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Highlights: 

Automatic and accurate esophageal lesion classification and segmentation is of great significance to clinically 
estimate the lesion status of esophageal disease and make suitable diagnostic schemes. Due to individual variations 
and visual similarities of lesions in shapes, colors and textures, current clinical methods remain subject to potential 
high-risk and time-consumption issues. In this paper, we propose an Esophageal Lesion Network (ELNet) for 
automatic esophageal lesion classification and segmentation using deep convolutional neural networks (DCNNs). The 
underlying method automatically integrates dual-view contextual lesion information to extract global features and 
local features for esophageal lesion classification of four esophageal image types (Normal, Inflammation, Barrett, and 
Cancer) and proposes lesion-specific segmentation network for automatic esophageal lesion annotation of three 
esophageal lesion types at pixel level. For established clinical large-scale database of 1051 white-light endoscopic 
images, ten-fold cross-validation is used in method validation. Experiment results show that the proposed framework 
achieves classification with sensitivity of 0.9034, specificity of 0.9718 and accuracy of 0.9628, and the segmentation with 
sensitivity of 0.8018, specificity of 0.9655 and accuracy of 0.9462. All of these indicate that our method enables an 
efficient, accurate and reliable esophageal lesion diagnosis in clinical. 

The main contributions of our work can be generalized as follows: 
1 For the first time, proposed ELNet enables an automatically and reliably comprehensive esophageal lesions 

classification of four esophageal lesion types (Normal, Inflammation, Barrett, and Cancer) and lesion-specific 
segmentation from clinically white-light esophageal images to make suitable and repaid diagnostic schemes for 
clinicians. 

2 A novel Dual-Stream network (DSN) is proposed for esophageal lesion classification. DSN automatically 
integrates dual-view contextual lesion information using two CNN streams to complementarily extract the global 
features from the holistic esophageal images and the local features from the lesion patches. 

3 Lesion-specific esophageal lesion annotation with Segmentation Network with Classification (SNC) strategy is 
proposed to automatically annotate three lesion types (Inflammation, Barrett, Cancer) at pixel level to reduce the 
intra-class differences of esophageal lesions. 

4 A clinically large-scale database esophageal database is established for esophageal lesions classification and 
segmentation. This database includes 1051 white-light esophageal images, which consists of endoscopic images in 
four different lesion types. Each image in this database has a classification label and its corresponding 
segmentation annotation. 
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Abstract—Automatic and accurate esophageal lesion classification and segmentation is of 

great significance to clinically estimate the lesion statuses of the esophageal diseases and 

make suitable diagnostic schemes. Due to individual variations and visual similarities of 

lesions in shapes, colors, and textures, current clinical methods remain subject to potential 

high-risk and time-consumption issues. In this paper, we propose an Esophageal Lesion 

Network (ELNet) for automatic esophageal lesion classification and segmentation using deep 

convolutional neural networks (DCNNs). The underlying method automatically integrates 

dual-view contextual lesion information to extract global features and local features for 

esophageal lesion classification and lesion-specific segmentation network is proposed for 

automatic esophageal lesion annotation at pixel level. For the established clinical large-scale 

database of 1051 white-light endoscopic images, ten-fold cross-validation is used in method 

validation. Experiment results show that the proposed framework achieves classification with 

sensitivity of 0.9034, specificity of 0.9718, and accuracy of 0.9628, and the segmentation 

with sensitivity of 0.8018, specificity of 0.9655, and accuracy of 0.9462. All of these indicate 

that our method enables an efficient, accurate, and reliable esophageal lesion diagnosis in 

clinics. 

Index Terms—Esophageal lesions; deep learning; dual-stream esophageal lesion 

classification; convolutional neural network (CNN)  

 

I. Introduction 

Accurate classification and segmentation of the esophageal lesions are effective tools to help 

clinicians make reliable diagnostic schemes intensively depending on the potential lesions image 

analysis on the basis of classification and segmentation for esophageal lesion. Accurate classification 
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for the esophageal lesions is important because it reveals the esophageal lesion statuses which can 

further determine the prognosis of patients with esophageal lesions (Hu, Hu et al. 2010). In advanced 

stages, the five-year survival rate of esophageal cancer is 20.9% while greater than 85% in the early 

stages (Janurova and Bris 2014). (2) Accurate segmentation for the esophageal lesions can provide the 

annotation information of esophageal lesion regions and the elaborate feature analysis of lesions sizes, 

shapes, and colors. Classification and segmentation for esophageal lesions are indispensable and 

complementary, which provides comprehensive information together for a thorough understanding of 

esophageal lesions in clinical studies. 

Changes in esophagus mucosa are closely related to the stages of cancerous developments, which 

has important significance in classifying and segmenting esophageal lesions for the clinician (Wang and 

Sampliner 2008). Different stages of esophageal lesions produce physiological and visual variations in 

the esophagus mucosa. Typical white-light images with three types of esophageal lesions and one 

normal type are shown in Fig. 1. The normal type shows no apparent lesion areas in Fig. 1(a). The type 

Inflammation is featured by red and white mucosa with strip shapes as shown in Fig. 1(b). For type 

Barrett, a clear boundary between normal areas and lesion areas appears in the epithelium as shown in 

Fig. 1(c). Esophageal cancer refers to a malignant lesion formed by abnormal proliferation in the 

epithelium of esophageal, which has irregular mucosae, disordered, and missing blood vessels in 

esophageal images as shown in Fig. 1(d) (Zellerhoff, Lenze et al. 2016). These visual lesion differences 

from esophageal images make esophageal lesion classification own theoretical support. 

However, due to individual lesion variations in shape, color, and texture, depending on the 

clinician experience for esophageal lesion detection still exists potential misjudgments and time-

consuming problems. To overcome the aforementioned problems, automated esophageal lesion 

detection using computer vision methods can be used for lesion classification and segmentation 

(Domingues, Sampaio et al. 2019). 

For the accurate and automated classification and segmentation from esophageal images, it is still 

an open and challenging task because: 1) Significant intra-lesion differences in shape, size, and color 

seriously hamper the classification and segmentation performance as shown in Fig. 2(a). 2) Inter-lesion 

similarities between two different lesion types easily fall into the same category as shown in Fig. 2(b). 

3) Varying illumination and noise degrees such as specular reflection easily produce the negative 

impacts on the esophageal lesion classification and segmentation (Tanaka, Fujiwara et al. 2018). 

 
Fig. 1. Four types of white-light esophageal images: (a) The normal type represents there is no any lesion. (b) The type 

Inflammation is featured by red and white mucosa with strip shapes. (c) The type Barrett is featured by a clear 

boundary between normal areas and lesion areas appearing in the epithelium. (d) The type Cancer is characterized by 

the irregular mucosae, disordered and missing blood vessels. 

 
Fig. 2. Intra-lesion differences and Inter-lesion similarities make esophageal lesion classification and segmentation 
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challenging. (a) Intra-lesion differences in shape, size, and color for Inflammation lesion. (b) Inter-lesion similarities 
between the type Barrett and Normal. 

1.1. Related Works 

1. Classification methods aim to automatically predict esophageal lesion statuses for improving 

the diagnosis efficiency and precision. However, due to the individual differences from the same lesion 

types and visual similarities from different lesion types, accurate classification is challenging. 

Researchers have made some attempts including traditional methods based on prior knowledge and 

deep learning methods to tackle this challenge. Kandemir et al. (Kandemir, Feuchtinger et al. 2014) 

performed a study for the diagnosis of Barrett's esophagus presented in hematoxylin-eosin stained 

histopathological biopsies using multiple instance learning (MIL) and Support Vector Machines 

(SVMs). Souza Jr. et al. (Souza, Hook et al. 2017) classified lesions in Barrett esophagus using the 

SVMs classifier based on the descriptors of Speed-Up Robust Features (SURF). Li et al. (Li, Meng et 

al. 2009, Antony, McGuinness et al. 2016) presented a method based on Local Binary Patterns (LBPs) 

and curvelets for texture extraction aiming to distinguish ulcer and normal regions of esophagus using 

capsule endoscopy (CE). By considering the use of inaccurate prior knowledge and low-level 

handcrafted features (Antony, McGuinness et al. 2016), the supervised deep learning method tries to 

learn hierarchical and complicated representation of data features for esophageal lesion classification 

(Hong, Park et al. 2017, Horie, Yoshio et al. 2019). Hong, J et al. (Hong, Park et al. 2017) developed a 

computer-aided diagnosis (CAD) system using CNN architectures for classification among gastric 

metaplasia, intestinal metaplasia, and neoplasia. Yoshimasa et al. (Horie, Yoshio et al. 2019) employed 

the CNN to classify the esophageal cancer including squamous cell carcinoma and adenocarcinoma. 

Recently, CNNs have been proved effective methods for many medical imaging tasks, including feature 

recognition (Yan 2018), image analysis (Singh, Rote et al. 2018), and lesion detection (Tanaka, 

Fujiwara et al. 2018). 

Discussion: All of these show great potential with the development of esophageal lesion 

classification. However, they do not make full use of the global and local lesion features and it causes 

the ambiguous representation for different esophageal type features. In this paper, we integrate dual-

view contextual lesion information and complementarily and comprehensively extract global features as 

the basis of the holistic esophageal image information and local features as the details of the esophageal 

lesions. It effectively reduces inter-lesion similarities and intra-lesion differences for accurate and 

automatic four types of esophageal lesion classification. 

2. Segmentation methods aim to annotate the ROIs (region of interests) of the esophageal lesions 

at the pixel level. It has undergone a great development (Van Der Sommen, Zinger et al. 2014, 

Georgakopoulos, Iakovidis et al. 2016, Mendel, Ebigbo et al. 2017). Van d S F et al. (Van Der Sommen, 

Zinger et al. 2014) computed local color and texture features based on the original images and Gabor-

filtered images and utilized Support Vector Machines (SVMs) classifier for early esophageal cancers 

segmentation. With the development of deep learning, many researchers followed the trends and 

proposed deep learning methods for learning feature representations in the application of esophageal 

lesion segmentation. Georgakopoulos et al. (Georgakopoulos, Iakovidis et al. 2016) proposed a weakly-

supervised learning technique based on CNNs, and it only used image-level semantic annotations for 

the training process instead of using annotations at the pixel level. Mendel et al. (Mendel, Ebigbo et al. 

2017) employed the transfer learning based method to segment adenocarcinoma and Barrett's esophagus 

images and obtained the results with the sensitivity of 0.94 and specificity of 0.88. 

Discussion: The above studies have made significant contributions to esophageal lesion 

segmentation. However, these algorithms still have potentials for improvement in the segmentation 

performance because they do not purposefully consider the differences of varying esophageal lesion 
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types in shape, color and size, which hampers capturing common lesion features. In this paper, to tackle 

this problem, we design the lesion-specific segmentation network to automatically annotate three lesion 

types (Inflammation, Barrett, Cancer) at pixel level. 

1.2. Contributions 

In this paper, we propose Esophageal Lesion Network (ELNet) based on deep CNNs to classify 

and segment the esophageal lesions with four interdependent functional parts: Preprocessing module, 

Location module, Classification module, and Segmentation module. (1) To normalize esophageal 

images, reduce obstruction of irrelevant information and tackle data imbalance problem, the 

Preprocessing module is used for normalization, specular reflection removal, and data augmentation 

from original esophageal images. (2) To highlight esophageal lesions, the Location module employs 

the Faster RNN for focusing on the ROIs of esophageal lesions. (3) To accurately predict esophageal 

lesion statuses, the Classification module is designed for classifying four esophageal lesion types. (4) 

To obtain accurate annotation at pixel level, the Segmentation module is employed to automatically 

segment three lesion types. 

The main contributions of our work can be generalized as follows: 

5 For the first time, we propose the ELNet for automatically and reliably comprehensive esophageal 

lesions classification and lesion-specific segmentation from clinically white-light esophageal 

images. It enables an efficient esophageal lesion detection to make suitable and repaid diagnostic 

schemes for clinicians. 

6 A novel Dual-Stream Network (DSN) is proposed for esophageal lesion classification. DSN 

automatically integrates dual-view contextual lesion information using two CNN streams to 

complementarily extract the global and local features. It effectively improves the esophageal lesion 

classification performance to automatically predict the esophageal lesion statuses. 

7 The lesion-specific esophageal lesion annotation with the Segmentation Network with Classification 

(SNC) strategy is proposed to reduce the intra-lesion differences for automatically segmenting three 

lesion types at pixel level. 

8 A clinically large-scale database esophageal database is established for esophageal lesions 

classification and segmentation. This database includes 1051 white-light esophageal images, which 

consists of endoscopic images in four different lesion types. Each esophageal image in this database 

has a classification label and its corresponding segmentation annotation. 

Experiment results show that the proposed ELNet for esophageal lesions achieves the 

classification results with sensitivity of 0.9397, specificity of 0.9825, and accuracy of 0.9771, and the 

segmentation results with sensitivity of 0.8018, specificity of 0.9655, and accuracy of 0.9462. All of 

these indicate that our method enables an efficient, accurate and reliable esophageal lesion diagnosis in 

clinics. 

The remainder of this paper is organized as follows: In Section II, we present proposed ELNet for 

esophageal lesion classification and segmentation. In Section III, the implementation details about 

ELNet are reported. The experiment and evaluation are given to validate the performance of ELNet in 

Section IV. Finally, we conclude the proposed ELNet and discuss related future work in Section V. 

II. Method 

The proposed ELNet includes the following interactional functional parts: (1) the Preprocessing 

module performs the operations of normalization, spectral reflection removal, and data augmentation to 

normalize the esophageal images, reduce the irrelevant information obstruction, and tackle overfitting 
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problem; (2) the Location module employs Faster-RCNN to highlight the ROIs of the esophageal 

lesions; (3) the Classification module utilizes the proposed DSN consisting of Global and Local 

Streams to simultaneously extract the global and local features for four-class esophageal lesion 

classification (Normal, Inflammation, Barrett and Cancer); (4) the Segmentation module performs the 

automatic esophageal lesion annotation at pixel level using the proposed lesion-specific segmentation 

network. The main workflow is outlined in Fig. 3. 

 
Fig. 3. Overview of the proposed ELNet for esophageal lesion classification and segmentation. 

2.1. Preprocessing Module 

The Preprocessing module consists of three steps: (1) the specular reflection removal is performed 

to reduce the random white spots in the endoscopic images; (2) the normalization operation is used to 

initialize esophageal images for dimension unification and computation complexity reduction; (3) the 

data augmentation is employed to tackle the overfitting problem. 

2.1.1. Specular Reflection Removal 

Specular reflections removal performs the specular reflection detection and correction to remove 

non-uniformity of the illumination (Tchoulack, Langlois et al. 2008). This non-uniformity of the 

illumination caused by the deviation of the light sources generates the specular reflection with white 

spots in endoscope images. It is implemented via two sub-tasks in a streaming mode: 

 (1) Detection: A bi-dimensional histogram decomposition is applied to detect the specular 

reflections: 

 ( )
1

m = r+ g + b
3

, ................................................................. (1) 
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
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

 


, ............................................(2) 

  

where m  is the pixel intensity, s  is the saturation, and r, g and b represent the red, green and blue 

channels in images. Specular reflections can be detected via two threshold values 
m a x

m and 
m a x

s based on 

the bi-dimensional histogram. A pixel p  will be a part of the specular region if it meets the following 

conditions: 

 

p m a x

p m a x

1
m m

2

1
s s

3







 


, ..................................................................................(3) 

where 
m a x

m  and 
m a x

s  are the maximum intensities of 
p

m  and 
p

s  among all the pixels in an image 

respectively. Related parameters are obtained by experiment with a large quantity of esophageal images. 

(2) Correction: The Navier-Stokes method (Bertalmio, Bertozzi et al. 2001) performs the linear 

correction. The corrected images are obtained by replacing the specular reflection points with the 

average neighboring pixel values. The images before and after this spectral reflection removal are 

depicted in Fig. 4. 

 
Fig. 4. The spectral reflection removal for original esophageal images (top) and corresponding images after spectral 

reflection removal (bottom). The non-uniformity of the illumination caused by the deviation of the light sources 

generates the specular reflection with white spots in endoscope images. The arrows in the original esophageal images 

point to these white spots. 

2.1.2. Image Normalization 

Image normalization performs the image standardization and lowering computational complexity. 

The esophageal images are normalized into 512×512 pixels as the input of the Global Stream and the 

lesion patches as the input of the Local Stream are resized into 64×64 pixels in the Classification 

module. 

The pixel values of three channels for esophageal images are normalized into the range of (0, 1). 

The normalization formula is defined by Eqs (4): 

 
x

y
M in V a lu e

M a xV a lu e -M in V a lu e


 , ........................................................(4) 
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where x  is the input pixel value of an esophageal image, M inV a lue  and M axV a lue is the minimum and 

maximum pixel value of this esophageal image, y  is the pixel value output after normalization. 

2.1.3. Data Augmentation 

Data augmentation tackles the over-fitting problem. It includes the translation to simulate the left 

and right position change of gastroscopes, the rescaling to simulate the gastroscope stretch, the rotation 

to simulate the rotation movement of gastroscope, and the flipping to simulate the mirroring of 

gastroscope in our experiment. A summary of the transformations with the parameters is given in 

TABLE 1. 
TABLE 1. 

Data Augmentation Parameters. 

Transformation Type Description 

Rotation Randomly rotate an angle of 0 3 6 0  

Flipping 0 (without flipping) or 1(with flipping) 

Rescaling Randomly with scale factor between 1/1.6 and 1.6 

Translation Randomly with shift between −10 and 10 pixels 

2.2. Location Module 

The Location module performs the lesion location and generates corresponding lesion patches for 

four esophageal image types. In this paper, Faster RCNN (Everingham, Van Gool et al. 2007) including 

Region Proposal Networks (RPN) and Fast R-CNN (Singh, Rote et al. 2018) is utilized to locate the 

ROIs of lesions. The RPN predicts the possibility of an anchor being background or foreground and 

refines the anchor. In this paper, there are the anchors with the fixed 1:1 length-width ratio to avoid 

distortion of lesion shapes when resizing the images. The VGG16 network (Qassim, Verma et al. 2018) 

is employed to extract spatial features. Fast R-CNN performs the final classification and regression to 

locate the ROIs of lesions. 

For the three esophageal lesion types, the length/width values and coordinates of bounding boxes 

are obtained, and the corresponding location lesion areas are clipped as lesion patches. For the normal 

type, the image patches are captured by randomly clipping the normal type of esophageal images. Four 

types of esophageal image patches are resized into 6 4 6 4  pixels to be the input of the Local Stream of 

the DSN for esophageal image classification. This normalization can effectively reduce the intra-class 

difference from the physical size of esophageal lesion, which conforms to real-time clinical diagnostic 

environment. Fig. 5 shows the four types of esophageal images and corresponding image patches. 

Compared with the holistic esophageal images, clipped lesion patches focuses on the local and detailed 

features such as colors and textures, which provide the necessity for classification of four esophageal 

lesion types to reduce the inter-lesion similarities and intra-lesion differences. 

 
Fig. 5. Four types of esophageal images and the corresponding image patches. The red blankets in the top figure are 

the lesion areas located by Faster RCNN and the bottem figure show the clipped image patches. 

2.3. Dual-Stream Network for Classification Module 

Barrett Cancer Inflammation Normal
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Fig. 6. The structure of the proposed Dual-Stream Network (DSN). 

The Classification module performs the classification for four esophageal image types including 

Normal, Inflammation, Barrett, and Cancer. To automatically integrate dual-view contextual lesion 

information and accurately classify four esophageal lesion types, the DSN is designed, and it consists of 

two complementary streams – the Global Stream and the Local Stream. The Global Stream extracts 

global features via inputting the holistic esophageal images to focus on the holistic esophageal image 

information reflecting the contrast between lesion regions and background. The Local Stream extracts 

local lesion features related to information about textures, shapes, and colors of lesions via inputting 

four types of lesion patches generated by the Location module. The structure of the DSN for esophageal 

lesions is depicted in Fig. 6. 

The detailed configuration of the proposed DSN is shown in TABLE 2. Given the input data scale 

and image size, the Global Stream has 21 layers including 16 convolution layers and 5 pooling layers. 

The stride of convolution layer is set to 1 to capture the lesion features besides the Conv 1 with stride 2 

to reduce the computation parameters in the Global Stream. The Local Stream is designed to have 13 

layers including 10 convolution layers and 3 pooling layers. The Conv 4 is added in the Local Stream to 

keep the same output sizes with the Global Stream. Each convolution layer is followed by a batch 

normalization layer and a ReLU activation layer. 

 
Fig. 7. A building block of residual network. 

The Global Stream and the Local Stream are designed based on the ResNet structure proposed by 

Kaiming He et.al (He, Zhang et al. 2016). The ResNet network can well tackle degradation problem via 

shortcut connection, and Fig. 7 depicts the structure of the Residual block (Szegedy, Ioffe et al. 2017, 

Wu, Shen et al. 2019). For clarity, ( )
L

H x  denotes the transformation function of the th
L  building block, 

and x  is the input of the th
L  building block. The desired output for the Residual block is set as ( )

L
F x . 

The Residual block explicitly forces the output to fit the residual mapping, i.e. the stacked nonlinear 
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layers are used to learn the following transformation: 

 ( ) ( )
L L

F x = H x -x , ................................................................ (5) 

therefore, the transformation for the th
L  building block is: 

 ( ) ( )
L L

H x = F x + x . ............................................................... (6) 

The residual block consists of convolution layers with the kernel size of 1 1  and 3 3 . The 

convolution layers with kernel size 1 1  are used to reduce channel number into n ( n< m ) and the 

convolution layers with kernel size 3 3  are employed for extracting spatial features and returning to 

the input channel number m . In this paper, four residual blocks are built in the Global Stream to extract 

the global features, and two residual blocks are built in the Local Stream to extract the local features. 

The pooling layer is utilized for down-sampling to reduce computation complexity. From the 

detailed design of the proposed DSN in Table 2, we can see that the data size is downsampled from 

512×512 pixels in Global Stream and 64×64 pixels in Local Stream to 8×8 pixels throughout the 

pooling layers together. 

The concatenation fusion is used to fuse the output of the Global Stream and the Local Stream 

(Chen, Xie et al. 2018). For clarity, we define a fusion function a b

c a t
y = f (x ,x ) , two feature maps 

a H W D
x R

 
∈ and 

b H W D
x R

 
∈ , and a fusion feature map H W D

y R
   

∈ (W, H, and D are the width, height 

and number of channels of feature maps). The function a b

c a t
y = f (x ,  x ) stacks the two features at the 

same location (i, j) across the feature channel d : 

 
a b

i,j,d i,j,d i,j,D + d i,j,d
y = x   y = x , ........................................................... (7) 

where H W 2 D
y R

 
∈ . Then, the fused feature map has 1024 features with the size of 8×8 pixels. Finally, 

these features are flattened and inputted into the Softmax layer. 

The Softmax layer performs normalization for feature maps into the range of (0, 1) so that the 

output vector 
m

ŷ  represents the probability of the m
th

 class. The operation for the Softmax layer can be 

written as: 

 ˆ

x

m 4

x

m = 1

e
y =

e

, .................................................................... (8) 

where ˆ
m

y  is the output probability of the m
th

 class, x  represents the input neurons of the upper layer. 

We choose cross entropy loss as the objective function of DSN to accelerate training. The cross-

entropy based loss function is given by (9): 

 ˆ ˆ( ( ) ( ) ( ))
m m

lo s s= -m e a n y lo g y + 1 -y lo g 1 -y  , .......................................... (9) 

where, y  is the label vector and 
m

y  is the predicted output vector of the proposed DSN. 

TABLE 2 
The detail configuration of proposed DSN for esophageal lesion classification. 

Dual-Stream Network (DSN) 

Global Stream Local Stream 

Layer 

Kernel Size, 

Channel 

Number 

Output Size Layer 

Kernel Size, 

Channel 

Number 

Output Size 

Data - 512×512 Data  64×64 

Conv 1 3×3, 64 256×256 Conv1 3×3,64 64×64 

Pool 1 2×2, 64 128×128 Pool 1 2×2, 64 32×32 

Residual Conv 1 1×1, 32 128×128 Residual Conv1 1×1, 32 32×32 
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Block-1 Conv 2 3×3, 32 128×128 Block-1 Conv2 3×3, 32 32×32 

Conv 3 1×1, 64 128×128 Conv3 1×1, 64 32×32 

Conv2 3×3,128 128×128 Conv2 3×3,128 32×32 

Pool 2 2×2, 128 64×64 Pool 2 2×2, 128 16×16 

Residual 

Block-2 

Conv 1 1×1, 64 64×64 
Residual 

Block-2 

Conv 1 1×1, 64 16×16 

Conv 2 3×3, 64 64×64 Conv 2 3×3, 64 16×16 

Conv 3 1×1,128 64×64 Conv 3 1×1,128 16×16 

Conv3 3×3,256 64×64 Conv3 3×3,256 16×16 

Pool 3 2×2, 256 32×32 Pool 3 2×2, 256 8×8 

Residual 

Block-3 

Conv 1 1×1, 128 32×32 Conv 4 1×1, 512 8×8 

Conv 2 3×3,128 32×32 - - - 

Conv 3 1×1,256 32×32 - - - 

Conv 4 3×3, 512 32×32 -   

Pool 4 2×2, 512 16×16 - - - 

Residual 

Block-4 

Conv 1 1×1, 256 16×16 - - - 

Conv 2 3×3, 256 16×16 - - - 

Conv 3 1×1, 512 16×16 - - - 

Pool 5 2×2, 512 8×8 - - - 

Fusion 8×8, 1024 

Softmax 9 Neurons 

2.4. Segmentation Module 

The Segmentation module performs the lesion-specific esophageal annotation automatically for 

three esophageal lesion types including Inflammation, Barrett, and Cancer at pixel level. Given the 

differences of shapes, sizes, colors, and textures for these three types of lesions, different segmentation 

strategies have strong effect for the segmentation results. To reduce these intra-lesion differences, we 

proposed lesion-specific segmentation strategies where three types of esophageal lesions are segmented 

respectively based on Classification module. It is referred as Segmentation Network with Classification 

(SNC). This strategy is more targeted for each lesion type and reduces the adverse impacts of inter-

lesion. To demonstrate the superiority of this strategy, we compared with the most straightforward 

strategy which segments all the esophageal lesion images with no classification directly in the 

experiment part (Van Der Sommen, Zinger et al. 2014, Xue, Zhang et al. 2017). It is referred as 

Segmentation Network with No Classification (SNNC).  

Our proposed lesion-specific segmentation network is designed based on the U-Net architecture 

with good performance in medical imaging segmentation (Ronneberger, Fischer et al. 2015). A typical 

U-Net architecture consists of the contracting path, symmetrical expanding path, and bottleneck layer. 

The contracting path performs the lesion feature extraction, and it has four typical contraction 

blocks. The contraction block consists of two convolution layers with kernel sizes 3 3  and a max-

pooling layer with kernel size 2 2  in this paper. The contraction path captures lesion-specific features 

and the image size is reduced from 512 512  pixels to 32 32  pixels. The expanding path performs 

two-class classification for each image pixel, and it consists of four typical expansion blocks. The 

contraction block contains one deconvolution layer with stride 2 to reduce computation parameters, one 

concatenation layer to fuse the features with corresponding layers of contracting path, and two 

convolution layers with kernel size 3×3 to integrate lesion features. The output vectors of the expanding 

path represent the probability values of the foreground and background. The bottleneck layer is 

designed from two convolution layers with kernel size 3 3  for feature integration. The binary cross-

entropy loss function is employed in loss calculation. 

III. Materials and Implementation Details 

                  



12  

 

3.1. Material.  
The clinical database containing standard 1051 white-light endoscopic images from 748 patients is 

obtained from the First Affiliated Hospital of Nanjing Medical University between July 2017 and July 

2018. The inclusion criteria of this database is the selection of those images with available conventional 

white-light endoscopy and pathologic analysis. Those images with poor quality and images captured 

from patients undergoing surgical or endoscopic resection are excluded. All the included esophageal 

images contain the pixel-level lesion annotations manually marked by licensed physicians and four 

types of the esophageal lesion labels based on strict histological proof. 

Ten-fold cross-validation is used. 80 percent of the esophageal images are used for training, and 10 

percent of the images are used for testing. The rest of the images are used as the validation dataset to 

optimize the training parameters and improve the generalization capability of the proposed network. It 

is noted that there is no data overlapping between the training dataset, validation dataset, and test 

dataset. The detailed statistics of collected esophageal images can be seen in TABLE 3. 

TABLE 3 

Statistics distribution from esophageal image database. 

 Normal Inflammation Cancer Barrett 

Train 203 345 100 207 

Validation 25 43 12 25 

Test 26 44 14 27 

Total 254 412 126 259 

3.2. Implementation details 

The computer platform is configured as follows: CPU was Inter(R) Core(TM) i7-5930K 3.5GHz; 

GPU was NVIDIA 2080TI with 11G memory. All codes were written under Python 3.6, and we used 

Tensorflow r1.4 as the deep learning library. The CUDA edition used here was 10.0. During the training 

phase, the weight parameters are trained using mini-batch stochastic gradient descent with momentum 

(set to 0.9). The base learning rate is set to 
-4

1 0  and iteratively decreases until the loss stops decreasing. 

All the models were trained using 10000 iterations. For the Location module, the VGG-16 is fine-

tuned based on the pre-trained ImageNet model. The training batch size is set to 8 for gradient descent. 

For the Classification module, the training batch size is set to 8 for gradient descent. In the testing 

phase, all the preprocessed test images of 512×512 pixels and 64×64 pixels are input into the DSN 

simultaneously. For the Segmentation module, the training batch size is set to 4 for the three U-Net 

segmentation networks. In the testing phase, three subsets (Cancer, Inflammation, and Barrett) from 

classification results are inputted into these three trained U-Net networks (U-Net 1, U-Net 2, and U-Net 

3) respectively. 

Evaluation criteria. Quantitative and qualitative results of the proposed method are given in this 

section. With the collected esophageal images, we measure two system properties: (1) Classification 

performance, i.e., how many of the esophageal images are classified correctly, (2) Segmentation 

performance, i.e., how well do the annotations made by the algorithm match those of the expert 

physicians. To further clarify the evaluation metrics, the classification and segmentation results are 

measured using sensitivity (SENS), specificity (SPEC), accuracy (ACC), and the Receiver Operating 

Characteristics (ROC). The sensitivity, specificity, and accuracy are defined by Eqs. (10) - (12): 

 
T P

S E N S =
T P + F N

, ............................................................. (10) 
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T N

S P E C =
F P + T N

, ............................................................. (11) 

 
(T P + T N )

A C C =
(T P + T N + F P + F N )

, .....................................................(12) 

where: 

 TP, True Positives: the number of positive samples (foreground pixels) is correctly classified. 

 FP, False Positives: the number of negative samples (background pixels) is wrongly classified as 

positive. 

 TN, True Negatives: the number of negative sam-ples (negative pixels) is correctly classified. 

 FN, False Negatives: the number of positive sam-ples (foreground pixels) is wrongly classified as 

negative. 

IV. Experiment and Results 

The ELNet demonstrates high performance with classification with sensitivity of 0.9034, 

specificity of 0.9718 and accuracy of 0.9628, and the segmentation with sensitivity of 0.8018, 

specificity of 0.9655 and accuracy of 0.9462. It indicates the effectiveness of our method in esophageal 

lesion classification and segmentation. 

4.1. DSN for esophageal lesion classification 

The experimental result shows the DSN accurately classifies four esophageal types and effectively 

integrates the advantages of the Global Stream and the Local Stream in TABLE 4. The DSN achieves 

an overall classification with sensitivity of 0.9034, specificity of 0.9718, and accuracy of 0.9628. 

Compared with the Global Stream and Local Stream, the DSN outperforms its subnetworks including 

the Global Stream in the term of sensitivity (6.04% improvement), specificity (3.09% improvement), 

accuracy (4.35% improvement) and the Local Network in the term of sensitivity (14.99% 

improvement), specificity (6.49% improvement) and accuracy (9.00% improvement). As shown in Fig. 

8, The DSN achieves superior performance (AUC: 0.994) over the sole Global Network (AUC: 0.976) 

and sole Local Network (AUC: 0.971). These improvement results demonstrate that the DSN performs 

reasonable integration of these two streams to improve the classification performance and explains that 

the Global Stream is the basis of DSN, and the Local Stream is a powerful supplement for the Global 

Stream. These two streams working complementarily and comprehensively contribute to the DSN for 

esophageal lesion classification. 

TABLE 4 
 The Comparative sensitivity, specificity, accuracy results of the proposed DSN and subnetworks (the Global Stream 

and the Local Stream). 

 SPEC SENS ACC 

Global Stream 0.9516 0.8793 0.9336 

Local Stream 0.9176 0.7898 0.8871 

DSN  0.9825 0.9397 0.9771 
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Fig. 8. ROC curves and AUC values of the DSN (Red), the Global Network (Blue) and the Local Network (Green). 

As shown in Fig. 9, the DSN reduces the confusion degree in comparison with the Global Stream. 

The confusion matrix is a quantitative graph used to reflect the performance of a classification method 

on a testing set (Zhang, Shao et al. 2006). The diagonal values represent the number of correct 

classification for each class, and the others represent the confusion number between every two classes. 

The DSN increases the correct classification number in Inflammation (4 increased) and Barrett (6 

increased). The type Cancer will get more excellent performance if more data can be available. 

 

(a)                                                                                    (b) 
Fig. 9. Confusion matrixes of (a) the proposed DSN and (b) the Global Stream in the esophageal image database. 

To help understand the features extracted by the COVIDNet, we compute the class activation map 

(CAMs) from the Dual-Stream Network (DSN) (Selvaraju, Cogswell et al. 2017). The visualization 

results of the proposed DSN on the three esophageal lesion types are shown in Fig. 10. The closer to red 

in the heatmaps, the stronger activation in the original image, which indicates that information from that 

area contributes more to the final decision. As it can be seen from Fig. 10, the proposed DSN efficiently 

extracts esophageal lesion features, suppresses the irrelevant background information, and achieves 

excellent classification performance. 
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Fig.10. Visualization results of three types of esophageal lesion images (top) and the corresponding heatmaps (bottom) 

of the proposed DSN. The pixel areas related to esophageal lesions can be accurately highlighted by the proposed DSN 

for three types of esophageal lesion images in our database. 

4.2. Classification comparison with state-of-the-art methods 

As shown in TABLE 5., the DSN outperforms the other well-known classification methods 

including LBP+SVMs (Van Der Sommen, Zinger et al. 2013), HOG+SVMs (Kothari, Wu et al. 2016), 

and VGG-19 (Szegedy, Ioffe et al. 2017), ResNet-50 (He, Zhang et al. 2016) in all the terms of metrics 

SENS, SPEC, and ACC. LBP+SVMs and HOG+SVMs are traditional methods based on prior 

knowledge to extract hand-crafted features and using SVMs for classification. VGG-19 and ResNet-50 

are deep learning based methods consisting of multiple convolutional and pooling layers alternately. 

After conducting a sufficient amount of experiments about parameter adjustment depending on our 

esophageal lesion database, the best results were kept to achieve the best classification performance. 

Overall, by comparison, it is observed in Table 5 that the proposed DSN achieves better performance 

than traditional method including LBP+SVM in the term of sensitivity (35.51% improvement), 

specificity (13.95% improvement), accuracy (48.39% improvement), and HOG+SVM in the term of 

sensitivity (24.93% improved), specificity (10.29% improved), accuracy (37.21% improvement). 

Among the deep learning based methods, our proposed DSN obtains better results compared with 

VGG-19 in the term of sensitivity (16.28% improvement), specificity (6.60% improvement), accuracy 

(9.07% improvement) and ResNet-50 in the term of sensitivity (5.99% improvement), specificity 

(2.83% improvement), and accuracy (4.25% improvement). 

TABLE 5. 
The Comparative sensitivity, specificity, accuracy results of proposed DSN and other well-known classification 

methods. 

 SPEC SENS ACC 

LBP+SVMs (Van Der Sommen, Zinger et al. 2013) 0.8430 0.5846 0.4932 

HOG+SVMs (Kothari, Wu et al. 2016) 0.8796 0.6904 0.6050 

VGG-19 (Szegedy, Ioffe et al. 2017) 0.9165 0.7769 0.8864 

ResNet-50 (He, Zhang et al. 2016) 0.9542 0.8798 0.9346 

Dual-Stream Network (DSN) 0.9825 0.9397 0.9771 

4.3. Lesion-specific segmentation of esophageal lesions 

As shown in TABLE 6, the proposed lesion-specific esophageal lesion segmentation can 

accurately automatic annotate the lesion ROIs at pixel level. Our proposed method achieves excellent 

Barrett Cancer Inflamm
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segmentation performance in all three average metrics including sensitivity of 0.8018, specificity of 

0.9655, and accuracy of 0.9462. Compared with SNNC strategy, the lesion-specific segmentation with 

SNC significantly increases the effectiveness and stability in the terms of accuracy (6.96% 

improvement), sensitivity (21.80% improvement), and specificity (6.87% improvement). Fig.  

qualitatively compares the segmentation performance of between the proposed SNC strategy and the 

SNNC strategy. The lesion-specific segmentation with SNC strategy has a good match with the ground 

truth made by the specialist. For the SNNC strategy, the segmentation results of type Cancer and 

Inflammation produce a relatively higher false positive at pixel level due to under-fitting in three 

esophageal lesion types. These increases of our method are resulted from the fact that the lesion-

specific segmentation provides an independent and efficient network for every esophageal lesion type 

and it adapts to each lesion type and reduces false positive at pixel levels. 
TABLE 6. 

The quantitative segmentation results of the SNC strategy and the SNNC strategy for esophageal lesions. The results 

of SNNC strategy are present in the brackets. 

 Inflammation Cancer Barrett Average 

ACC 
0.9282 0.9075 0.9915 0.9462 

(0.8806) (0.7676) (0.9152) (0.8766) 

SENS 
0.6909 0.8020 0.9387 0.8018 

(0.5824) (0.8455) (0.5315) (0.5838) 

SPEC 
0.9648 0.9337 0.9954 0.9655 

(0.9095) (0.7374) (0.9462) (0.8968) 

4.4. Segmentation comparison with state-of-the-art methods 

As shown in TABLE 7, our proposed lesion-specific segmentation network achieves higher 

segmentation performance in all three metrics compared to the existing methods including the FCN 

(Noh, Hong et al. 2015), SegNet (Badrinarayanan, Kendall et al. 2017), and U-Net- SNNC 

(Ronneberger, Fischer et al. 2015). After conducting a sufficient amount of experiments about 

parameter adjustment depending on our esophageal lesion database, the best results were kept to 

achieve the best segmentation performance. Overall, by comparison, our proposed method obtains 

better segmentation results in all three metric terms. The proposed method achieves better performance 

than FCN in the term of sensitivity (39.26% improvement), specificity (0.04% improvement), accuracy 

(4.05% improvement), and SegNet in the term of sensitivity (14.31% improved), specificity (1.41% 

improved), accuracy (2.70% improvement), and U-Net-SNNC in the terms of accuracy (6.96% 

improvement), sensitivity (21.80% improvement), and specificity (6.87% improvement). It indicates the 

proposed methods can completely annotate the lesion areas for three esophageal types under high 

specificity, sensitivity and accuracy. 

TABLE 7. 
The Comparative sensitivity, specificity, accuracy results of employed segmentation network and other well-known 

segmentation methods. 

Methods SPEC SENS ACC 

FCN (Noh, Hong et al. 2015) 0.9651 0.4092 0.9057 
SegNet (Badrinarayanan, Kendall et al. 2017) 0.9514 0.6587 0.9192 

U-Net-SNNC (Ronneberger, Fischer et al. 2015) 0.8968 0.5838 0.8766 
Proposed Method 0.9655 0.8018 0.9462 
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Fig. 11. Qualitative segmentation results of both the SNC and SNNC strategy for three types of esophageal lesions 

(Barrett, Cancer and Inflammation). The figures above show the ground-truth highlighted with a red line and the 

figures below show the predicted mask (the SNC and SNNC) highlighted with a green line. The three columns 

represent these three different types of esophageal lesions, respectively. 

V. Conclusion and discussion 

In this paper, we proposed the framework for the first time automatically achieves accurate 

classification and segmentation of esophageal lesions. The framework consists of four interdependent parts 

for esophageal lesion classification and segmentation: (1) the Preprocessing module is used for 

normalization, specular reflection removal, and data augmentation from original esophageal images to 

initialize the data; (2) the Location module employs the Faster RNN to focus on the ROIs of esophageal 

lesions; (3) In the Classification module, DSN integrates dual-view contextual lesion information to 

simultaneously extract global features and local features for esophageal lesion classification (Normal, 

Inflammation, Barrett, and Cancer); (4) the Lesion-specific annotation is proposed to segment three lesion 

types (Inflammation, Barrett, and Cancer) for automatic and accurate annotation at pixel level in 

segmentation module. 

For the whole experiment, a clinical database of 1051 white-light endoscopic images is built. Ten-fold 

cross-validation is utilized in the method validation. Experiment results have proven that our proposed 

framework reaches high classification and segmentation results in all three metrics and maintains excellent 

internal consistency with the ground truth, indicating its great potential in clinical esophageal lesion 

evaluation. 

Future work for the proposed method includes: (1) More elaborate esophageal lesion classification can 

be required. For example, the Cancer type of esophageal lesion can be further divided into epidermoid 
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carcinoma and adenocarcinoma (Asan and Nature 2017). It is beneficial for estimating the esophageal lesion 

statuses and making suitable diagnostic schemes; (2) a semi-supervised CNN-based method for esophageal 

lesions is required due to lack of the classification labels and annotations when larger training databases in 

clinics(Ge, Yang et al. 2019, Ge, Yang et al. 2019, Yin, Zhao et al. 2019). 
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Graphical abstract 

 
Fig. 3. Overview of the proposed ELNet for esophageal lesion classification and segmentation. 

In this paper, we propose Esophageal Lesion Network (ELNet) based on deep CNNs to 
classify and segment the esophageal lesions with four interdependent functional parts: 
Preprocessing module, Location module, Classification module and Segmentation module. 
(1) To normalize esophageal images, reduce obstruction of irrelevant information and tackle 
data imbalance problem, Preprocessing module is used for normalization, specular reflection 
removal, and data augmentation from original esophageal images. (2) To highlight esophageal 
lesions, Location module employs the Faster RNN for focusing on the ROIs of esophageal 
lesions. (3) To accurately estimate esophageal lesion statuses and tackle the challenges of intra-
lesion differences and inter-lesion similarities, Classification module is designed for 
classifying four esophageal lesion types (Normal, Inflammation, Barrett, and Cancer). (4) To 
obtain accurate annotation at pixel level, Segmentation module is employed to automatically 
segment three lesion types (Inflammation, Barrett, and Cancer). 
 

                  


