
HAL Id: hal-02998804
https://hal.science/hal-02998804v1

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control of a robotic prosthesis simulation by a
closed-loop intracortical brain-machine interface

Dorian Goueytes, Aamir Abbasi, Henri Lassagne, Daniel Shulz, Luc
Estebanez, Valerie Ego-Stengel

To cite this version:
Dorian Goueytes, Aamir Abbasi, Henri Lassagne, Daniel Shulz, Luc Estebanez, et al.. Control of a
robotic prosthesis simulation by a closed-loop intracortical brain-machine interface. 2019 9th Inter-
national IEEE/EMBS Conference on Neural Engineering (NER), Mar 2019, San Francisco, France.
pp.183-186, �10.1109/NER.2019.8716885�. �hal-02998804�

https://hal.science/hal-02998804v1
https://hal.archives-ouvertes.fr


  


 

Abstract— Closed-loop brain-machine interfaces may help 

restore the autonomy of amputees and tetraplegic patients. 

However, additional efforts are needed towards their real-

world use with prostheses. Here we have interfaced a highly 

versatile closed-loop mouse BMI with an online model of a real-

world prosthetic arm. We describe this setup and illustrate how 

it allows to explore the efficiency of different input and output 

coding strategies given a realistic modelling of the interactions 

between a commercial bidirectional prosthesis and its 

environment. 

I. INTRODUCTION 

Invasive Brain-Machine Interfaces (BMIs) are devices 
that access in real-time neuronal activity inside the brain in 
order to execute an action. Beyond research applications, this 
direct interfacing with the brain constitutes an opportunity to 
help patients suffering from severe motor damage, including 
paralysis and amputation cases. The architecture of invasive 
BMIs combines a neuronal recording device, usually multiple 
microelectrodes implanted in the brain, with an online 
analysis of the signal to extract commands that can be passed 
to an effector. This simple, one-directional strategy has 
already shown impressive results during the past years, 
successfully giving control of complex robotic prostheses to 
patients with heavy disabilities [1], [2]. 

 However, emulating the fast, accurate control seen in 
natural movements remains a challenge. This is in part 
because explicit feedback mechanisms are often lacking. 
Indeed, on top of the eye contact with the prosthesis, the user 
also needs feedback about non-visual properties, including 
internal forces or occluded touch [3]. This is especially true 
for manipulation of complex, multi-joint prostheses. 
Moreover, somatosensory and proprioceptive feedback are of 
utmost importance to induce embodiment and sense of 
agency, which in turn impacts motor performance [4]. 
Recently, efforts have been made to incorporate 
somatosensory or proprioceptive-like feedback to BMIs, 
using approaches ranging from fully biomimetic stimulations 
of sensory cortices [5] to learning-based methods using 
arbitrary patterns of stimulation [6]. 

 We have previously described a closed-loop BMI setup 
[7] based on the spiking activity of neurons recorded by 
chronically implanted electrodes in the primary motor cortex. 
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This system includes a sensory feedback using a high-speed 
projector to generate arbitrary photostimulation patterns over 
the somatosensory cortex of transgenic mice expressing 
channelrhodopsin (EMX-Cre;Ai27 strain, [8]). But so far this 
promising bidirectional BMI setup has not been tested in the 
context of interactions with a real-world prosthesis, although 
this could potentially challenge the usability of the system. 

 In particular, one issue that may prevent successful 
control of current brain-machine interfaces is the inherent 
delay between the readout of the motor command and the 
feedback. Motor BMIs, as complex systems, introduce new 
sources of latencies: an algorithmic delay, which duration 
depends on the complexity of the transformation between the 
recorded signal and the command output; and a second delay 
during the actual control of the prosthesis when it involves an 
additional driver layer, such as a proportional-integral-
derivative controller [9]. Finally, the online production of 
feedback by the BMI and its transduction into neuronal 
activity also takes time. These many sources of delays are 
likely to lead to a steep decrease in performance and learning, 
particularly in terms of error correction and accuracy [10]. 

 Beyond latencies, the control of a real-world prosthesis 
raises many other challenges, in particular related to the 
specific geometry of the prosthesis actuators, which 
constraints the structure of the motor commands as well as of 
the feedback. Here we describe how we have attached a 
simulation of a commercial prosthesis to our BMI setup, and 
how this setup allows us to explore and test solutions to these 
challenges. 

II. METHODS 

A. Surgical preparation 

All animal experiments were carried out using EMX-
Cre;Ai27 mice that express channelrhodopsin 2 in their 
pyramidal neurons. In these mice, blue light illumination 
triggers spiking discharges in cortical neurons. We implanted 
the bidirectional BMI interface in two steps. First, to allow 
photostimulation of the cortical surface, we implanted a 5 
mm diameter optical window over the primary 
somatosensory cortex (S1). During the same surgery, we also 
implanted a headpost to hold the mouse in place during the 
awake experiments. After two weeks of recovery, we used 
intrinsic imaging to confirm that the representation of 
whiskers in S1 (the so-called barrel cortex) was indeed 
located below the glass window. Finally, we implanted the 
mice with a 32-channel Neuronexus extracellular electrode in 
the whisker primary motor cortex (M1). After one week of 
recovery, the mouse was ready to be trained in the BMI task. 
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B. Overview of the system 

Our BMI system (Fig. 1a) is run by a main "master" 
software providing a graphical user interface and a hub that 
connects and streams data between three players: (1) the 
Neural Signal Processor (Cerebus NSP, BlackRock 
Microsystem), (2) the V-REP simulation software [11], and 
(3) the DLP projector (Vialux High-speed V7001). The NSP 
contains a hard real-time computer and performs online spike 
extraction and sorting from the 30 kHz sampled continuous 
signal coming from the chronic electrode. This spike sorted 
data is streamed to the master hub. The DLP projector sends 
patterned light to a 2.5mm² area of the cortex as high-
definition frames (1024 × 768 pixels) with a 100 Hz refresh 
rate. Finally, the robotic software models an existing 
prosthesis, the Jaco2 arm from KINOVA, and simulates the 
interaction of this robotic arm with a virtual environment. 
The movements of the robotic arm are driven by the neuronal 
activity streamed from the NSP, and feedback from the robot 
controls the patterns of photostimulation sent back to the 
mouse. 

C. Master Software 

In order to interface the different components of our 
system and ensure a proper flow of information during run-
time, we developed a multi-threaded application in C++ 
using the Qt environment. This choice was driven by the 
need to be compatible with the APIs of all other components 
of the system, as well as by the aim to maximize 
performance. 

The main thread converts the firing rate into a motor 
command through a transfer function, monitors the state of 
the prosthesis and sends the appropriate pattern of 
photostimulation to the DLP projector. A second thread 
supports the graphical interface that provides a feedback on 
the status of the experiment as well as ways to adjust its 
parameters on the fly. 

D. Conversion of spiking rates into torques 

The prosthesis includes joints that should be actuated in 
both directions. Here we aimed to control one joint and 
ensure that the mouse can move it as easily in one direction 
as in the other. This type of symmetrical control is hard to 
derive from spiking activity. To address this challenge we 
implemented an antagonist control strategy, meaning that the 
joint was placed under the control of two groups of neurons 
that “pushed” in opposite direction. This strategy is inspired 
by a recent publication [12] showing that it ensures a non-
biased bidirectional control. We used a “greedy” selection 
algorithm to automatically select two groups of neurons of 
similar size and with similar firing rate. Those groups were 
fixed for the whole behavioural sequence across days. Their 
activity was dynamically weighted at the beginning of every 
control session depending on a 10 minutes baseline recording 
in order to avoid the possible build-up of a bias towards one 
direction due to day-to-day variability. 

The actual command applied on the joint was generated 
from the spiking of these two groups by convoluting their 
activity with a 100 ms kernel, then translating these two 
instantaneous firing rate series into torque values, using a 
logistic function. The difference between these two opposite 
torques was finally applied to the elbow joint (Fig. 2). We 
chose to use a biomimetic torque-based control with the hope 
that learning would be facilitated in these more physiological 
conditions. Also, it removed the need to include a driver layer 
such as a PID, which would be necessary for a speed-based 
control.  

Fig. 1. (a) Information flow through the different components of the 
closed-loop BMI and prosthesis model. (b) Example of a feedback 

photostimulation on the mouse barrel cortex. An illumination bar rotates 

(arrow) around a fixed point (dark blue cross).  

 Fig. 2. The activity of two groups of neurons is merged, transformed 

into torques that are applied in opposite direction on the same joint.  

 



  

E. Interfacing the V-REP robotic modelling software 

We used the V-REP native remote C++ API to interface 
our master software with V-REP. It sends the torque 
commands to the robotic arm model, and reports to the 
master software the contacts of the arm with the virtual 
environment. The communication between the two programs 
works in a similar manner to a client-remote server system 
timed with a clock. Every time a torque command was sent 
from the master software, V-REP executed a 5 ms simulation 
step and returned the state of the prosthesis (posture, contact 
with the environment),  which was then used by the master 
software to update the photostimulation feedback. 

F. Providing structured feedback to the mouse 

The DLP device displays blue light, arbitrary 2D 
photostimulation patterns at the surface of the cortex, which 
are updated every 10 ms with a power of 25 mW.mm-2. This 
configuration allows to explore a very broad range of 
feedbacks, depending on the type of prosthesis and on the 
decision to use or not a biomimetic approach. 

Guided by the circular nature of the geometry of the 
prosthesis actuator, we chose to provide feedback to the 
mouse in the form of the angular position of the prosthesis 
joint. We encoded the state of the prosthesis as a rotating bar 
centered on the barrel cortex, and more precisely on the 
representation of the C2 whisker as determined by the optical 
intrinsic imaging. The bar thus followed the position of the 
joint (Fig. 1b). 

III. RESULTS 

Here we describe work to expand a mouse closed-loop 
BMI that we developed previously [7]. This brain-machine 
interface was composed of an invasive readout of the spiking 
activity in M1, and an artificial sensory feedback via the 
spatially and temporally structured photoactivation of 
Channelrhodopsin-expressing neurons in S1. We connected 
this interface to a robotic simulation engine, V-REP, which 
simulated a 7-degree of freedom arm, the Jaco2 from 
KINOVA robotics (Fig. 1). To validate the full setup, we 
focused on a single axis of the robot, corresponding to the 
first joint after its attachment base. We implemented the 
translation of spiking activity into torque signals that were 
relevant to control the robotic joint. On the sensory side, the 
angular position of the joint was fed back to the mouse as a 
structured pattern of cortical activation. 

A.  Calibration of the closed-loop latency 

To evaluate the performance of our closed-loop system, 
we measured two complementary metrics. First we looked at 
the end-to-end hardware latency, which is the time between 
the occurrence of a spike recorded by the electrode and the 

resulting update of the photostimulation feedback. This 
measure represents the delay induced by all computations and 
transmissions within our BMI system, and is independent of 
the behaviour of the animal or the state of the cortex. Second 
we measured the pace at which the main thread of the master 
software operated, by measuring with a photodiode the 
timing of the transition between consecutive 
photostimulations.  

 The end to end latency of the main loop averaged 
43.82ms (SD 4.80ms, Fig. 3a), while the loop ticked at an 
average pace of 12.48ms (SD = 2.07ms, Fig. 3b). These 
figures are larger than the values obtained in the absence of 
the simulation (average end-to-end latency 12.3ms, SD 1.03, 
[7]) but they are still an improvement compared to the values 
obtained in some motor only protocols, as discussed in the 
introduction of [9]. 

Fig. 4. (a) Example of the transformation of the raw spiking of two 
antagonist groups of neurons into movements of a robot joint. (b) 

Distribution of the position of the joint controlled by the BMI during the 
last five training sessions in two habituated mice. Starting angle of the 

joint is either 90°, 0° or 270°.  

 
Fig. 3. (a) End-to-end latency of the BMI closed-loop. (b) Pace of the 

loop. 

 



  

B. Control of the robotic arm 

Two mice were connected to our closed-loop BMI during 
5 days, for 30 minutes two times per day (mean 57.5 
trials/session, mean trial duration 31.33s). The mice were first 
habituated to the head fixation, with the BMI apparatus 
disconnected, for 1 session. Then, during BMI sessions, the 
activity of units in M1 controlled the rotation of the joint of 
the Jaco2 robot closest to the arm base. Fig. 4a displays how 
the spiking activity of five isolated neurons controlled one 
joint of the simulated Jaco² prosthesis while receiving the 
real-time feedback. In this particular experiment, one group 
of 2 neurons generated the positive torque while another 
group of 3 neurons generated the negative torque. The firing 
rate of each group was smoothed by a 100 ms box kernel 
before being fed to the transfer function and generating 
torques. The torques were then subtracted and used as the 
final output torque applied to the joint (mean output torque 
8.483 kg.m².s-2 across all sessions). Importantly, when we 
looked at the movement of the arm generated by the animal, 
we found that the activity generated by the neurons recorded 
in M1 was sufficient to entrain rotations of the joint, which 
covered its full 360° span, in the two mice that were involved 
in the experiments (Fig. 4b). 

Overall, those observations illustrate the feasibility and 
functionality of interfacing our fast BMI with a robotic 
modelling simulation, and they show the possibility to train 
surgically implanted mice to drive the prosthetic arm through 
the BMI.  

IV. DISCUSSION 

We recently developed a fast bidirectional mouse BMI 
that incorporates a rich photoactivation-based feedback [7]. 
Here we report on a system that makes this BMI interact with 
an online simulation of a robotic arm. The mice controlled 
one joint of the arm using their primary motor cortex activity, 
and the BMI provided a dynamic feedback about the angular 
position of the arm by delivering optogenetic stimulation to 
the primary somatosensory cortex.  The full system operated 
properly and at low latency that will hopefully greatly 
facilitate learning and performance in our future experiments. 

To develop this design, we chose to use V-REP for 
simulating the robotic actuator because it provides both 
adaptability and a physically accurate environment. 
Disadvantages compared to the in-house development of a 
C++ routine that would simulate the arm dynamics include 
programming constraints and a potential slowdown of the 
loop. However, V-REP offers a mature and versatile 
modelling environment that would be hard to fully replicate. 
The environment it emulates has driven technical decisions 
that will remain relevant when connecting the BMI loop to a 
physical prosthesis. This includes the choice of a joint control 
based on antagonist groups of neurons, and the choice of a 
rotating bar feedback. In addition, the networking constraints 
in V-REP are close to those encountered when working with 
real-world prosthesis, and addressing them early in our work 
will help us to seamlessly move from a virtual to a real 
actuator in the future. 

This setup will be instrumental to systematically explore 
the extremely large space of input and output parameters that 
characterize invasive closed-loop BMIs. On the feedback 

side, our setup should allow to test different types of 
feedback structure beyond the rotating bar presented here, as 
well as different cortical locations. For example, we hope to 
determine whether biomimetic vs non biomimetic feedback 
may be optimal for information delivery about the current 
state of a robotic limb. Also, the suitability of primary 
sensory cortices vs. higher-order and associative cortical 
areas could be tested. The same type of approach could be 
applied to the neuronal spiking readout, by comparing a 
strategy based on decoding of the spiking activity with a 
strategy based on adaptive learning of the neuronal networks. 
In particular, we are interested in determining the impact, on 
motor control and learning, of additional latencies that would 
be artificially injected in the BMI loop. Moreover despite the 
fact that we explored so far only a one degree of freedom 
task, both our control strategy and feedback structure were 
designed to scale-up to a higher number of degrees of 
freedom. This will allow us in the future to explore complex, 
high-dimensional motion within our BMI framework. 
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