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Summary 
New and improved neuroprosthetics offer great hope for motor-impaired human patients to 
regain autonomy. One obstacle facing current technologies is that fine motor control requires 
near-instantaneous somatosensory feedback. The way forward is to artificially recreate the 
rich, distributed feedback generated by natural movements. Here, we hypothesize that 20 
incoming sensory feedback needs to follow biomimetic rules in order to be efficiently integrated 
by motor circuits. We have developed a rodent closed-loop brain-machine interface where 
head-fixed mice were trained to control a virtual cursor by modulating the activity of motor 
cortex neurons. Artificial feedback consisting of precise optogenetic stimulation patterns in the 
primary somatosensory cortex coupled to the motor cortical activity was provided online to the 25 
animal. We found that learning occurred only when the feedback had a topographically 
biomimetic structure. Shuffling the spatiotemporal organization of the feedback prevented 
learning the task. These results suggest that the patterns of inputs that are structured by the 
body map present in the primary somatosensory cortex of all mammals are essential for 
sensorimotor processing and constitute a backbone that needs to be considered when 30 
optimizing artificial sensory feedback for fine neuroprosthetic control. 

 

Keywords 
Brain-machine interface, cortical map, topography, motor, somatosensory, barrel cortex, 
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INTRODUCTION 
Accurate limb control requires somatosensory feedback. Local peripheral anesthesia blocking 
afferent tactile sensation in human participants reduces dexterity and impairs fine motor 
control of the hand (Johansson and Westling, 1984; Monzée et al., 2003). Similarly, cortical 
inactivation of somatosensory cortex in animals has profound effects on motor control (Mathis 5 
et al., 2017; Brochier et al., 1999). The critical role of somatosensory feedback has also been 
obvious in studies of somatosensory-deficient patients, who learn to rely extensively on visual 
feedback, but can never regain normal movements (Chesler et al., 2016, Sainburg et al., 1995, 
Miall et al., 2018).  

In the context of brain-machine interfaces, proprioceptive and touch-like feedback originating 10 
from the prosthesis could improve its control. Indeed, recent brain-machine interfaces that 
have incorporated an afferent somatosensory component have achieved faster prosthesis 
control (Flesher et al., 2019) and elicited texture-like percepts that cannot be obtained through 
visual feedback alone (O’Doherty et al., 2019). Thus, for building efficient brain-machine 
interfaces, a widespread hypothesis is that the feedback should convey somatosensory 15 
information about ongoing consequences of the motor control (Bensmaia and Miller, 2014). 
Such artificial tactile information can be provided through direct electrical activation of the 
cerebral cortex (Armenta Salas et al., 2018; O’Connor et al., 2013; O’Doherty et al., 2011; 
Romo et al., 1998; Tabot et al., 2013). However, recreating naturalistic sensations through 
cortical microstimulation raises important challenges.  20 

One major challenge arises from the fact that somatosensation is a distributed sense. Indeed, 
a percept often results from the integration of multiple inputs from touch sensors spread over 
large areas of the skin. According to the classical somatotopic representation, separate 
peripheral areas of the skin are processed by distinct cortical columns (Penfield and Boldrey, 
1937). To provide distributed feedback in the context of an invasive brain-machine interface, 25 
recent approaches have started to implement the stimulation of several locations in the 
somatosensory cortex (Flesher et al., 2016; Hartmann et al., 2016). Beyond the technical 
challenge, this raises the question of how to distribute sensory information onto the cortical 
surface. One approach, based on biomimicry, consists in using somatotopy to attempt to elicit 
percepts in locations distributed as during natural sensory experiences. Conversely, the 30 
adaptation approach states that animals can be trained to discriminate non-naturalistic 
patterns of cortical stimulation, thanks to the plasticity of cortical networks (Bensmaia and 
Miller, 2014). 

Here, we hypothesize that biomimetic patterns of cortical feedback stimulations are more likely 
to be integrated in a brain-machine interface, compared to shuffled patterns of feedback. We 35 
tested this hypothesis directly by training mice to control a one-dimensional cursor with motor 
cortex neuronal activity, while receiving on-line one of several patterns of cortical feedback. 
This direct input was delivered intracortically by photostimulating the representation of 
whiskers in the primary somatosensory cortex (S1). This cortical area exhibits a particularly 
manifest topography, with anatomical structures named barrels corresponding to whiskers on 40 
the snout of the animal. Mice were able to learn the task only in a biomimetic feedback 
condition, when the sensory inputs followed naturalistic patterns, but could not learn it if the 
sensory feedback was spatially shuffled or if no feedback was provided. 
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RESULTS 

Optogenetic S1 feedback enables learning in a closed-loop brain-machine interface 
We trained mice to solve a cortical closed-loop brain-machine interface task. Neuronal activity 
was recorded in layer 5 of the primary motor cortex (M1) with chronically implanted silicon 
tetrodes (Figure 1A-B, Figures S1, S2). Specifically, mice had to modulate online the summed 5 
firing rate of three neurons recorded simultaneously (Master neurons) to control the location 
of a virtual cursor among eight possible positions (Figure 1C, Figure S3). When the cursor 
was in the rewarded position (either position 4, 5 or 6, see Methods), the mice could obtain 
water by licking a reward port. If the mice licked when the virtual cursor was outside of the 
rewarded position, no water was provided but no punishment schedule was imposed neither.  10 

 

 

 

 
Figure 1. Mice control a virtual cursor with motor cortex activity with online sensory feedback 15 
delivered to somatosensory cortex.  
(A) Closed-loop setup combining chronic extracellular recording in M1 and optogenetic feedback that 
targets the barrels in S1. 
(B) Tetrode recordings of baseline activity in M1, including spike shapes and autocorrelograms. Purple: 
Master neurons that are selected to control a virtual cursor. Gray: Neighboring neurons recorded 20 
simultaneously.  
(C) Top: Time histograms showing the activity of the 3 Master neurons (bins of 10 ms) Middle: Sum of 
the activity of the Master neurons. Bottom: Position of the virtual cursor obtained from the summed 
activity. The cursor must be in position 5 for the mouse to obtain a reward by licking.  
(D) Bar-like naturalistic photoactivation of the S1 barrels. Left: Schematic of the first photostimulation 25 
frame. P: posterior, M: medial. Right: Snapshots of the cortical surface illustrating biomimetic 
photostimulation frames for each cursor position. When the cursor is in position 5, licks are rewarded. 
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During the task, information about the current position of the virtual cursor was made available 
online through patterned optogenetic stimulation of S1. The mice, which expressed 
constitutively channelrhodopsin in pyramidal neurons (Emx-Cre;Ai27 strain, Madisen et al., 
2012), received photoactivation spots in different locations of the barrel field in the primary 
somatosensory cortex (S1). The feedback conveyed information about the current position of 5 
the cursor with a very short latency (12±5 ms, Abbasi et al., 2018). At each time point, the 
illumination pattern consisted of the simultaneous stimulation of five barrels, corresponding to 
the dorsoventral arcs of whiskers on the snout. Over time, the optogenetic stimulation 
mimicked the sequential deflection of whiskers that is produced when a vertical object moves 
across the mouse snout (Figure 1D) (Jacob et al., 2008; Vilarchao et al., 2018). Thus, the goal 10 
of the mouse was to adjust the activity of neurons in the motor cortex such as to bring the 
cursor to the rewarded position. This position was signaled to the animal by the feedback 
optogenetic frame, allowing the animal to lick the water spout to obtain water reward when 
that specific frame was on. 

 15 

 

 

 
 
Figure 2. Sensory feedback to the barrel cortex enables learning of a brain-machine interface 20 
task. 
(A) Example cursor position, licking, and reward time course during first (Session 1) and last (Session 
5) training sessions using the biomimetic feedback (Top) or no feedback (Bottom).  
(B, C) Frequency of rewards (B) and proportion of licks (C) that were rewarded during learning with 
biomimetic feedback (orange, 10 mice) versus no feedback (blue, 8 mice). **: p < 0.01. ***: p < 0.001, 25 
non-parametric Mann-Whitney tests. Shaded backgrounds: ± standard error of the mean (SEM). 
Disrupting the biomimetic structure of the feedback prevents learning  
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Mice were able to learn the task rapidly with this biomimetic cortical feedback. Figure 2A (Left) 
shows an example in which in the first daily 30-min session, the mouse licked occasionally, 
but because the cursor was rarely in the reward position during those licks, it obtained no 
water across the time interval displayed. In the fifth day training session, the same mouse 
started licking bouts at times when the Master neuron activity was high, and thus obtained 5 
rewards more frequently. Indeed, over the course of five training sessions, the frequency of 
rewards significantly increased more than ten times on average (from 0.014 to 0.19 rewards/s; 
orange curve of Figure 2B, Mann-Whitney U = 5, p < 0.001, n = 10 mice). In contrast, in the 
absence of optogenetic feedback, mice failed to reliably increase the frequency of rewards 
despite the same amount of training (0.025 vs 0.022 rewards/s; example in Figure 2A bottom; 10 
blue curve in Figure 2B, Mann-Whitney U = 31, p = 0.48, n = 8 mice among the 10 tested in 
the biomimetic condition). 

The increase in reward frequency in the biomimetic feedback condition was accompanied by 
an increased proportion of licks that were rewarded (Figure 2C, Mann-Whitney U = 1, p < 
0.001). This indicated that the mice did not simply increase their licking frequency irrespective 15 
of the cursor position in order to solve the task. We conclude from this data that sensory 
feedback to the barrel cortex is required for learning this brain-machine interface task in five 
daily training sessions. 

 

 20 

Figure 3. Learning relies on biomimetic topographic feedback.  
(A) Left: Schematic of the first shuffled photostimulation frame. Right: Snapshots of the cortical surface 
illustrating the shuffled photostimulation frame for each cursor position.  
(B) Mean reward frequency across training sessions with biomimetic (orange, 10 mice) and shuffled 
(green, 8 mice) feedback.  25 
(C) Same as (B) for percentage of rewarded licks.  
(D) Learning curves for two different orders of presentation of the three protocols: biomimetic (orange), 
shuffled (green) and no feedback (blue). *: p < 0.05. Mann-Whitney non-parametric tests. Individual 
data points are overlaid. For panels B-D, shaded backgrounds: ± SEM. 
 30 
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Our results showed that the mice could learn the task with biomimetic optogenetic feedback. 
However, any arbitrary feedback encoding the position of the virtual cursor might suffice to 
improve task performance. To test this possibility, we trained mice in an additional protocol in 
which the feedback still carried the online information about the cursor position among the 
eight possible positions, but where the biomimetic structure of the feedback was spatially 5 
scrambled (Figure 3A, shuffled feedback, 8 mice among the 10 tested in the biomimetic 
condition). In this condition, mice failed to learn the task, an impairment measured both in 
terms of reward rate (green curve in Figure 3B, Mann-Whitney U = 5, p = 0.095) and proportion 
of rewarded licks (Figure 3C, Mann-Whitney U = 28, p = 0.36). Thus, we conclude that a 
biomimetic topographic feedback was required for learning the task. 10 

The order of the three training conditions (biomimetic, shuffled and no feedback) might have 
had an impact on the learning performance of the animals. To investigate this, we separated 
the six mice trained on all three protocols into two sets of three mice, which were trained 
according to two different orders (a and b, Figure 3D). Irrespective of the protocol order, 
significant learning was observed only in the biomimetic feedback condition (Mann-Whitney U 15 
= 0, p = 0.04). We conclude that the training order did not impact the learning process, and 
that it is indeed the naturalistic properties of the biomimetic feedback that optimized the 
learning. 

Biomimetic feedback allows accurate motor control 
In order to control the virtual cursor accurately, Master neurons in M1 need to adapt their 20 
activity on the basis of the incoming sensory feedback from S1, pooling information spread 
over several barrels in S1. This online integration by Master neurons could be particularly 
impacted by the topographical layout of the sensory patterns, notably through nonlinear 
integration across time as the cursor progresses towards the reward zone. We hypothesize 
that the naturalistic shift of the optogenetic patterns on the cortical surface of S1 in the 25 
biomimetic condition could lead to an optimal integration of the feedback by Master neurons 
in M1. This would involve an effective modulation of their activity, leading to more accurate 
cursor dynamics. Note that because of the closed-loop design with very low latencies, the 
cursor position and the activity of Master neurons display parallel dynamics. To investigate in 
more depth the cellular mechanisms at play in M1 during learning, we analyzed these 30 
dynamics in time and in relation to reward and licking activity. 

First, consistent with our hypothesis of differential integration across feedback conditions, we 
observed significant differences in the neuronal activity between the biomimetic and shuffled 
conditions, and in particular an increase of the standard deviation of Master neurons’ firing 
rate, exclusively in the biomimetic feedback condition (Figure S4A-B). This increase was not 35 
present in simultaneously recorded neighbor neurons. It was accompanied by a significant 
increase of the total time spent by the cursor in the rewarded position, from 2.4% in the first 
session to 3.9% in the fifth one (Mann-Whitney U = 10, p = 0.037, n = 6 mice), which was not 
present for shuffled stimulations (1.1% to 1.7% from first to fifth session, Mann-Whitney U = 
10, p = 0.13, n = 6 mice). 40 

The increase in time spent in the rewarded position could result either from a higher variability 
of mean firing rate (and thus of cursor position) distributed randomly across time, or from an 
improved neuronal control of the cursor, as seen on the example of Figure 2A. To test this, 
we focused at a finer time scale on cursor movements (resulting from modulation of the firing 
rate of neurons in the motor cortex) that took place just before a rewarded lick. In the 45 
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biomimetic feedback condition, one second before the lick, the cursor was significantly closer 
to the reward position after learning compared to during learning (Figure 4A). The cursor then 
moved up progressively until it reached the reward position. These smooth dynamics, which 
were not present when the feedback patterns were shuffled, suggest that the animal learnt to 
actively control the cursor across time. Furthermore, we observed a significant increase of the 5 
mean duration spent in the reward position once entered, from 139 ms to 246 ms in a 2 s 
window around reward time (Figure 4B). This confirmed the better control of neuronal activity 
of Master neurons and consequently of the cursor rather than just a random increase in the 
variability of mean firing rate. The more accurate control of Master neuronal activity resulted 
in more opportunities to receive rewards. 10 

 

 
 
 
 15 

 
 
Figure 4. Learning with biomimetic feedback shapes cursor dynamics and licking behavior.  
(A) Trajectory of the cursor aligned to the reward time, averaged across the 6 mice where position 5 
was rewarded, in the shuffled (Left) and the biomimetic (Right) conditions. Dark colors: session 3. Light 20 
colors: session 5. Shaded backgrounds: ± SEM. **: Mann-Whitney, p < 0.01, comparing average firing 
rates in a 1s window (Gray bar). We compared session 5 to session 3 due to the lack of rewards in 
sessions 1 and 2.  
(B) Average time spent by individual mice in the rewarded cursor position. **: Mann-Whitney, p < 0.01 
(n = 6 mice). 25 
(C) Example behavior. Gray dots: licks. Black: onset of lick bursts. Purple dots: times of entry of the 
cursor in the rewarded position. To avoid confusion, rewarded licks are not highlighted.  
(D) Population average time histogram of the number of entries of the cursor in the rewarded position 
around the onset of all lick bursts, for the biomimetic feedback condition, across the five training 
sessions (n = 10 mice). Baseline levels were shifted upward for clarity. 30 
(E) Percentage of licks bursts that are synchronous (within ± 100 ms) with entry of the cursor in the 
rewarded position. Orange: biomimetic (n = 10 mice); Green: shuffled (n = 8); Blue: no feedback (n = 
8). *: Mann-Whitney, p < 0.05. **: p < 0.01. Shaded backgrounds: ± SEM. 
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In order to obtain rewards, the animal needed to time its licking activity to the availability of 
reward, that is, to entries of the cursor in the reward zone. Indeed, lick patterns evolved during 
the course of training (see example in Figure 2A). We first quantified average licking statistics 
across sessions. Whereas the licking rate was not reliably modified, we observed a 
significantly increased variability of lick patterns during biomimetic feedback learning (Figure 5 
S4C-D). We wondered if, in combination with changes in the cursor dynamics, this led to a 
better synchronization of licks with the reward position, as in the example illustrated in Figure 
4C. We computed time histograms of the entries of the cursor in the rewarded position, aligned 
on the onsets of lick bursts (Figure 4D). In the initial sessions of learning there was no 
synchrony between licking and cursor dynamics (bottom brown curve). By session 5, the 10 
animal learnt to generate licking bouts starting on average just after the entry of the cursor in 
the reward zone (top orange curve). We quantified the peaks of these histograms by 
measuring the proportion of all lick burst onsets that occurred in synchrony (± 100 ms) with an 
entry in the rewarded position (Figure 4E). This proportion increased significantly across 
sessions in the biomimetic condition (Mann-Whitney U = 11, p = 0.002, n = 10) but not in the 15 
shuffled condition (Mann-Whitney U = 27, p = 0.32, n = 8) nor in the no-feedback condition 
(Mann-Whitney U = 23, p = 0.19, n = 8). Together, these results show that the animal 
progressively learns to control the activity of motor neurons, and consequently to move the 
cursor towards the reward zone and start a lick burst just after. 

 20 

 

Figure 5. Decoupling cortical stimulation from motor activity impairs performance.  
(A) Open-loop configuration with chronic extracellular recording in M1 and optogenetic stimulation on 
barrels in S1. 
(B) Top, time histogram of Master neurons activity during a playback session (bin = 10 ms). Bottom, 25 
cursor position, licking, and reward time course during the same time interval.  
(C) Frequency of rewards during the last session with closed-loop biomimetic feedback and the session 
with open-loop playback. *: Mann-Whitney, p < 0.05. Gray background: SEM. n = 3 mice.  
(D) Average histogram of the times of entry of the cursor in the rewarded position around the onset of 
lick bursts, for the last session with closed-loop biomimetic feedback and the session with open-loop 30 
playback. 
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Sensory feedback by itself is not sufficient to trigger licking 
Our data show that animals learnt to generate licking bouts around times when the cursor 
entered the rewarded zone. As emphasized already, in the closed-loop configuration, this 
corresponds to periods of high Master neurons activity. Thus, we wondered whether the mice 
learnt to associate reward with increased M1 activity, or whether they learnt to detect the 5 
optogenetic pattern signaling reward availability. To test this, we carried out a "playback" 
session on three mice that had already learnt the full closed-loop task in which M1 activity and 
optogenetic feedback were decoupled. The mice received the same optogenetic stimulation 
sequence as in their last session with biomimetic feedback, and could still receive rewards by 
licking when the cursor was in the rewarded position. However, the cursor dynamics was now 10 
independent of the ongoing activity of motor cortex neurons. In other words, the animals were 
relieved of the motor control aspect of the full task (Figure 5A-B).  

Interestingly, the number of rewards per second dropped significantly for each mouse in the 
playback condition (Figure 5C) even though by design, the cursor was as much in the 
rewarded position as during the biomimetic last session. Analysis of the synchrony between 15 
licking onsets and the entries of the cursor in the rewarded position revealed that these events 
were not coordinated anymore (Figure 5D). From these results, we conclude that the mice did 
not simply learn to detect the rewarded pattern of optogenetic stimulation. Rather, they learnt 
to combine both motor control of the cursor and integration of sensory information about its 
current position to solve the task.  20 

 
DISCUSSION 
We have shown that sensorimotor integration of artificial feedback stimulations in the context 
of a cortical brain-machine interface requires a specific spatiotemporal organization of the 
feedback. Specifically, we found that a biomimetic bar-like stimulation of the barrel cortex 25 
could be efficiently integrated by a mouse in order to learn a sensorimotor task. By contrast, 
a shuffled version of the stimulation, or absence of feedback altogether, prevented learning.  

A fast BMI setup for the mouse 
Current research aimed at integrating somatosensory feedback in a cortical brain-machine 
interface relies on invasive techniques of recording and stimulation in awake behaving 30 
animals. Pioneering teams are developing prototypes in non-human primates as well as 
human participants (Flesher et al., 2019; O’Doherty et al., 2019). Here, we have developed a 
novel brain-machine interface tailored to the mouse whisker system, a sensorimotor loop that 
has been described in a very comprehensive way, from the cellular to the network scale 
(Diamond and Arabzadeh, 2013; Petersen, 2019). This approach has allowed us to take 35 
advantage of recent optogenetic tools available for these animals. Thus, we could activate 
excitatory neurons in the cortex according to spatial light patterns that were adapted, in each 
individual mouse, to the topographic map of its whiskers present in S1. Furthermore, we 
benefited from our very low-latency (10-15 ms) closed-loop design which enables the delivery 
of feedback online in a dynamic way, that is, while the animal is controlling the movement of 40 
the virtual bar. Indeed, a low-latency somatosensory feedback could be an important 
parameter for optimal sensorimotor learning (Scott, 2016). 

Impact of somatosensory feedback on neuroprosthetic learning 

The main result of our study is that learning to control the one-dimensional cursor using motor 
cortex activity could be achieved over five sessions only when somatosensory feedback was 45 
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provided (biomimetic vs. no-feedback conditions, Figure 2B-C). The direct cortical feedback 
was updated continuously every 10 ms throughout the 30-min sessions. Our results agree 
with previous studies emphasizing the prevalent role of ongoing sensory feedback in motor 
learning (Johansson and Flanagan, 2009; Scott, 2016), extending it to neuroprosthetic 
learning. The animals did not only learn to detect a target, but used the feedback to shape the 5 
cursor trajectory over time, demonstrating sensorimotor control (Figure 4). 

Importantly, our experimental design did not incorporate a physical implementation of the 
cursor to be moved by the animal towards the target. Instead, the cursor remained virtual, its 
dynamics being used only to calculate feedback. This choice ensured that the optogenetic 
feedback delivered to S1 was the sole source of sensory information about the cursor position 10 
available to the animal during the task. This is in contrast to most previous closed-loop BMI 
studies, in which ongoing visual feedback of the neuroprosthesis was always available for 
adjusting motor control (Flesher et al., 2019; O’Doherty et al., 2019). Yet in a recent study, 
mice were trained to condition motor cortex neurons in an operant way while receiving rate-
modulated pulses of optogenetic stimulation in S1, in the absence of visual information (Prsa 15 
et al., 2017). After several days, the animals learned to increase the activity of single neurons 
to obtain reward. Once this behavior was learnt, the animals could still retrieve rewards upon 
detection of high rates of optogenetic pulses during playback sessions, when motor control 
was not necessary anymore. This result is at odds with our own findings, in which the mice 
were unable to maintain their reward rate during the playback sessions (Figure 5). This 20 
discrepancy could come from the learning conditions: in the study by Prsa and collaborators, 
mice did not have to initiate licking to receive reward during learning. This may have 
contributed to decouple the sensory detection and motor control aspects of the task. Another 
possibility is that the rich spatiotemporal feedback that we used favored distributed 
sensorimotor circuits integrating information over large areas of S1, whereas the single-25 
channel feedback of the above study involved a more restricted set of neurons that became 
more strongly linked with reward consumption mechanisms. 

Biomimetic somatosensory feedback is required for neuroprosthetic learning  
We show for the first time that sensory feedback about the current state of a BMI device, 
provided directly onto the cortex, should obey spatiotemporal rules of organization of natural 30 
input (biomimetic vs. shuffled conditions, Figure 3B-C). In the two conditions, the animal could 
in theory decode the current position of the cursor from the activation pattern on the cortex. 
However, only when the sequence of stimulation mimicked that of a bar sweeping across the 
whiskers, was the animal able to use the information in order to learn to move the cursor 
progressively and obtain reward. This finding suggests that the sensorimotor task of driving 35 
the cursor to the target draws upon pre-existing features of S1-M1 microcircuits linked to their 
topographic organization (Ferezou et al., 2007). When the topography of the feedback is 
shuffled, the functional architecture of the cortex is not adapted anymore to the novel 
sensorimotor computations to be performed. Learning the shuffled task probably requires 
establishing novel functional connections between sensory input and motor output patterns. 40 
We hypothesize that in the shuffled conditions, plasticity mechanisms could allow learning to 
take place on a longer timescale, supposing that the required connections can indeed be 
achieved given the existing anatomical scaffold (Fu and Zuo, 2011).  

The fact that S1 could not readily adapt to arbitrary patterns of stimulation is in contrast with 
our results on the motor component of the brain-machine interface. Indeed, consistent with 45 
previous publications (Arduin et al., 2013, 2014; Fetz, 1969; Moritz et al., 2008; Prsa et al., 
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2017), we found that a few arbitrarily selected M1 neurons could be conditioned in an operant 
way to learn to control the cursor along one dimension. This difference, between the necessity 
of biomimetic patterns on the sensory side, and the adaptability of the neuronal networks on 
the motor side, could have several explanations. One is that we used mesoscale patterns to 
encode sensory feedback, encompassing large numbers of neurons and connections. Plastic 5 
reorganization at this scale could be much more difficult to induce than when targeting only 
one or a few neurons. Indeed, there is evidence that as the number of neurons controlling 
motor brain-machine interfaces increases, it becomes necessary to take into account their 
initial functional connections in order to learn to control the prosthesis rapidly (Athalye et al., 
2017; Oby et al., 2019; Sadtler et al., 2014). Another possibility is that primary sensory cortical 10 
circuits would be less plastic than motor ones during motor skill learning (Papale and Hooks, 
2018). Future experiments will need to address these questions.  

Functional role of the S1 somatotopic map  
So far, the contribution of cortical maps to sensory information processing in general has 
remained unclear (Kaas, 1997), despite the thorough descriptions of the maps in primary 15 
sensory cortices. In the case of the barrel cortex, several of the functional properties encoded 
by its neurons are spatially organized inside the map beyond spatial topography (Andermann 
and Moore, 2006; Kremer et al., 2011; Simons, 1978). For example, rodent S1 neurons can 
be selective to several multi-whisker features such as correlation between whisker movements 
(Estebanez et al., 2012) and global motion across the snout (Jacob et al., 2008). Correlation 20 
selectivity is distributed along a specific gradient from the center of barrels to the septa 
between barrels (Estebanez et al., 2016), while global motion selectivity obeys a supra-barrel 
organization (Vilarchao et al., 2018). The large-scale organization of feature encoding would 
be favored because of the dense lateral connectivity inside S1, enabling distributed cortical 
computations (Feldmeyer, 2012). Through this rich anatomical substrate, non-linear 25 
spatiotemporal integration in S1 results in enhanced responses to some input patterns, and 
suppression of responses to other patterns (Estebanez et al., 2012). However, so far, these 
feature extraction properties have not been causally linked to behavior.  

Our results shed light on the functional role of topography of the somatosensory cortical map 
in the behaving animal, by testing causally the impact of different patterns of sensory input, 30 
and in particular by comparing biomimetic versus arbitrary patterns. In our study, mice had to 
detect patterns of stimulation projected onto a large area of S1. Only biomimetic 
spatiotemporal feedback patterns enabled the animal to use the information about the cursor 
position in order to solve the task. In these conditions, the expected integration of information 
across barrels could drive the activity of Master neurons in the motor cortex. Hence, our results 35 
suggest that the somatotopic organization of S1 plays a critical role in sensorimotor 
integration. 

Current BMI prototypes require long training and lack precision and flexibility, probably 
because they lack the appropriate somatosensory feedback (Bensmaia and Miller, 2014). 
From our results, we propose that feedback strategies based on intracortical stimulation 40 
should obey the known topography of somatosensory areas. We hope that unveiling such 
fundamental constraints of neuronal circuits will enable the development of a new generation 
of BMIs, incorporating rich proprioceptive and tactile feedback essential to achieve dexterity 
and embodiment. 

 45 
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METHODS 

Mouse preparation 
All animal experiments were performed according to European and French law as well as 
CNRS guidelines and were approved by the French ministry for research (ethical committee 
59, authorization 858-2015060516116339v5). The data were obtained from 10 adult (6-10 5 
weeks old) Emx1-Cre;Ai27 mice. Detailed procedures for bidirectional cortical interfacing of 
the mice were described previously (Abbasi et al., 2018). Briefly, all surgeries were performed 
under isoflurane anesthesia (1%–4% Isoflurane depending on mouse state, assessed by 
breathing rate and response to tail pinch), in 100% air. For each mouse, during a first surgery, 
a 5 mm glass optical window was implanted over the left primary somatosensory cortex (S1, 10 
P-1.5 mm and L-3.3 mm, from bregma) and a head-fixation bar was implanted on the 
contralateral side of the skull. Eight days later, intrinsic imaging was performed during 
mechanical deflection of at least 3 individual whiskers to locate a subset of barrels in the barrel 
cortex. In the following days, a second surgery was performed to chronically implant (Okun et 
al., 2016) a 32 channel silicon probe (A1x32Poly35mm25s 177A32, Neuronexus, USA) in the 15 
whisker zone of the motor cortex (M1, A1.5 mm L0.6 mm from bregma, electrode recording 
sites 650 – 800 µm deep in cortex).  

Neuronal electrophysiological recordings 
Following the surgery, mice were monitored during 5 days to ensure stability of the shape and 
amplitude of the units isolated by the online spike sorting (Blackrock microsystems, USA). 20 
Clusters corresponding to well-defined single units (consistent spike shape and adequate 
autocorrelogram, Figure 1B) were manually selected within the tetrode spike amplitude space. 
This manual selection was controlled before each session to ensure that we maintained unit 
separation while keeping track of the same units across sessions (Figure S1). Once units were 
selected, the training session was initiated and individual spikes were sorted according to the 25 
pre-defined clustering. At the start of the training sessions, we recorded a median of 25.5 
neurons simultaneously (interquartile range [IQR]= 5.25 neurons, n = 10 mice). After 17 days 
(average last training session) we recorded a median of 25 neurons (IQR = 16 neurons, n = 
10 mice). 

Brain-machine interfacing 30 
Among the recorded units of each mouse/session, a set of 3 putative pyramidal neurons – the 
Master neurons – were selected by the operator. In the first two mice, we initially enrolled 7 
neurons. Their summed activity was then convolved with a 100 ms box kernel and its value 
determined the position of a virtual cursor. Mice were required to control the position of the 
cursor to solve the task. To do so, the values of the summed firing rate of the Master neurons 35 
were recorded during the first 3 minutes that preceded the start of the session. A threshold 
was set at the 99th percentile of theses baseline activity values, and the activity space from 0 
up to this threshold was split in 7 equal positions, with an extra 8th position for values above 
the 99th percentile threshold. For six mice, the 5th position was rewarded, which means that 
whenever the cursor was inside that position and the mouse simultaneously licked, it obtained 40 
a 5 µL water drop (Figure S3). For the other six mice, either the 6th or the 4th position was 
rewarded. These mice were included in all analyses except the quantification of cursor 
trajectory around cursor position 5 (Figure 4A-B). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2020. ; https://doi.org/10.1101/2019.12.12.873794doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.873794
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 
 

If the recording of one neuron was lost during the training, the active Neighbor neuron with the 
largest spike shape was enrolled to replace it. If no additional Neighbor neuron was available, 
the experiment kept going with a reduced count of Master neurons, down to two neurons in 
one mouse. 

Optogenetic photostimulation of somatosensory cortex 5 
Each cursor position was associated with a specific feedback pattern that was projected onto 
the barrel cortex of the mice using a Digital Light Processing module (DLP, Vialux V-7001, 
Germany). The DLP contained a 1024 x 768 pixels Texas Instruments micro-mirror chip, which 
was illuminated by a high-power 462 nm blue LED. The image stream generated by the device 
was focused onto the cortical optical window using a tandem-lens macroscope (Ceballo et al., 10 
2019). This device was used to send homogeneous light spots, 200 µm in diameter, centered 
onto the barrel locations for the mouse strain/age that we used (Abbasi et al., 2018). A set of 
reference barrels (at least 3) that were located during the mouse preparation via intrinsic 
imaging were used to align a standard barrel map (Knutsen et al., 2016). We used three 
different sets of feedback frames to obtain the 3 conditions we tested: biomimetic (Figure 1D), 15 
shuffled stimulations (Figure 2A), and finally a condition where no photostimulation was 
displayed (black frames). 

Behavioral training 
Mice were first habituated to head-fixation (1 session). Then, they were water deprived and 
learned to lick for water from a reward tube in front of their mouth (1-2 sessions) (Guo et al., 20 
2014). Finally, the mice were trained on the 3 different feedback conditions for 5 sessions (1 
session/day). Training sessions lasted 30 minutes each. Mice were checked daily for weight 
and extra water/food intake was provided as needed to stabilize the weight at 80% of their 
initial value. 

Offline spike sorting 25 
Offline extraction of neuronal activity was performed using SpyKING CIRCUS (Yger et al., 
2018). We confirmed that each online sorted Master unit was properly spike sorted by 
matching it with a specific offline-sorted unit, by comparing spike shapes and amplitudes 
across tetrodes. All additional, non-Master offline-sorted units were labeled as Neighbor units. 

Data Analysis 30 
All statistical tests are non-parametric, two-sided Mann-Whitney tests. In Figures 1 and 2 all 
licks are taken into account. In Figure 3E, lick bursts are defined as series of licks where the 
inter-lick interval is smaller than 200 ms. 

Intracortical microstimulation (ICMS) experiments 
To confirm that the electrodes were located in the motor cortical area, we performed ICMS at 35 
the end of the behavior sessions (n = 3 mice, Figure S2). We injected bipolar current pulses 
(amplitude 21 μA/channel, duration 1.4 s, frequency 60 Hz) through the 32-channel 
Neuronexus silicon probe implanted in M1, in awake head-fixed animals. The contralateral 
whiskers were imaged using a high-speed videography (camera – Baumer HXc-20, lens – 6 
mm, F/1.4) at 300 frames per seconds for a duration of 9 s. A single trial consisted of 5 s pre-40 
ICMS videography, followed by 1.4 s during ICMS stimulation and finally 2.6 s post-ICMS. 
This procedure was repeated 14 times during a single session of ICMS experiment, with a 1 
s inter-trial delay. In the ICMS videos, a central whisker was identified amongst all the whiskers 
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in the field of view, and tracked using the automated video tracking software DeepLabCut 
(Mathis et al., 2018). The amplitude of ICMS-evoked whisker movement was defined as the 
mean whisker angle during the first 1 s of stimulation versus the 1s immediately before. 
Latency of whisker movement was measured at the first frame with significant whisker 
movement amplitude (2 standard deviations above the mean). 5 

Histology 
After the experiment, mice were deeply anaesthetized with isoflurane (4-5%) and 
pentobarbital, then exsanguinated and perfused with 4 % paraformaldehyde (PFA). The brains 
were extracted and stored overnight in 4% PFA. The brains were then transferred to a solution 
of phosphate-buffered saline for at least 24 hours before 50 µm slices in the coronal plane 10 
were cut and stained for cytochrome C oxidase. The location and depth of the silicon probe in 
the brain were traced by DiI depositing on the electrodes prior to their implantation and by 
looking afterwards at the fluorescent dye present in the histological slices (Figure S2A). 
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Supplementary Figure 1. Stability of the recorded neurons. (A) Spike shape of a neuron recorded 
through the four contacts of a tetrode, overlaid over 22 sessions (1 session/day). (B) Average 
distribution of the count of sessions where the same unit could be identified in the recording, for all units 5 
included in the dataset (n = 10 mice). Shaded background: standard error of the mean. 
  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2020. ; https://doi.org/10.1101/2019.12.12.873794doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.873794
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

 
Supplementary Figure 2. Localization of the implanted silicon probes in whisker M1. (A) Coronal slice 
(50 μm thick) of a mouse brain, stained for Cytochrome oxidase. DiI coating of the shanks prior to 
insertion resulted in fluorescent lines indicative of the location of single shanks (yellow tracks) that 
confirm the location of the silicon tetrode array in M1 (white arrow). (B) The amplitude of angular 5 
movements of a contralateral whisker evoked by ICMS stimulation through the silicon probe (average 
of 3 mice) confirms that the electrode was located in M1 (see Methods). Shaded background: standard 
error of the mean. 
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Supplementary Figure 3. Definition of the firing rate limits of the positions of the cursor. (A) Example 
distribution of the firing rate during the 3 min baseline at the start of a session. Positions correspond to 
equal firing rate intervals. Position 1 starts at 0 Hz firing rate. The transition between cursor positions 7 
and 8 is set at the 99th percentile of the firing rate distribution. (B) The 99th percentile of the firing rate 5 
(averaged across mice) did not significantly evolve over training sessions (n.s.: Mann-Whitney p value 
> 0.05). Shaded background: +/- SEM. 
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Supplementary Figure 4. Firing statistics of Master and Neighbor neurons, and licking statistics, during 
closed-loop learning. (A) Average firing rate across all mice of Master (continuous line) and Neighbor 
neurons (dashed line) over 5 training sessions, during the biomimetic (orange), shuffled (green) and 
no-feedback (blue) conditions. Shaded background: +/- SEM. (B) Same as (A) for the standard 5 
deviation of the firing rate (measured over 1 s windows). (C) Average licking rate over sessions. (D) 
Average standard deviation of the licking rate (measured over 1 s windows). All tests: Mann-Whitney. 
*: p < 0.05. 
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