffusiophoresis are needed.

In Fig. 6 we show the velocity field for a polymer with Nm = 30 for two cases: when it is subjected

to a body force i.e pressure gradient 6a and under the influence of diffusiophoresis 6b. As is

obvious from the figure, in both cases there is fluid motion within the polymer at distances less

than Rh from its center of mass. However, there is an important difference between the flows

inside the polymer for the pressure-driven and phoretically driven flows: strong hydrodynamic

screening is found in the case of a pressure gradient while for diffusiophoresis, screening seems to

be effectively absent. Notice that the density profile is somewhat asymmetric due to the advection

produced by the pressure-driven flow.

14
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FIG. 6: Flow around a polymer coil. (a) when a body force is applied and (b) for the diffusio-

phoretic case. The velocity field is measured in a coordinate system moving with the center of

mass of the polymer. The black semicircle shows the equivalent colloid and the contours show

the solute concentration, for both cases εms = 1.5. The measurements were taken inside a cylin-

der with axis along the direction of the applied force passing through the center of mass of the

polymer. The contours show the solute concentration cs.

Shin et al. reported evidence for a similar absence of hydrodynamic screening in a dense plug

of colloidal particles moving under the influence of diffusiophoresis32. Shin et al. argued that

the difference in screening in the case of phoretic flow, as opposed to flow due to body forces

or pressure gradients, could be attributed to the difference in the range of the hydrodynamic flow

fields in these two cases ((∼ 1/r) for body-forces and pressure driven flow, (∼ 1/r3) of phoretically

induced flows33.

V. CONCLUSIONS

We have performed molecular dynamics simulation on the diffusiophoresis of polymers in a

fluid mixture under the influence of a concentration gradient of solutes. In our non-equilibrium

molecular dynamics simulation, we mimicked the effect of an explicit concentration gradient in

the system by imposing equivalent microscopic forces on the solute, solvent and monomers. This

approach allows us to use periodic boundary conditions and facilitates a systematic investigation
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of diffusiophoresis. Our results reveal a non-monotonic relation between the diffusiophoretic mo-

bility and the interaction strength between the polymer and the solute. The findings imply that,

in the strong interaction regime, the phoretic mobility decreases with increasing monomer-solute

interaction strength. This result can be understood by noting that solutes that are strongly bound

to the polymer cannot contribute to diffusiophoresis. Furthermore, we have demonstrated that the

diffusiophoretic mobility of a (short) polymer cannot be explained in terms of a model that as-

sumes that polymers behave like colloids with the same hydrodynamic radius. Finally, we found

effectively no screening of hydrodynamic flow inside a polymer moving due to diffusiophoresis,

as opposed to what is observed in the case of a polymer that is moved through a fluid by an external

force.

VI. SUPPLEMENTARY MATERIAL

In the supplementary material we show the concentration distribution of solvent, solute, and

solution as a function of radial coordinate from the center of mass of the polymer for εms = 1.5. We

discuss simulations of a single, fixed colloid in a concentration gradient, and finally we show the

diffusiophoretic mobilities of the polymer Γps vs the number of monomers in the polymer Nm and

compare with theoretical predictions based on the Kirkwood approximation for the hydrodynamic

radius.
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I. CONCENTRATION DISTRIBUTIONS

In Fig. 1 we show the concentration distribution measured from the center of mass of the

polymer in the radial direction for εms = 1.5. The figure shows that for r > 7σ0 the solution is

unperturbed by the presence of the polymer. This also holds for all the εms in the present study.

0 2 4 6 8

r[σ]

0.0

0.2

0.4

0.6
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σ
−

3
]

Solvent

Solute

Solution

FIG. 1: Concentration of solvent, solute, and solution as a function of radial coordinate from the

center of mass of the polymer for εms = 1.5.

II. COLLOIDAL SYSTEM SIMULATIONS

We performed simulations for a colloidal particle under the influence of both an explicit con-

centration gradient and the implicit method applying color forces. For the explicit system, the box

size is (51.30 x 20.52 x 30.78) (in units of σ0). A colloid was fixed in the center of the simulation

box by placing a single Lennard-Jones particle with σcs = σc f = 3.23 σ0, where the subscript c

denotes the colloid. The solution has the same properties as those described in the main text. The

concentration gradient was imposed by using two-particle reservoirs, with the concentration of

solutes fixed at 0.6 σ−3 in the high concentration reservoir and 0.15 σ−3 in the low concentration

one (see Fig. 2). The imposed concentration gradient is equivalent to ∇µs ∼ 0.06 and is linear

when there is no preferential interaction between the colloid and the solutes εcs = 1.0. As soon as

phoresis starts, the concentration gradient becomes non-linear (in fact, exponential) due to advec-

tion. As a result, the local concentration gradient at the location of the colloid is decreased (see

also1). The Péclet numbers for the solution in the bulk are shown in Fig 3

2



(Supplementary Material) Studying polymer diffusiophoresis with Non-Equilibrium Molecular Dynamics

0 20 40
x

0.0

0.2

0.4

0.6

0.8

cB s
(x

)

εcs = 0.5

εcs = 1.0

εcs = 1.5

εcs = 2.0

εcs = 2.5

εcs = 3.0

εcs = 4.0

εcs = 5.0

FIG. 2: Solute concentration profile in the case of a constant imposed concentration difference.

The figure shows the results for difference phoretic flow velocities, corresponding to different

values of εcs. We measure the concentration profiles at a lateral distance of at least 10σ from

the colloid, where the colloid does not directly perturb the concentration profile. The shaded

region represents the x position of the colloid and it is shown to emphasize the asymmetry in the

concentration distribution created by advection.
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FIG. 3: Péclet number Pe for the diffusiophoretic flow with several colloid-solute interaction

strengths εcs using explicit gradients. Note that, even for the smallest non-zero phoretic flow

velocities Pe > 20.

For the implicit method, we used a simulation box (20.52 x 20.52 x 30.78) (in units of σ0)

with a colloid located in the center of the box. A snapshot of both systems is shown in Fig. 4
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Note that the deformation of the concentration profile in figure (b) (colour forces) is barely visible.

This observation illustrates the advantage of using colour forces rather than explicit gradients. In

contrast, in Figure (a) (explicit gradient), the colloid is not in the center of the concentration profile

(if it were, it would be at the red-blue boundary).

(a) (b)

FIG. 4: Simulation boxes for (a) the explicit and (b) the implicit gradient systems

In Fig.5 we show the results obtained using the explicit and implicit gradients, together with

the theoretical predictions using Anderson’s theory including curvature corrections2. The results

show that the explicit method is only suitable for small phoretic effects (small gradients or small

εcs as it is difficult to impose a linear gradient without using methods as described by Sharifi et

al3 which artificially forces the concentration profile to be linear but at the expense of introducing

(unphysical) sources/sinks of solute particles throughout the simulation box.
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FIG. 5: Phoretic velocity vx with several colloid-solute interaction strengths εcs obtained with

explicit, implicit gradients and theoretical predictions.
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To conclude, the advantages that the implicit gradient offers over the explicit gradient imple-

mentation are listed below:

• Allows simulating moving objects (polymers, colloids, etc) inside the concentration gradi-

ent. This would not be possible under periodic boundary conditions

• Only one parameter is required to change the chemical potential gradient, while in the ex-

plicit gradient method a new equilibrated system is required

• There is no overhead due to exchange movements

• The system size is considerably smaller

• The explicit gradient method is only efficient for small Péclet number, otherwise the con-

centration gradient is disturbed by flow advection
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III. DIFFUSIOPHORETIC MOBILITIES USING THE KIRKWOOD

APPROXIMATION FOR Rh

In Fig. 6, the simulation results are shown together with theoretical predictions replacing the

polymer by an equivalent hard sphere with a radius a = Rh, with the hydrodynamic radius Rh given

Kirkwood’s approximation of Rh
4.
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FIG. 6: Diffusiophoretic mobility Γps of a polymer vs the number of monomers in the polymer

Nm. The results are shown in red for εLJ
ms = 1.5 and blue for εLJ

ms = 0.5. The simulations results

are presented as dots and the theoretical predictions using Anderson’s prediction2, including the

correction due to the hydrodynamic slip, are shown as squares. The insert shows the theoretical

predictions without the correction for hydrodynamic slip.
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