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Learning to steer a locomotion contact planner

Jason Chemin1, Pierre Fernbach2, Daeun Song3, Nicolas Mansard1,4 and Steve Tonneau5,1

Abstract— The combinatorics inherent to the issue of plan-
ning legged locomotion can be addressed by decomposing the
problem: first, select a guide path abstracting the contacts
with a heuristic models; then compute the contact sequence
to balance the robot gait along the guide path. While several
models have been proposed to compute such path, none have
yet managed to efficiently capture the complexity of legged
locomotion on arbitrary terrain. In this paper, we present
a novel method to automatically build a local controller, or
steering method, able to generate a guide path along which
a feasible contact sequence can be built. Our reinforcement
learning approach is coupled with a geometric condition for
feasibility during the training, which improves the convergence
rate without inducing a loss in generality. We have designed
a dedicated environment and the associated reward function
where a classical reinforcement learning algorithm can be run
to compute the steering method. The policy takes as inputs a
target direction and a local heightmap of the terrain around the
robot, to steer the path where new contacts should be created.
It is then coupled with a contact generator that creates the
contacts to support the robot movement. We demonstrate that
the trained policy is able to generate feasible contact plans
with a higher success rates than previous approaches and that
it generalises to terrains not considered during the training. As
a result, the policy can be used with a path planning algorithm
to navigate in complex environments.

I. INTRODUCTION

The motivation for building legged robots lies in their
ability to navigate across arbitrarily complex environments,
as well or better than humans or other animals. To this date,
this superiority is only potential: efficient methods exist to
control a robot over flat terrain [1], but in spite of significant
successes [2]–[5], the quest for a method able to robustly
and interactively generate complex motions in unforeseen
contexts remains active [6].

The reasons for this struggle are well known: legged robots
are high-dimensional systems, and their motion is subject to
non-linear dynamics and geometric constraints that change
discretely with the choice of contacts, thus introducing a
combinatorial aspect to the problem.

As a result a common approach to tackle the problem is
to decompose it into simpler problems sequentially solved
[4], [7]. The most common simplification aims at avoiding
the combinatorics induced by the choice of contact locations.
Indeed whether they consider the full body representation [8],
[9] of the robot, or a simplified one focused on the Center Of
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Fig. 1: The locomotion arena, a large stuctured simulation where our Talos
agent learns in which direction to steer in order to generate stable contacts.

Mass [10]–[14], most trajectory generation methods assume
that the contact positions are given, or relax the discrete
contact selection problem into a continuous one [15], [16].

Though efficient techniques exist for planning gaited
locomotion [17]–[20], one challenge of planning contacts
in arbitrary contexts results from the fact that the contact
manifold has a null measure in the configuration space1.
Several contact planners that have proven their robustness
in challenging cases are also known for their prohibitive
computation time [4]. Using a guide path for the root of
the robot to reduce the search space significantly improves
the computation time (from hours to a few minutes) [21].
Thus at the top of this cascade of problems that lead to the
generation of a motion, lies the issue of computing efficiently
a guide path.

In [7], [22] low dimensional guide-path planners have
been proposed to interactively compute a relevant guide
path, further reducing the total computation time to a few
seconds. However, the low-dimensional approximation po-
tentially leads to the computation of unfeasible guide paths
and result in failure of the complete motion generation
pipeline.

To find a compromise between accuracy [21] and effi-
ciency [7], we propose to improve the quality of the low-
dimensional approximation using a reinforcement learning
approach. [7] introduces the reachability condition, which
approximates the combination of a necessary condition and a
sufficient condition for a guide-path plan to be feasible. We
use Reinforcement Learning (RL) to tighten the condition
and obtain a better approximation of a sufficient constraint

1Informally, the set of postures in contact and not in the collision with
the environment is so small with respect to the set of all possible postures
that it can’t be sampled.



without losing the generality of the approach. The necessary
condition, required to efficiently explore the search space,
remains unchanged.

Specifically, we propose to learn the steering method that
builds the guide path, that is the local method which, given
a current 6D position for the root of the robot and a desired
target position, computes a trajectory for the root that defines
a feasible contact planning problem. During the training, we
use feedback from the contact planner (CP) which tries to
generate a sequence of foot contact configurations on this
trajectory and returns an evaluation of its success. The RL
algorithm maximizes this success rate, thus learning what
is a good trajectory for this contact planner. Our agent is
trained in a large but fixed environment. We demonstrate
that our Learned Steering method LeaS, is able to generalize
in unknown environments where it can locally navigate to
follow a target direction, avoid collisions, and make a stop
before an unavoidable fall. While our results focus on legged
locomotion, the generic formulation of the contact planning
problem allows us to consider an extension to multi-contact
motions that will be investigated for future work.

II. LEARNING

A. Machine learning in locomotion

Recent improvements in machine learning [23], [24] have
opened new possibilities for learning locomotion on legged
mechanisms. Data-driven approaches learn how to move
in a kinematic domain [25]–[27], and to interact with its
environment [28]. In computer graphics, RL has been used
in physics-based simulation to learn locomotion through trial
and error for whole body control [29], [30]. Finally, mixed
approaches melting supervised and reinforcement learning
have also been explored [31]–[33] to combine naturalness
and robustness of locomotion. In [19], [20] it has been pro-
posed to learn contact planning. The learned policy predicts
the next contact, along with the whole body movement to
reach it, using a heightmap to represent the surrounding
terrain. In a similar spirit to our paper, [34] learns by
reinforcement the local steering method, applied to planning
the movement a wheeled robot in an unknown environment.
We take inspiration from these methods but focus on what
we believe is the key problem in contact planning: defining
the guide path along which contacts can be created.

B. Reinforcement Learning

Reinforcement Learning is defined as a Markov Decision
Process (S,A, P,R, γ) where S is a set of states, A a
set of discrete or continuous actions, P (st, at, st+1) is the
transition probability p(st+1|st, at), R a reward function
mapping S × A → < and γ ∈ [0, 1) the discount factor.
The agent takes some actions according to the policy π in
function of the actual state at = π(st). We want to learn a
policy which tries to maximize the future cumulative rewards
E[
∑∞
k=t γ

krt+k]. In this work, we use the RL algorithm
”Proximal policy optimization” (PPO) [35].

Algorithm 1: RL with Master-Minions architecture

/* τ = (S,A, S′, R, done) */
initialization of contact planner on minions;
id = 0;
listT = [];
batch = [];
for iteration = 1, 2, ... do

for actor = 1, 2, ..., Nactors do
Aactor = πθold(Sactor);
τ = step(Sactor, Aactor);
Save τ in Tactor;
if τ.done then

Save Tactor in listT with id;
Send Tactor to minions with id;
id+ = 1 ;

end
end
if result contact planner received then

for each result do
id = result.id ;
lastIndex = result.lastIndex;
Retrieve Tid from listT ;
/* discard fails */
Tid = Tid[0 : lastIndex];
Tid[lastIndex− 1].done = True;
Add Tid to batch;

end
end
if batch is full then

Learn from batch and update θ;
θold ←− θ;
Discard all T to minions;
Reset minions;

end
end

C. Learning from the contact planner

During the training, at each step we predict the next
action to perform, execute it in the environment, and repeat
the process until the episode is over. At the end of an
episode, the sequence of robot 6D positions represents the
trajectory. This trajectory is then given to the contact planner
which calculates the contact configurations along it. We
learn to improve the contact planner by discarding all the
unsuccessful part of the path.

However, the calculation time for a contact sequence can
vary from one to several seconds depending on the nature
of path and terrain. If we have an architecture with several
actors, a problem of time inefficiency appears as explained
in [36]. Indeed, with a synchronous steps implementation, if
an actor terminates its episode, the calculation of contacts on
its trajectory will make all the others wait for it. The issue
remains with a synchronous trajectory implementation, as
each actor will have different calculation times. To solve this
problem, we separate contact planning from acting, using a



Fig. 2: Observable state with root orientation (white arrow), root velocity
(Blue arrow), the desired target velocity and orientation (Red arrow) and
the local height map (Blue dots).

Master-Minion architecture as shown on Algorithm 1. When
an actor is done, it saves its trajectory and sends it on a server.
Then a minion receives the trajectory and uses its contact
planner. After calculation, it returns the index to locate the
failed part of the path. Meanwhile, all the actors keep on
generating trajectories and at the end of each step, check if
a result is received. If it is the case, we discard the failed
part of the trajectory before learning.

III. ENVIRONMENT

A. States

The observable state is a set S = {vori, oritarget, hori}
where vori is the velocity of the robot root relative to
its orientation, oritarget is the angle difference between
its orientation and the direction to target, and hori is the
local heightmap relative to its orientation. The states and
dimensions of the heightmap can be seen in Figure 2. The
heightmap dimensions are : 9 values in front of the robot,
2 values in its back and 7 values from left to right with
a discretization of respectively 8cm, 20cm and 15cm. The
heightmap is small on purpose as we want to have a local
steering method following a target direction. Increasing its
size would lead the policy to perform path planning in
some scenarios, by not moving the robot toward the desired
direction but in another one that could maximize its reward
later on.

B. Actions

Our policy returns a set of action A = {ax, ay, az, ω}
with ax, ay, az the accelerations of our robot on each axis
and ω the angular velocity of its orientation. At each step, the
robot configuration is modified as follows : (1) Robotpos+ =
Robotvel∗timestep, (2) Robotvel+ = [ax, ay, az]∗timestep
and (3) Robotorientation+ = ω ∗ timestep where timestep
is a constant (Table I). A low timestep value means more
configurations on our trajectory to reach a target. On the
opposite, if we raise this value, the contact planner will have
less configurations to work from. By experience, we know
[7] works better with timestep values between [0.10s, 0.01s].

C. Termination conditions

We consider that an episode is over when the maximum
number of steps is reached or the actual configuration is
invalid. When playing the trained policy, we also consider
that an episode can be done when the root position of the
robot has reached the target d(root, target) < epsilon with
epsilon a constant. The validity of a configuration is done
by checking if there is an obstacle in collision with the
robot root and if it can touch the ground by looking at the
reachability condition [7]. The validity of this condition is
necessary but not sufficient for the contact planner to find a
contact from this root configuration.

D. Rewards

We want a steering method able to (1) move the robot in
the desired direction at the right velocity, (2) orientate the
robot in this same direction, (3) keep a valid configuration
even when not able to go further, (4) generate a smooth path
and (5) make this trajectory feasible by the contact planner.

The reward for (1) punishes the agent for not going
in the desired direction at the right velocity : Rdir =
−(||−→v − −→v∗||/(2 ∗ vmax))2 with −→v the vector velocity, −→v∗
the desired vector velocity and vmax its maximum norm.
The reward for (2) punishes the agent for not being oriented
toward the target : Rori = −(1 − −→u ori · −→u target) with
−→u ori the unit vector representing the orientation of the root
and −→u target the desired direction of movement. The reward
for (3) encourages the agent to continue its trajectory until
the maximum number of steps in the episode is reached
with Ralive = 1. The two rewards for (4) punishes the
agent for taking too large actions : effortorientation =
−|ω/ωmax|2 with ω the action on orientation and ωmax
the maximum angular velocity, and effortacceleration =
−(||[ax, ay, az]||/amax)2 with [ax, ay, az] the action taken
on acceleration and amax its maximum norm. There is no
reward for (5) as it corresponds to the discarding of the failed
part of the trajectory as explained in II-C . The resulting
reward is : R = Rdir ∗ wdir + Rori ∗ wori + effortori ∗
weff ori + effortacc ∗ weff acc +Ralive ∗ walive

The design of a reward for the behaviors (1),(2),(4) and
(5) is straightforward and we could obtain it using positive
rewards for (1) and negative rewards for the rest. The
difficulty is to insert the condition (3) to make the robot keep
a valid configuration, even when not able to go further. When
the robot approaches an obstacle impossible to overcome,
he needs to have a reason for not terminating the episode
on purpose and to avoid accumulating negative rewards. We
opt for a simple way to solve this problem by adding a
constant positive value Ralive at each step. By selecting
proper weights for all the rewards, this method learns the
policy with the behavior (3) along with all the others.

IV. RESULTS

We used the planner HPP [37] and the Talos model [38].
Our algorithm was implemented in python using the PPO
implementation of Stable Baselines, modified for our Master-
Minion architecture as in Algorithm 1. The simulation was



TABLE I: Parameters

States dimension 81 Actions dimension 4
Parallel actors 6 Number of minions 7

Batch size 2048 ∗ 6 Mini-Batches 256
Noptepochs 10 Max Episode Length 400

Discount Factor 0.97 Clip range 0.2
Learning rate 5.0e− 4 timestep 0.10s
wdirection 1.0 worientation 0.4

weff orientation 0.1 weff acceleration 0.1
walive 1.0

Fig. 3: Trajectories after 150K, 1M5 and 80M steps of learning on 10x10
grid training terrain with some initial positions and target directions (Yellow)
and their trajectories (Blue).

run on a PC with Intel Core i7-8700 (12 cores, 3.20Ghz).
Our network is fully-connected with two hidden layers of
64 units as done in [35]. We trained our policy for 53 hours
using parameters in Table I, with an architecture of 6 actors
in parallel and 7 external minions validating the trajectories
with the contact planner [7]. The training terrain is a 10x10
grid (20 × 20m) where each grid corresponds to a type of
terrain as depicted by Fig. 1. We then used another terrain,
that the agent never met during the training, to perform our
comparisons, and where the dimension of stairs, obstacles
and beam are slightly different from any of those encountered
during the training.

A. Learning progression

We evaluate the progress of the learning by plotting
trajectories obtained with a policy at different stages of the
training on Figure 3. We want our policy to follow a direction
at the right velocity as far as possible, while ensuring the
success of the contact planner on this root trajectory. The
policy in the early phase of the training makes our robot
go toward the target, but does not take into account the
surrounding terrain and fails to produce trajectories with
contact sequence. During the training, the policy learns
how to generate longer trajectories in this direction while
detecting the different types of obstacles within its local
heightmap. Our policy also learns how to stop when it is

Fig. 4: The robot can not go further and the obstacle is detected on its local
height map (Blue dots) in the desired direction (Red arrow) so the policy
makes the robot stop.

Parameters RBLin RBKino LeaS
−30◦ to 30◦

||v|| = 0,01 99.8% 99.7% 99.8%
||v|| = 0,04 99.8% 99.7% 99.8%
||v|| = 0,07 99.8% 99.7% 99.8%
60◦ to 120◦

||v|| = 0,01 99.8% 99.7% 99.8%
||v|| = 0,04 97.3% 99.7% 99.8%
||v|| = 0,07 99.8% 99.7% 99.8%

150◦ to 210◦

||v|| = 0,01 22.3% 76.5% 98.4%
||v|| = 0,04 28.9% 77.6% 93.1%
||v|| = 0,07 34.0% 85.5% 98.2%

TABLE II: Success of steering methods with the CP on flat ground
trajectories of 4 meters with different initial orientations and velocities (60
trajectories for each test)

not able to go further, as demonstrated in Figure 4 in an
unknown environment by our policy.

B. Comparison of steering methods

In this section, we compare LeaS to RBLin [7] and
RBKino [22], to perform a local task: given an initial
configuration, the goal is to reach a target by producing a root
trajectory, which is given to the contact planner in order to
generate the contact sequence. As our policy was not trained
for accurately reaching a target, we consider that the goal is
reached if a contact configuration is within a 30cm radius
around it. In all our scenarios, the initial velocity direction
of the robot is the same as its orientation.

1) Ground: Given a initial and target position, we set
different initial orientations and velocities to evaluate the
success of all the steering methods with the contact planner
in Table II. The success value corresponds to the percentage
of the path covered by the contact sequence. The orientation
value corresponds to the angle between the initial target
direction and the root orientation of the robot. Results shows
that for all orientation going from 0 to 120 degrees, all three
methods succeed in reaching the target. But when the robot
is facing backward, the success of both previous methods
drops. RBLin rotates in a fixed number of steps that needs
to be tuned (here 100 steps) and fails with rotations of high
angular velocity. RBKino performs better but fails once in a
four to generate a valid trajectory. We also notice that with
both methods, raising the initial velocity improve its success



RBLin RBKino LeaS

(a) Hole

(b) Bridge

(c) Stairs at 30◦

(d) Stairs at 90◦

Fig. 5: Trajectories of steering methods with : valid trajectory to target
(Blue), failed trajectory to target (Yellow), failed part of a trajectory (Red)
and initial orientation (Black Arrow).

rate. On the other hand, our method LeaS performs well in
generating valid trajectories whatever the initial velocity and
orientation.

2) Hole: In the hole scenario (Fig. 5a), some initial
configurations are sampled in line and the target is fixed on
the other side of the hole. The difficulty of this scenario is
to have trajectories away from the edge of the hole to ensure
the success of the contact planner. RBLin does not perform
well in this scenario where most of linear trajectories lead
inside the hole. The same goes for RBKino which in most
cases can not generate a complete trajectory leading to the
target. In order to succeed this scenario, both of these steering
methods require path planning and intermediary waypoints
to the target, whereas LeaS succeeds in generating a valid
trajectory leading to the target while keeping a safe distance
from the hole.

3) Bridge: In this scenario (Fig. 5b), the goal is to make
the robot cross a bridge of 30cm width to reach a fixed target
on the other side. As the hole scenario, one of the difficulties
is to make the robot stay away from the edges. RBKino here
fails in finding a complete path, thus the contact planner is
unable to provide a contact sequence up to the target. RBLin
succeeds in reaching the goal from all the blue dots, but the
contact planner can have problems in finding contact steps on
trajectories very close to the edges. On the other hand, LeaS
succeeds to cross the bridge while staying in the middle as
long as it appears in its vision field. As our policy has been
trained to follow a direction with a local reduced heightmap,

RBKino + planning LeaS

(a) Hole

(b) Bridge

Fig. 6: Trajectories of RBKino with path planning and LeaS with : valid
trajectory to target (Blue), failed trajectory to target (Yellow), failed part
of trajectory (Red) and path valid but not optimal by not taking the bridge
(Magenta).

the yellow dots show cases where LeaS detects the stairs
and not the bridge in the target direction, and decides to go
down. After going down the stairs, it detects a platform too
high to reach and makes the robot stop moving.

4) Stairs: In the stairs scenario (Fig. 5c and 5d), the
goal is to climb the stairs to reach the target at the top.
The difficulty of this scenario is to find the right height at
which to engage the stairs. Empirically, we know that the
contact planner has difficulties when trajectories climbing
the stairs are too close or far from the ground. As a result,
it can not find a contact transition in equilibrium and fails
the trajectory. The result of RBLin shows the difficulty to
climb the stairs while keeping a right height from the ground,
thus leading to a reduced zone of initial configuration with
valid trajectories. This zone is smaller for RBKino which has
difficulties in connecting the initial and target configuration.
LeaS succeeds in engaging the stairs and climbing to the
target as long as the beginning of the stairs is detected in its
local heightmap.

We make another comparison with two different initial an-
gles. When the robot starts with an orientation perpendicular
to the target direction, the number of successful trajectories
for all three methods is reduced. With our method, the policy
detects the stairs later in the trajectory as the robot rotates
while getting closer to the target, and thus can explain the
success difference between Figures 5c and 5d.

C. Comparison to RBKino path planning

In the previous comparison, we were only using the
steering methods and have shown that LeaS is always better
than the heuristic controllers implemented in the planner [7]
and [22]. Results in IV-B show that RBKino alone is too
local to be fairly compared to other methods. That is why we
use RBKino with its path planner, which explores waypoints



Fig. 7: Trajectories following waypoints made by the path planning of
RBKino (left) and LeaS following it (right) with : valid trajectory to target
(Blue), fail trajectory to target (yellow), failed part of trajectory (Red) and
the waypoints to follow (Black).

stochastically to simplify the task of the local controller
and maximizes its convergence. We perform a comparison
with LeaS on hole and bridge scenarios, where RBKino
alone was failing. No path planning strategy is used for our
policy, which remains a pure local method. Results for both
scenarios are shown in Figure 6.

1) Hole: The difficulty of this scenario is explained in IV-
B.2, a trajectory too close to the hole would lead our robot
to move as a tightrope walker on the edge of the hole. LeaS
still performs better on average with fewer failure cases than
RBKino, whose path planning finds some trajectories too
close to the edge.

2) Bridge: In this scenario, RBKino with path planning
reaches the target but most of these trajectories do not pass
by the bridge and take the stairs instead. This scenario shows
for RBKino both the difficulty to engage stairs with the
right height and the non-optimality of its path planner. In
comparison, our policy succeeds in taking the bridge and in
reaching the target as in IV-B.3.

D. Path planning with LeaS

We evaluate the capability of our method to follow some
waypoints. In a first test, we use our method combined with
a path planning algorithm. Then we manually define some
waypoints to make our robot cross an evaluation terrain. In
both scenarios, we consider that a target waypoint is reached
with LeaS when the distance separating our robot to this
point is inferior to the threshold. We then set the target on
the next waypoint.

1) Replace RBKino: The path planning of RBKino gen-
erates intermediary waypoints for the robot to follow and
connect it using its local SM. In this test, we replace this
steering method with ours. The results in Fig. 7 show that our
local steering method can be used to follow these waypoints
and compares well with the RBKino.

2) Manually defined circuit: Figure 8 shows some manu-
ally placed waypoints that our robot has to follow. We start
the trajectory on the red dot with an orientation indicated
by the black arrow. Our agent succeeds in rotating the robot
toward the next waypoint and in reaching all of them one by
one.

V. CONCLUSION

We have proposed a new approach for training a steering
method which generates a root trajectory for humanoids

Fig. 8: LeaS following manually placed waypoints with : the successful
trajectory (Blue), the waypoints to reach (Yellow) and its initial orientation
(Black arrow).

robots. Our steering method is trained to fit a contact planner
and to generate trajectories feasible by it. Our method is
able to generalize to unknown environments and performs
better in all scenarios than our previous techniques with the
contact planner. It could be used either as a replacement of
the heuristic steering methods of the current planner, or as
controllers to steer in real-time the robot locomotion e.g. in
a navigation task.

Several extensions naturally arise. We yet only train the
policy to satisfy the (implicit) working hypotheses of the
contact generator, yet it should also enable the more restric-
tive constraints needed to generate a complete motion of the
whole body. We also would like to take the policy input
directly from sensor measurements (e.g. lidar data), and to
validate the approach on the real robot.
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