
HAL Id: hal-02998757
https://hal.science/hal-02998757v2

Submitted on 8 Jul 2021 (v2), last revised 2 Jun 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning to steer a locomotion contact planner
Jason Chemin, Pierre Fernbach, Daeun Song, Guilhem Saurel, Nicolas

Mansard, Steve Tonneau

To cite this version:
Jason Chemin, Pierre Fernbach, Daeun Song, Guilhem Saurel, Nicolas Mansard, et al.. Learning
to steer a locomotion contact planner. IEEE International Conference on Robotics and Automation
(ICRA 2021), May 2021, Xi’an, China. �10.1109/ICRA48506.2021.9561160�. �hal-02998757v2�

https://hal.science/hal-02998757v2
https://hal.archives-ouvertes.fr

Learning to steer a locomotion contact planner

Jason Chemin1,∗, Pierre Fernbach2, Daeun Song3, Guilhem Saurel1, Nicolas Mansard1,4 and Steve Tonneau5,1

Abstract— The combinatorics inherent to the issue of plan-
ning legged locomotion can be addressed by decomposing the
problem: first, select a guide path abstracting the contacts with
a heuristic model; then compute the contact sequence to balance
the robot gait along the guide path. While several models have
been proposed to compute such a path, none have yet managed
to efficiently capture the complexity of legged locomotion on
arbitrary terrain. In this paper, we present a novel method to
automatically build a local controller, or steering method, to
generate a guide path along which a feasible contact sequence
can be built. Our reinforcement learning approach is coupled
with a geometric condition for feasibility during the training,
which improves the convergence rate without incurring a
loss in generality. We have designed a dedicated environment
along with an associated reward function to run a classical
reinforcement learning algorithm that computes the steering
method. The policy takes a target velocity and a local heightmap
of the terrain around the robot as inputs, and steers the path
where new contacts should be created. It is then coupled with a
contact generator that creates the contacts to support the robot
movement. We show that the trained policy has an improved
generalization and higher success rate at generating feasible
contact plans than previous approaches. As a result, this policy
can be used with a path planning algorithm to navigate complex
environments.

I. INTRODUCTION

The motivation for building legged robots lies in their
ability to navigate across arbitrarily complex environments,
as well or better than humans or other animals. To this date,
this superiority is only potential: efficient methods exist to
control a robot over flat terrain [1], but in spite of significant
successes [2]–[5], the quest for a method able to robustly
and interactively generate complex motions in unforeseen
contexts remains active [6]. The reasons for this struggle are
well known: legged robots are high-dimensional systems, and
their motion is subject to non-linear dynamic and geometric
constraints that change discretely with the choice of contacts,
thus introducing a combinatorial aspect to the problem.

A common approach to tackle the problem is to de-
compose it into simpler sub-problems sequentially solved
[4], [7]–[9]. The first sub-problem consists of generating a
low-dimensional guide path for the root of the robot to a

1LAAS-CNRS, Univ. Toulouse, CNRS, France
2Toward, Toulouse, France
3Dept. of CSE, Ewha Womans University, Korea
4Artificial and Natural Intelligence Toulouse Institute, France
5IPAB, The University of Edinburgh, Scotland
∗corresponding author: jchemin@laas.fr
This work has been supported by the MEMMO European Union project

within the H2020 Program under Grant Agreement No. 780684.
D. Song is supported in part by the ITRC/IITP program (IITP-2021-0-

01460) and the NRF(2017R1A2B3012701) in South Korea

desired goal, where collisions and dynamic constraints are
approximated according to a heuristic for feasibility. The
second sub-problem consists of extending this guide path
into a contact plan, composed of a discrete sequence of
key contact postures. This strategy reduces the search space
for contact locations to the set of surfaces reachable from
discrete positions along the path and results in a fast and
interactive contact planning algorithm. Given the contact
sequence, efficient methods exist to interpolate the sequence
into a whole-body motion for the robot [5], [10], [11].

In such a sequential decomposition, the feasibility con-
straints for next sub-problem are merely approximated: this
divide-and-conquer approach can thus result in failure to
plan feasible contact sequences. To improve the success
rate of such a framework, we must refine our answer to
the question: What is a “good” guide path for the contact
planner? Previous locomotion planners, such as [7], often
used heuristic approximations of the necessary and sufficient
condition for a guide path to be feasible.

In this paper, we propose to approximate the feasibility
condition with reinforcement learning. Concretely, we train
a policy using a local heightmap to navigate complex en-
vironments and generate a guide path. This guide path is
given to the contact generator that outputs a sequence of
contact configurations along with an evaluation of its success.
The RL algorithm learns to maximize the success rate, thus
learning what is a good guide path for this contact planner.
We demonstrate the capability of our steering method, LeaS
(LEArn to Steer), coupled with a contact planner. LeaS can
generalize to various unknown terrains and we compare its
performance with our previous methods. Our results show
that guide paths generated by LeaS avoid obstacles and
collisions, and are suitable for the contact planner to compute
contact sequences.

II. RELATED WORK

Locomotion has been explored by graphics and robotics
communities for different types of characters and robots
[12]–[14]. In this paper, we focus on contact planning for
legged-character locomotion to navigate complex terrains
while avoiding collisions and ensuring the feasibility of the
movement.

1) Contact planning in robotics: Common methods for
solving the contact planning problem are introduced by [3].
The first is the so-called “contact-before-motion” approach
that aims to produce a contact sequence before generating the
whole-body movement on the robot. This category regroups
work in which a sequence of discrete contacts can be given

Fig. 1: The locomotion arena, a large stuctured simulation where our Talos
agent learns in which direction to steer in order to generate stable contacts.

by the user [1], [15], retrieved from a database [16] or found
using search algorithms or machine learning [4], [10], [17]–
[21]. An alternative approach is to use continuous optimiza-
tion instead of the discrete contact selection problem [22]–
[24]. The second strategy is the “motion-before-contact” that
first plans a guide path to follow (i.e. a root trajectory),
then finds a contact sequence along it, and finally computes
the whole-body motion from these contacts [8], [25], [26].
This approach greatly reduces the combinatorics on complex
terrains at the cost of not guaranteeing a globally optimal
solution. Reproducing complex movement behaviors, [27]
finds the contacts and whole-body motion simultaneously
thus improving the success of the motion, but at the cost
of heavy computation.

2) Machine learning for legged-characters locomotion:
Machine learning has recently brought interesting advances
in locomotion. Data-driven approaches to learn whole-body
controllers [28]–[31] produce natural and smooth locomotion
(although non-dynamically consistent) that can generalize to
unknown terrains using more commonly a height map for
locomotion or a voxel map for environment interactions.
Recent improvements in Reinforcement Learning (RL) [32],
[33] have opened new possibilities in physics-based simula-
tions to learn locomotion from scratch [34]–[36] and from
motion data by imitation learning to improve the plausibility
of movements [37]–[39]. However, learning a whole-body
controller directly on a robot in the real world is not possible
in practice due to the time of training required and the risk of
breaking the robot. Learning in simulation and transferring
the policy to the real robot, also called “sim-to-real”, remains
a challenging problem for quadrupeds [40] and bipeds [41].

More related to “contact-before-motion” approaches in
robotics, DeepLoco [19] learns a contact planner that gen-
erates a sequence of footsteps fitting a learned whole-body
controller to reach a goal. Following this architecture, Deep-
Gait [42] learns two controllers separately, one for contact
planning and the second to output target joint positions to
move a quadruped robot.

In our work, we decide to focus on the contact planning
problem and learn by reinforcement a higher-level controller
as in [19], [42]. The difference with these works is our

Fig. 2: System overview. The user inputs a target velocity to LeaS which
computes the guide path. Once the episode is over (III-D), LeaS outputs the
path to the contact planner to compute a contact sequence along it. During
training, we update the policy with the successful path.

“motion-before-contact” approach where we learn to gen-
erate the guide path as the input to a given contact planner.

3) Steering methods: We define a steering method as
a local planner which links an initial configuration to a
goal in an obstacle-free space. Our previous work [26] uses
a rapidly-exploring random tree for path planning to find
waypoints leading to a goal and a linear interpolation as
steering method to link these waypoints. In an extension of
this work [8], a kinodynamic steering-method is introduced
to produce dynamically feasible paths. In a similar spirit
to our paper, [43] learns by reinforcement both the local
steering method for obstacle avoidance and the control of a
wheeled robot, then combines it with a sample-based path
planning algorithm to navigate complex environments.

Our contribution is to learn such a local steering method
and to couple it with a contact planner to improve their
synergy, quantifiable in terms of success rate.

III. LEARNING THE STEERING METHOD

A. Overview

Reinforcement Learning can be defined as a Markov
Decision Process (S,A, P,R, γ) where S is a set of states,
A a set of discrete or continuous actions, P (st, at, st+1) is a
transition probability p(st+1|st, at), R is a reward function
mapping S × A → <, and γ ∈ [0, 1) a discount factor.
The agent takes some actions according to the policy π in
function of the actual state at = π(st). We want to learn a
policy that tries to maximize the future cumulative rewards
E[
∑∞

k=t γ
krt+k]. In this work, we use the RL algorithm

“Proximal policy optimization” (PPO) [44].
During the training, at each step, we predict the next action

to perform, execute it in the environment, and repeat the
process until the episode is over as shown on Fig. 2. At
the end of an episode, we obtain a sequence of 6D robot
positions that represents the guide path, which is then given
to a contact planner to compute contact configurations along
it. We learn to provide guide path fitting the contact planner
by discarding the part of the path that results in failure.

Fig. 3: Observable state with root orientation (white arrow), root velocity
(Blue arrow), the desired target velocity and orientation (Red arrow) and
the local height map (Blue dots).

B. States

The observable state is a set, S = {vo, otarget, ho}, where
vo is the velocity of the robot root relative to its orientation,
otarget is the angle difference between its orientation and the
desired target, and ho is the local heightmap relative to its
orientation. The states and dimensions of the heightmap can
be seen on Fig. 3. The dimensions of the heightmap are: 9
values in front of the robot, 2 values in its back and 7 values
from left to right with a discretization of 8cm, 20cm and
15cm respectively.

The heightmap is small on purpose as we desire a local
steering method as described in II-.3. Increasing the height
map size leads to over-fitting on our fixed training terrain
and path planning instead of a local steering method.

C. Actions

Our policy returns a set of actions A = {ax, ay, az, ω}
with ax, ay, az the accelerations of the robot on each axis
and ω the angular velocity of its orientation. At each step i,
the robot position Rpos, velocity Rvel and orientation Rori

are modified as follows :
(1) Ri

pos = Ri−1
pos +Ri−1

vel ∗ timestep
(2) Ri

vel = Ri−1
vel + [ax, ay, az] ∗ timestep

(3) Ri
ori = Ri−1

ori + ω ∗ timestep
where timestep is a constant (Table I). If the velocity is con-
stant, the longer the timestep, the fewer configurations there
are on the guide for given initial and goal configurations.
The choice of this value depends on the contact planner
used. Empirically, we know that the contact-generation algo-
rithm [7] has higher success rates with timestep values be-
tween [0.01s, 0.10s] for velocity norms inferior to 0.18m/s.

D. Termination conditions

We consider an episode to be over when the maximum
number of steps is reached or when the current configuration
is invalid. When executing a trained policy, we also consider
an episode to be finished when the root position of the robot
has reached the target d(root, target) < ε with ε a constant.
The validity of a configuration is done by checking if there
is no obstacle in collision with the robot root and if it can
touch the ground by looking at the reachability condition [7].

This condition is necessary but not sufficient for the contact
planner to find a contact from this root configuration.

E. Rewards

We want a steering method able to (1) move the robot in
the desired direction at the right velocity, (2) orientate the
robot in this same direction, (3) keep a valid configuration
even when blocked by obstacles, (4) generate a smooth path
and (5) make this guide path feasible by the contact planner.

The reward for (1) punishes the agent for not going
in the desired direction at the right velocity : Rdir =
−(||−→v −−→v∗||/(2vmax))

2 with −→v the vector velocity, −→v∗ the
desired vector velocity and vmax its maximum norm. The
reward for (2) punishes the agent for not being oriented
toward the target : Rori = −(1 − −→u ori · −→u target) with
−→u ori the unit vector representing the orientation of the
root and −→u target the desired direction of movement. The
reward for (3) encourages the agent to follow its path until
the maximum number of steps in the episode is reached
with Ralive = 1. The two rewards for (4) punishes the
agent for taking too large actions : effortorientation =
−|ω/ωmax|2 with ω the action on orientation and ωmax

the maximum angular velocity, and effortacceleration =
−(||[ax, ay, az]||/amax)

2 with [ax, ay, az] the action taken
on acceleration and amax its maximum norm. There is no
reward for (5) as it corresponds to the discarding of the failed
part of the guide path as explained in III-A . The resulting
reward is : R = Rdirwdir+Roriwori+effortoriweff ori+
effortaccweff acc+Ralivewalive with w some weights (see
Table I).

The design of a reward for the behaviors (1), (2), (4) and
(5) is straightforward and we could obtain it using a positive
reward for (1) and negative rewards for the rest. The difficulty
is to insert the condition (3) to make the robot keep a valid
configuration, even when not able to go further. When the
robot approaches an obstacle that it cannot avoid, we want
the robot to stop moving, and thus, it needs to have a positive
reward keeping it from terminating the episode. We opt for
a simple way to solve this problem by adding a constant
positive reward Ralive at each step.

F. Implementation

Optimized asynchronous versions of PPO, such as IM-
PALA [45], are available. In future work, we plan to integrate
it or investigate the use of off-policy algorithms. In this
paper, we use our own asynchronous version of PPO that
separates contact planning from acting, using a Master-
Minion architecture (http://cpc.cx/ucS).

IV. RESULTS

We used the HPP planner [46], [47] and the Talos
model [48]. Our algorithm was implemented in Python
using the PPO implementation of Stable Baselines [49],
modified for our parallel implementation (see Sec. III-F).
The simulation was run on a PC with an Intel Core i7-8700
(12 cores, 3.20Ghz). Our network is fully-connected with two
hidden layers of 64 units with Tanh activation function as was

http://cpc.cx/ucS

TABLE I: Parameters

State dimensions 81 Actions dimension 4
Parallel actors 6 Number of minions 7

Batch size 2048 ∗ 6 Mini-Batches 256
Noptepochs 10 Max Episode Length 400

Discount Factor 0.97 Clip range 0.2
Learning rate 5.0e− 4 timestep 0.10s
wdirection 1.0 worientation 0.4

weff orientation 0.1 weff acceleration 0.1
walive 1.0

(a) 150K steps (b) 1.5M steps

(c) 80M steps

Fig. 4: Paths after 150K, 1.5M and 80M steps of learning on a 10x10 grid
training terrain with some initial positions and target directions (Yellow)
and their trajectories (Blue).

used in [44]. We trained our policy for 53 hours (80 millions
steps) using the parameters in Table I, with an architecture
of 6 actors in parallel and 7 external minions validating the
paths with the contact planner [7]. The training terrain is
a 10x10 grid (20 × 20m) where each cell corresponds to a
type of terrain as depicted by Fig. 1. During the training,
the initial position, orientation and velocity of the robot are
set randomly on the training ground. The target direction is
set randomly on the horizontal plane and remains constant
for a path. For training and comparison purposes, we set the
norm of the target velocity to 0.18m/s to balance the path
lengths and the contact planner performances (see Sec. III-
C). To perform our comparisons, LeaS takes deterministic
actions on another terrain never met during the training. The
dimension of stairs, obstacles and beams are slightly different
from those used during the training.

A. Learning progression

We evaluate the learning progress by plotting trajectories
obtained with a policy at different stages of the training as
seen on Fig. 4. We want our policy to follow a direction at
the desired velocity as far as possible, while ensuring the
success of the contact planner on this guide path. The policy
in the early phase of the training makes our robot go toward

(a) (b)

Fig. 5: The robot cannot go further as an obstacle is detected on its local
height map (Blue dots) in the desired direction (Red arrow) so the policy
makes the robot stop.

Parameters RBLin RBKino LeaS
−30◦ to 30◦

||v|| = 0,01 99.8% 99.7% 99.8%
||v|| = 0,04 99.8% 99.7% 99.8%
||v|| = 0,07 99.8% 99.7% 99.8%
60◦ to 120◦

||v|| = 0,01 99.8% 99.7% 99.8%
||v|| = 0,04 97.3% 99.7% 99.8%
||v|| = 0,07 99.8% 99.7% 99.8%

150◦ to 210◦

||v|| = 0,01 22.3% 76.5% 98.4%
||v|| = 0,04 28.9% 77.6% 93.1%
||v|| = 0,07 34.0% 85.5% 98.2%

TABLE II: Success rate of the steering methods with the contact planner
on flat ground trajectories of 4 meters with different initial orientations and
velocities (60 trajectories for each test)

the target but does not consider the surrounding terrain
and fails to produce trajectories with a contact sequence.
During the training, the policy learns how to generate longer
trajectories in this direction while detecting the different
types of obstacles within its local heightmap. Our policy also
learns how to stop when it cannot go further, as demonstrated
in Fig. 5 in an unknown environment.

B. Comparison of steering methods

In this section, we compare LeaS to RBLin [7] and
RBKino [8], to perform a local task: given an initial con-
figuration, the goal is to reach a target position by producing
a guide path, which is given to the contact planner in order to
generate the contact sequence. As our policy was not trained
for accurately reaching a target, we consider that the goal
is reached if a contact configuration is within a 30cm radius
around it. In all our scenarios, the initial velocity direction of
the robot is the same as its orientation. The timestep and the
norm of target velocities are the same for all three methods.

1) Ground: Given an initial and target position, we set
different initial orientations and velocities to evaluate the
success of all the steering methods with the contact planner.
The success value in Table II corresponds to the percentage
of the path covered by the contact sequence. The orientation
values correspond to the angle between the initial target
direction and the root orientation of the robot. Results show
that for all orientations going from 0 to 120 degrees, all

RBLin RBKino LeaS

(a) Hole

(b) Bridge

(c) Stairs at 30◦

(d) Stairs at 90◦

Fig. 6: Trajectories of steering methods with: valid path to target (Blue),
failed path to target (Yellow), failed part of a path (Red) and initial
orientation (Black Arrow). Pictures link : http://cpc.cx/ubV

three methods succeed in reaching the target. But when the
robot has its back turned to the target, the success rates of
both previous methods drop. RBLin rotates in a fixed number
of steps that needs to be tuned (here 100 steps) and fails
with rotations of high angular velocity. RBKino gets better
results than RBLin when facing backward, but trajectories
generated still have a low success rate with our contact
planner. We also notice that with both methods, raising the
initial velocity improves its success rate. In contrast, our
method LeaS performs well in generating valid trajectories,
for any given initial velocity and orientation.

2) Hole: In the hole scenario (Fig. 6a), some initial
configurations are sampled online and the target is placed
on the other side of the hole. The difficulty of this scenario
is to have paths away from the edge of the hole to ensure
the success of the contact planner. RBLin does not perform
well in this scenario where most of linear paths lead inside
the hole. The same goes for RBKino, which in most cases
cannot generate a complete path leading to the target. In
order to succeed in this scenario, both of these steering
methods require path planning and intermediary waypoints
to the target. In contrast, LeaS succeeds in generating a valid
guide path leading to the target while keeping a safe distance
from the hole. This means that configurations on the guide
do not lead to a funambulist walk, leading to a low success
rate of the contact planner.

3) Bridge: In this scenario (Fig. 6b), the goal is to make
the robot cross a 30cm-wide bridge to reach a target placed

on the other side. As for the hole scenario, one of the
difficulties is to make the robot stay away from the edges.
RBKino fails in finding a complete path. Thus the contact
planner is unable to provide a contact sequence up to the
target. RBLin succeeds in reaching the goal from all the blue
dots, but the contact planner can have problems in finding
contact steps on paths very close to the edges. By contrast,
LeaS succeeds in crossing the bridge while staying in the
middle as long as it appears in its vision field. As our policy
has been trained to follow a direction with a reduced local
heightmap, the yellow dots show the cases in which LeaS has
the stairs in its vision field but not the bridge. In these initial
configurations, LeaS moves in the target direction and goes
down the stairs. Finally, it detects a platform too high to reach
and makes the robot stop moving. This is an implementation
choice as discussed in III-B.

4) Stairs: In the stairs scenario (Fig. 6c and 6d), the goal
is to climb the stairs to reach the target at the top. The
difficulty of this scenario is to find the right height at which
to engage the stairs. Empirically, we know that the contact
planner has difficulties when guide paths climbing the stairs
are too close or far from the ground. As a result, it cannot
find a contact transition in equilibrium and fails the path.
The result of RBLin shows the difficulty to climb the stairs
while keeping the right height from the ground, thus leading
to a reduced zone of initial configurations with valid paths.
This zone is smaller for RBKino, which has difficulties in
connecting the initial and target configuration. LeaS succeeds
in engaging the stairs and climbing to the target as long as
the beginning of the stairs is detected in its local heightmap.

We make another comparison with two different initial an-
gles. When the robot starts with an orientation perpendicular
to the target direction (Fig. 6d), the number of successful
guide paths for all three methods is reduced. With our
method, the policy has to rotate the robot before detecting the
stairs, and that can explain the success difference between
Fig. 6c and 6d.

In conclusion, LeaS shows better results with the contact
planner in all our scenarios. However, this does not guarantee
its success, as we can see for example in Fig. 6d, where it can
fail when starting perpendicular to the stairs. In this example,
the guide path is valid and reaches the target, but we can see
a limitation of the contact planner, which can fail to find a
contact sequence.

C. Comparison to RBKino path planning

In the previous comparison, we were only using the
steering methods and have shown that LeaS is always better
than the heuristic controllers implemented in the planner [7]
and [8]. Results in IV-B show that RBKino alone is too local
to be fairly compared with other methods. That is why we use
RBKino with its path planner, which stochastically explores
waypoints to simplify the task of the local controller and
maximizes its convergence. We perform a comparison with
LeaS for the hole and bridge scenarios, where RBKino failed
without path planning. No path planning strategy is used for

http://cpc.cx/ubV

RBKino + planning LeaS

(a) Hole

(b) Bridge

Fig. 7: Trajectories of RBKino with path planning and LeaS with : valid
trajectory to target (Blue), failed trajectory to target (Yellow), failed part
of trajectory (Red) and path valid but not optimal by not taking the bridge
(Magenta).

our policy, which remains a purely local method. Results for
both scenarios are shown in Fig. 7.

1) Hole: The difficulty of this scenario is explained in
IV-B.2: a trajectory too close to the hole would lead our
robot to move like a tightrope walker on the edge of the hole.
LeaS still performs better on average with fewer failures than
RBKino, whose path planning finds some trajectories too
close to the edge.

2) Bridge: In this scenario, RBKino with path planning
reaches the target but most of these trajectories do not pass
by the bridge and take the stairs instead. This scenario for
RBKino shows both the difficulty to engage stairs with the
right height and the non-optimality of its path planner. In
comparison, our policy succeeds in taking the bridge and in
reaching the target as in IV-B.3.

D. Path planning with LeaS

We evaluate the capability of our method to follow some
waypoints. In the first test, we use our method combined with
a path planning algorithm. Then we manually define some
waypoints to make our robot cross an evaluation terrain. In
both scenarios, we consider that a target waypoint is reached
with LeaS when the distance separating our robot to this
point is inferior to the threshold. We then set the target on
the next waypoint.

1) Replace RBKino: The path planning of RBKino gen-
erates intermediary waypoints to be connected by the local
steering method. In this test, we replace this steering method
with ours. The results in Fig. 8 show that our local steering
method can be used to follow these waypoints and compares
well with the RBKino.

2) Manually defined circuit: Fig. 9 shows some manually
placed waypoints that our robot has to follow. We start the
path on the red dot with an orientation indicated by the black

Fig. 8: Trajectories following waypoints made by the path planning of
RBKino (left) and LeaS following it (right) with: valid path to target (Blue),
failed path to target (yellow), failed part of the path (Red) and the waypoints
to follow (Black).

Fig. 9: LeaS following manually placed waypoints with : the successful path
(Blue), the waypoints to reach (Yellow) and its initial orientation (Black
arrow).

arrow. LeaS succeeds in rotating the robot toward the next
waypoint and in reaching all of them one by one.

V. CONCLUSION

We proposed LeaS, a new approach for learning a steering
method that generates a root path for humanoid robots. Our
steering method is trained to fit a contact planner and to
generate feasible paths for it. Our method can generalize to
unknown environments and performs better in all scenarios
than our previous techniques with the contact planner. It
can be used both as an improved steering method in the
global locomotion planner, or as a local method to control
the robot locomotion in real-time, e.g. in a navigation task.
A drawback of LeaS is that its success depend on the chosen
contact planner and timestep value. We plan to investigate
this issue in the future. Our algorithm can be extended in
several ways. Currently, we only train the policy to satisfy the
(implicit) working assumptions of the contact generator. It
should be possible to implement more restrictive constraints
required to generate a complete motion of the whole-body.
We would also like to directly exploit sensor measurements
(e.g. lidar data) for the policy input, and then validate the
approach on a real robot.

REFERENCES

[1] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview

control of zero-moment point,” IEEE International Conference on
Robotics and Automation, 2003.

[2] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid lo-
comotion planning,” in IEEE-RAS International Conference on Hu-
manoid Robots, 2005.

[3] T. Bretl, “Motion planning of multi-limbed robots subject to equilib-
rium constraints: The free-climbing robot problem,” The International
Journal of Robotics Research, vol. 25, pp. 317 – 342, 2006.

[4] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for
humanoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5,
pp. 428–442, 2013.

[5] B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multi-
contact pattern generation with sequential convex approximations of
the centroidal dynamics,” 2020.

[6] C. G. Atkeson, B. Babu, N. Banerjee, D. Berenson, C. Bove, X. Cui,
M. DeDonato, R. Du, S. Feng, P. Franklin et al., “What happened at
the darpa robotics challenge, and why,” submitted to the DRC Finals
Special Issue of the Journal of Field Robotics, vol. 1, 2016.

[7] S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon, and
J. Pettré, “A Reachability-based planner for sequences of acyclic
contacts in cluttered environments,” in International Symposium on
Robotics Research (ISSR), Sestri Levante, Italy, Sep. 2015.

[8] P. Fernbach, S. Tonneau, A. Del Prete, and M. Taı̈x, “A Kinodynamic
steering-method for legged multi-contact locomotion,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vancou-
ver, Canada, Sep. 2017, p. 7p.

[9] I. Kumagai, M. Morisawa, S. Hattori, M. Benallegue, and F. Kanehiro,
“Multi-contact locomotion planning for humanoid robot based on
sustainable contact graph with local contact modification,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 6379–6387, 2020.

[10] J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard,
“A versatile and efficient pattern generator for generalized legged
locomotion,” in IEEE International Conference on Robotics and
Automation (ICRA), 2016.

[11] P. Fernbach, S. Tonneau, and M. Taı̈x, “Croc: Convex resolution
of centroidal dynamics trajectories to provide a feasibility criterion
for the multi contact planning problem,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 1–9.

[12] Z. Qiu, A. Escande, A. Micaelli, and T. Robert, “Human motions
analysis and simulation based on a general criterion of stability,” in
International Symposium on Digital Human Modeling, 2011.

[13] A. W. Winkler, F. Farshidian, M. Neunert, D. Pardo, and J. Buchli,
“Online walking motion and foothold optimization for quadruped
locomotion,” in IEEE International Conference on Robotics and
Automation (ICRA), 2017.

[14] J. Won, J. Park, K. Kim, and J. Lee, “How to train your dragon:
Example-guided control of flapping flight,” ACM Trans. Graph.,
vol. 36, no. 6, Nov. 2017.

[15] S. Caron, Q.-C. Pham, and Y. Nakamura, “Leveraging cone double
description for multi-contact stability of humanoids with applications
to statics and dynamics,” in Robotics: Science and System, 2015.

[16] S. Agrawal and M. van de Panne, “Task-based locomotion,” ACM
Transactions on Graphics (Proc. SIGGRAPH), vol. 35, no. 4, 2016.

[17] K. Hauser, T. Bretl, J. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” International Journal of
Robotics Research, vol. 27, no. 11-12, pp. 1325–1349, Nov. 2008.

[18] D. Kanoulas, A. Stumpf, V. S. Raghavan, C. Zhou, A. Toumpa, O. Von
Stryk, D. G. Caldwell, and N. G. Tsagarakis, “Footstep planning in
rough terrain for bipedal robots using curved contact patches,” in IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[19] X. B. Peng, G. Berseth, K. Yin, and M. van de Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 36,
no. 4, 2017.

[20] S. Tonneau, P. Fernbach, A. D. Prete, J. Pettré, and N. Mansard, “2pac:
Two-point attractors for center of mass trajectories in multi-contact
scenarios,” ACM Trans. Graph., vol. 37, no. 5, Oct. 2018.

[21] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional
bipedal walking control based on divergent component of motion,”
IEEE Transactions on Robotics, 2015.

[22] R. Deits and R. Tedrake, “Footstep planning on uneven terrain
with mixed-integer convex optimization,” in IEEE-RAS International
Conference on Humanoid Robots, 2014.

[23] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-

effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, 2018.

[24] S. Tonneau, D. Song, P. Fernbach, N. Mansard, M. Taı̈x, and A. D.
Prete, “Sl1m: Sparse l1-norm minimization for contact planning on
uneven terrain,” IEEE International Conference on Robotics and
Automation (ICRA), 2020.

[25] K. Bouyarmane, A. Escande, F. Lamiraux, and A. Kheddar, “Potential
field guide for humanoid multicontacts acyclic motion planning,” in
IEEE International Conference on Robotics and Automation (ICRA),
2009.

[26] S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and
N. Mansard, “An efficient acyclic contact planner for multiped robots,”
IEEE Transactions on Robotics, vol. 34, no. 3, pp. 586–601, Jun. 2018.

[27] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex be-
haviors through contact-invariant optimization,” ACM Trans. Graph.,
vol. 31, no. 4, Jul. 2012.

[28] S. Starke, H. Zhang, T. Komura, and J. Saito, “Neural state machine
for character-scene interactions,” ACM Trans. Graph., vol. 38, no. 6,
Nov. 2019.

[29] D. Holden, T. Komura, and J. Saito, “Phase-functioned neural net-
works for character control,” ACM Trans. Graph., vol. 36, no. 4, Jul.
2017.

[30] H. Zhang, S. Starke, T. Komura, and J. Saito, “Mode-adaptive neural
networks for quadruped motion control,” ACM Trans. Graph., vol. 37,
no. 4, Jul. 2018.

[31] F. G. Harvey and C. Pal, “Recurrent transition networks for character
locomotion,” in SIGGRAPH Asia Technical Briefs. Association for
Computing Machinery, 2018.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep rein-
forcement learning,” CoRR, 2013.

[33] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” CoRR, 2015.

[34] X. B. Peng, G. Berseth, and M. van de Panne, “Terrain-adaptive loco-
motion skills using deep reinforcement learning,” ACM Transactions
on Graphics (Proc. SIGGRAPH), vol. 35, no. 4, 2016.

[35] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa,
T. Erez, Z. Wang, S. M. A. Eslami, M. A. Riedmiller, and D. Silver,
“Emergence of locomotion behaviours in rich environments,” CoRR,
vol. abs/1707.02286, 2017.

[36] Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne, “Allsteps:
Curriculum-driven learning of stepping stone skills,” in Proc. ACM
SIGGRAPH / Eurographics Symposium on Computer Animation, 2020.

[37] Y.-S. Luo, J. H. Soeseno, T. P.-C. Chen, and W.-C. Chen, “Carl: Con-
trollable agent with reinforcement learning for quadruped locomotion,”
ACM Trans. Graph., vol. 39, no. 4, Jul. 2020.

[38] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” ACM Trans. Graph., vol. 37, no. 4, pp. 143:1–143:14,
Jul. 2018.

[39] K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes, “Drecon: Data-
driven responsive control of physics-based characters,” ACM Trans.
Graph., vol. 38, no. 6, Nov. 2019.

[40] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” 2018.

[41] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne,
“Learning locomotion skills for cassie: Iterative design and sim-to-
real,” in Proceedings of the Conference on Robot Learning, ser. Pro-
ceedings of Machine Learning Research, L. P. Kaelbling, D. Kragic,
and K. Sugiura, Eds., vol. 100. PMLR, 30 Oct–01 Nov 2020, pp.
317–329.

[42] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3699–3706, 2020.

[43] H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “Rl-rrt:
Kinodynamic motion planning via learning reachability estimators
from rl policies,” IEEE Robotics and Automation Letters, vol. PP, pp.
1–1, 07 2019.

[44] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017.

[45] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning et al., “Impala: Scalable dis-

tributed deep-rl with importance weighted actor-learner architectures,”
in Proceedings of the International Conference on Machine Learning
(ICML), 2018.

[46] J. Mirabel, S. Tonneau, P. Fernbach, A.-K. Seppälä, M. Campana,
N. Mansard, and F. Lamiraux, “HPP: a new software for constrained
motion planning,” in International Conference on Intelligent Robots
and Systems (IROS), Daejeon, South Korea, Oct. 2016.

[47] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The Pinocchio C++ library – A fast
and flexible implementation of rigid body dynamics algorithms and
their analytical derivatives,” in IEEE/SICE International Symposium
on System Integrations (SII), paris, France, Jan. 2019.

[48] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier,
J. Mirabel, A. Del Prete, P. Souères, N. Mansard, F. Lamiraux, J.-P.
Laumond, L. Marchionni, H. Tome, and F. Ferro, “TALOS: A new
humanoid research platform targeted for industrial applications,” in
International Conference on Humanoid Robotics, ICHR, Birmingham,
ser. IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids),. Birmingham, United Kingdom: IEEE, Nov. 2017.

[49] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” 2018.

	Introduction
	Related work
	Contact planning in robotics
	Machine learning for legged-characters locomotion
	Steering methods

	Learning the steering method
	Overview
	States
	Actions
	Termination conditions
	Rewards
	Implementation

	Results
	Learning progression
	Comparison of steering methods
	Ground
	Hole
	Bridge
	Stairs

	Comparison to RBKino path planning
	Hole
	Bridge

	Path planning with LeaS
	Replace RBKino
	Manually defined circuit

	Conclusion
	References

