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We analyse the dynamics of fishing vessels with different home ports in an area where these vessels, in
choosing where to fish, are influenced by their own experience in the past and by their current observation
of the locations of other vessels in the fleet. Empirical data from the boats near Ancona and Pescara shows
stylized statistical properties that are reminiscent of Kirman and Föllmer’s ant recruitment model, although
with two ant colonies represented by the two ports. From the point of view of a fisherman, the two fishing
areas are not equally attractive, and he tends to prefer the one closer to where he is based. This piece
of evidence led us to extend the original ants model to a situation with two asymmetric zones and finite
resources. We show that, in the mean-field regime, our model exhibits the same properties as the empirical
data. We obtain a phase diagram that separates high and low herding regimes, but also fish population
extinction. Our analysis may have interesting policy implications for the ecology of fishing areas.

I. INTRODUCTION

A problem of general interest is that of the individual and collective exploitation of a resource. Depending
on the particular context, the dynamics can be very different. A crucial factor is the effect of the behaviour of
individuals on the collective outcome. In financial markets for example, the decision to buy may enhance the
value of the resource for others as the price of an asset may increase as the demand for it grows. This positive
feedback can lead to “herd behaviour” and to creation of “bubbles”. If, on the other hand, the resource is in
fixed supply or can only generate a limited flow, as in the case of agricultural production, over exploitation can
lead to its exhaustion when individuals do not take account of the overall consequences of their actions. This
leads to what has been called “The Tragedy of the Commons” in [1].

In this paper we use a version of a model which was developed in the context of financial markets but we
modify it to look at a problem of exhaustible resources, in particular that of fisheries. There is a substantial
literature on fishing management which analyses the causes of over exploitation and the behaviour that leads
to this. Much of that literature was based on understanding the strategies that individual boats use to decide
when and where to fish. The simplest idea is that the individuals base their decisions on Catch per Unit Effort
(CPUE), see [2]. This suggests that boats fish until their catch falls below a certain threshold and then move
on. This is a purely individualistic model and argues that past individual experience is an adequate basis for
decision making. Two questions arise here. Firstly, can one deduce the aggregate behaviour from the observed
behaviour of individual vessels, and secondly, does the behaviour of other vessels influence the choices of a
particular boat? The answer to the first question lies in the development of satellite technology which allows
individual vessels to be identified and followed; this information provides a basis for analysing the individual
and collective behaviour of fishing fleets. It is, of course, known that vessels do not act in total isolation and
a model using tracking data for New Zealand fisheries was, for example, studied in Ref. [3]. This came to
the conclusion that “there is evidence that vessels make decisions about where to fish based on both their
own recent catch history and on observation about the location and aggregation of other vessels. There is no
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evidence that there is enough information transfer for vessels to make decisions on the basis of catch rates of
the other vessels in the fleet”. What was suggested was that while the influence of other players is taken into
account, because of the limited information about the performance of other vessels it may not be the major
driving influence for collective behaviour.

However, a more radical approach, abandoning a simple optimization approach had been developed earlier
by Allen and McGlade [4]. They developed models in part based on the Lotka-Volterra equations which already
incorporated recent advances in the understanding of the evolution of complex systems. They studied herd
behaviour and simulations of a dynamic model of a Nova Scotia fishery. Their analysis revealed that human
responses amplify rapid random fluctuations in recruitment and excite strong Lotka-Volterra type oscillations
in a system that would normally settle to a stable stationary state. Their dynamic, multi-species, multi-fleet
spatial model was calibrated to the Nova Scotian groundfish fisheries. They examined the role of “exploration”
and “exploitation”. They identified two types of hunters, “stochasts” or high-risk takers, and “cartesian” fol-
lowers, or low risk takers. The result of the interaction between the two reveals, as they say, “the ‘out of phase’
relationship between abundance and the ease with which fishermen locate a highly sought species and its con-
verse”. They emphasize, contrary to more conventional analysis, “the importance of information exchange in
defining the attractivity of a particular fishing zone to different fleets and the ability of the model to take into
account coded information, misinformation, spying and lying; and the fact that models based on global princi-
ples, such as ‘optimal efficiency’ or ‘maximum profit’, are clearly of dubious relevance to the real world.” The
crucial difference between this and the work previously cited is that much more weight is given to information
about the activity of others and the content of the messages about that activity is assumed to be much richer.

Our approach is in this spirit and is based on a model in which agents are “recruited” to a source of profit
by those already benefiting from that source. The actors follow simple rules but their interaction can produce
interesting dynamics. A related approach by computer scientists [5] suggested that the result might be that
of a uniform distribution across the space in which the resource is found. We show that, depending on the
weight given to the behaviour of others, vessels can typically operate near to their home port with occasional
excursions to another area, but that changing the parameters of the model can lead to a persistent mixing of the
two fleets with some boats from each area fishing in the other area. Since what is important is the probability
that a boat follows others, the distribution of the boats over the two areas is determined by a stochastic process.
This recalls a result of Allen and McGlade in which the survival of the fishery was dependent on the existence
of some vessels which chose the place to fish at random and, as in many models of interaction, a degree of
randomness may make an important contribution to the overall dynamics of the system.

The paper is organised as follows. In Section II, we present an overview of the data used in this article and
introduce all relevant definitions. Section III introduces a model intended to reproduce the main stylized facts
present in the data. The model is developed in Section IV using simplifying assumptions that are justified by
numerical simulations. Finally, in Section V, we discuss further consequences of the model and in particular
the different collective “phases” that describe the aggregate behaviour of fishing vessels.

II. EMPIRICAL FISHING DATA

As mentioned above, while applicable to a wider range of situations, our work was originally inspired by
imitation and herding effects in fishing areas. Here we present the data we use together with some stylized
facts, both quantitative and qualitative.

A. Description of the data

We use the Fishing Vessels Dataset from Global Fishing Watch [6] from Octobre 2012 to December 2016.
Since our aim is to analyse the behaviour of fishermen seeking to exploit clearly distinguishable fishing areas,
we geographically focus on the Adriatic Sea and specifically on the area encompassing the Italian cities of
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Ancona and Pescara in which two of the largest fishing harbours and fish markets are situated (see for example
[7] for a detailed study and description of the Ancona fishing market).1 The two cities are separated by a
reasonable distance of about 150 km, meaning that boats based in one city can easily find themselves fishing
close to the other. Further, the existence of large and comparable fish markets in both cities hints at the
possibility of matching fishing activity to market data, provided of course one has access to the latter. Note
that while another city, San Benedetto del Tronto, lies between Ancona and Pescara, it is responsible for a
rather negligible amount of the activity in the area.

We have also restricted our analysis to the behaviour of trawlers. These boats have a low cruise speed and
fish in shallow waters close to the coast. A reasonable hypothesis, which we have confirmed with the local
market authorities, is that trawlers fishing in the area are based in either one of the two cities and go out for
a short amount of time before coming back to sell their catch on the local market. In particular we were told
that, due to the policy of the market to sell fresh local fish, vessels (almost) always get back to the port after
24 hours. We were also told that while there is no ban for a boat registered in a given port to land their fish
elsewhere, this seldom happens.2 In other words, one expects trawlers based in, say, Pescara to leave port, fish
for a day and then come back to sell their catch.

The reduced data set consists of daily tracking of these trawlers, identified by their 9-digit Maritime Mobile
Service Identity (MMSI) number. Each vessel is tracked on a latitude-longitude grid with resolution 0.1.1
squared degrees. At Ancona and Pescara’s latitude (≈ 43◦ North), this implies a spatial resolution of ≈ 11×
8 km2 (latitude by longitude). Finally, a preliminary study of the data shows that there is a significant reduction
of fishing activity from Friday to Sunday, consistent with markets being open Monday through Thursday only.
We have thus dropped the former from our data set, keeping only trading days to ensure significant fishing
activity.

B. Defining fishing areas

To assign each trawler to its base port (Ancona or Pescara), we use the following heuristic procedure, which
we then cross-validate with MMSI data provided by the Ancona market authorities. We introduce the notations:

• hi(x , t) the time spent by trawler i fishing at grid-point x on day t,
• wi(x) :=

∑

t hi(x , t)/
∑

y,s hi(y, s), for the average fraction of time spent by trawler i fishing at point x ,

• dA(x) the distance between point x and Ancona, and d the distance between the two cities,
• d i

A :=
∑

x wi(x)dA(x), the average distance separating trawler i and Ancona when it is fishing,

• Di
A :=

∑

x wi(x)[dA(x)]2, the average square distance between trawler i and Ancona,

and of course symmetrically for Pescara with index P. We then define the neighborhood of Ancona and Pescara as
the pseudo-ellipsoid with focal points the two ports, i.e. the set {x | dA(x)2+dP(x)2 ≤ 2d2}, of course excluding
land, see Fig. 1(c). We restrict our analysis to trawlers evolving within this area, namely {i | Di

A+Di
P ≤ 2d2}. We

then assign the trawlers to one of the two ports according to their average distance to each of them. Defining
two distinct areas as:

DA =
�

x | dA(x)≤ dP(x) and dA(x)
2 + dP(x)

2 ≤ 2d2
	

(1a)

DP =
�

x | dP(x)< dA(x) and dA(x)
2 + dP(x)

2 ≤ 2d2
	

, (1b)

a given trawler is assigned to, say, Pescara if its fishing time-weighted average position lies inDP. In other words
i ∈ Pescara (resp. Ancona) if d i

P ≤ d i
A (resp. d i

A < d i
P). To validate our method of home port identification, we

1 Note that with this publicly available database, our analysis can be reproduced in any other place of the world where two competing
harbours lie reasonably close to each other.

2 According to the director of the Ancona fish market, there are no relationships with nearby wholesale markets (Pescara and San
Benedetto del Tronto), and, two or three times a year, it happens that a boat based in the nearby port in the north (Fano or Cattolica)
comes to sell.
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FIG. 1. Description of empirical data. Blue curves and markers correspond to data related to the area of Ancona, while red
curves and markers correspond to Pescara. (a) Plot of the fractions ni(t), as defined in Eq. (2) (b) Plot of the total number
of active boats through time NA + NP . (c) Satellite view of the Adriatic Sea along with the areas DA and DP, as defined
in Eq. (1). (d) and (e) Autocorrelation functions C1−ni

(τ), as defined in Eq. (3) for both zones. For Ancona we find an
exponential fit with a decay rate of ≈ 11 days, while for Pescara we find a decay of ≈ 33 days.

were able confront our classification to the list of the Ancona-based trawlers, kindly provided by the Ancona
fish market authorities. Up to a few minor errors, notably related to having identified as Ancona-based a few
vessels based in the much smaller San Benedetto del Tronto, the cross-check was successful. Over the whole
period we counted NA = 108 Ancona-based trawlers and NP = 118 Pescara-based trawlers.

C. Stylized facts

Having tagged each boat to either Ancona or Pescara, we now turn to studying the dynamics of fishing within
the two areas DA and DP. We define the fraction nA(t) of time spent by Ancona-based vessels fishing in DA
namely:

nA(t) =

∑

x∈DA,i∈Ancona hi(x , t)
∑

y,i∈Ancona hi(y, t)
, (2)

and vice-versa nP(t) for Pescara. Figure 1(b) displays the evolution of nA(t) and nB(t) throughout the period
of interest. While these fractions are most often very close to 1, indicating as one would intuitively expect
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FIG. 2. Cumulative distribution function (cdf) of the fractions nA and nP as defined in Eq. (2). The solid red curves
correspond to a fit with a generalized Beta distribution, which has a cdf given by P>(n) = C

∫ n

0
dx xγ0−1(1− x)γ1−1 with C a

normalization constant. The parameters for Ancona are γ0 = 18.48 and γ1 = 0.82, while those for Pescara read γ0 = 17.73
and γ1 = 1.27.

that trawlers spend most of their time fishing near their home port, one can see, however, that they regularly
undergo persistent excursions, revealing that a sizeable fraction of the vessels in each area decide collectively
to go elsewhere.

To evaluate the typical length of such excursions, Figs. 1 (d) and (e) display the auto-correlation functions:

C1−n(τ) := Cor (1− n(t +τ), 1− n(t)) , (3)

for both nA(t) and nP(t). These are well fitted by the sum of a delta-peak at 0, which can be attributed to
measurement noise and other exogenous factors such as the weather, and an exponentially decaying function
with typical timescale ranging from ≈ 11 to ≈ 30 days. Interestingly enough, Fig. 2 reveals that the empirical
distributions of nA and nP are remarkably well fitted by a Beta distribution. This is exactly what one obtains in
Kirman and Föllmer’s ant recruitment model [8, 9], in which the Beta distribution emerges as the stationary
distribution describing a colony of ants preying on two distinct food sources. Such a distribution also emerges
as the stationary distribution describing genetic populations between two competing alleles [10, 11]. The key
ingredient in these models is the competition between two different entities, be they food sources or genetic
alleles. In Kirman and Föllmer’s ant model however, the two food sources are strictly equivalent and the
resulting Beta distribution describing the fraction of ants at each source is necessarily symmetric, at odds with
the results obtained in the present setting. This motivates the asymmetric zones model introduced below.
Another significant difference with Kirman and Föllmer’s original model is that the "food sources" here are not
inexhaustible, as fish cannot reproduce at an infinite rate.

These empirical results and observations motivate us to introduce a model extending Kirman and Föllmer’s
original ant recruitment model to our context. In essence, one can think of the two cities as two distinct ant
colonies that can obtain their food from either of the two zones. For each colony, the further fishing area is
necessarily less attractive, leading to the asymmetric character of the distribution. In addition, not being in
a setting with unlimited resources, our model should take into account the fact that over-fishing may deplete
the sea.

III. A SIMPLE MODEL

Kirman and Föllmer’s original ant-recruitment model [8] was successful at explaining a rather puzzling fact
well known to entomologists [12, 13]. Ants, faced with two identical and inexhaustible food sources tend
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to concentrate on one of them and occasionally switch to the other. Such intermittent herding behaviour is
observed in a variety of settings including choosing between equivalent restaurants [14], or financial mar-
kets [15–17] consistent with large endogenous fluctuations. In the model, at each time step a given ant may
either (i) encounter another ant from the other inexhaustible food source and decide to switch to her peer’s
source (be recruited), or (ii) spontaneously decide to switch food sources without interacting. The driving
mechanism of the dynamics results from the trade-off between the intensity of the noise-term ε (spontaneous
switching), and that of the interaction term µ, see also [9].

Here we present an extension of Kirman and Föllmer’s original model to account for exhaustible and asym-
metric sources, notably aimed at accounting for some of the stylized facts presented in the previous section for
fishing areas. Seeking to model fishermen exploiting a set of fishing areas, we imagine that boats follow the
same basic dynamics as the ants: if they initially fish within a certain zone, they may decide to move elsewhere
either because they see their peers fishing there, deciding to imitate them because they assume that their yield
is good, or spontaneously decide to move elsewhere randomly for the sake of exploration.

As discussed above, our model has two major differences that depart from the original ant-recruitment
model. First, we consider that a fishing area has finite resources: fish reproduce until reaching a certain finite
capacity but they are also depleted by fishermen in the area (as in e.g. MacArthur’s models [18, 19]). As a
consequence, we assume that the random switching rate at which fishermen decide to depart from a given
area depends on the fish population of that area. Note that this is very close in spirit to the modelling done in
Ref. [4], albeit that our model takes into account imitative behaviour in fishermen. The second difference with
the ant model is that we imagine two “colonies” instead of just one, corresponding to vessels based at the two
different fishing ports of Ancona and Pescara. Guided by the idea that fishermen prefer to go to areas close to
their own home port, notably to save fuel, we introduce an asymmetry between the fishing areas for each food
source.

The two ports, labelled A and P, have two distinct populations of fishermen, which may decide to exploit two
fishing areas, S1 and S2, with the fishermen from A preferring to fish at S1 and vice versa. One may of course
reasonably argue that this view is far too coarse-grained, and that there may be, for example, many different
fishing areas that are available close to each port. It is however possible to show under mild hypotheses that
the two zones S1 and S2 in the model can be seen as the aggregation of a large number of smaller areas, with
the same dynamics, see Appendix B for details. For clarity, we shall define the model in discrete time, before
moving into continuous time for analytical convenience.

Without loss of generality, we focus only on the dynamics of fishing vessels at one of the two ports, say
Ancona, as we assume that fishermen only interact with boats coming from the same city.3 We define now NA
and NP as the number of boats based at Ancona and Pescara respectively, and let each of them decide to go to
any of the two areas S1 and S2. We denote mi(t), with i = 1, 2, their respective fish populations at time t, and
further assume that:

• Boats only fish in one area each day (consistent with discussions with port authorities) and come back
to that area if they don’t decide to switch to another one for the next day.
• A vessel’s daily catch ci(t) is proportional to the amount of fish available in the area: ci(t) =

β
NA

mi(t)
with β/NA ∈ [0;1].4

• Fish reproduce at a multiplicative rate νi , which we take to be equal to ν for both areas.
• As a first approximation, fish do not travel from one area to the other.5

• The fish population within any area cannot exceed a carrying capacity Ki , which is the maximal popula-
tion that can be present within an area in the absence of fishing. This carrying capacity is the same for
all areas, as we have taken all of them to be equivalent. Without loss of generality, we take K1 = K2 = 1
in all that follows.

3 Anecdotal evidence suggests indeed that the main interaction between people working in different boats happens at port in the fishing
market or during informal conversation.

4 Without changing our main conclusions, one could also allow for noise by drawing ci(t) from a given distribution centred about
βmi(t)/N . This would allow us to introduce randomness into the fishing efficiency of each trawler, an interesting extension that
we leave for further work.

5 This constraint can be easily relaxed by e.g. adding a migration term where fish from 2 move to 1 at a certain rate and vice-versa. In
practice, this would only tend to prevent the difference between the two fish populations from fluctuating too wildly.

Electronic copy available at: https://ssrn.com/abstract=3697348



7

Note that these definitions, which also amount to thinking of the fish population as consisting of the same
species in both areas, are partially justified by our considering only trawlers, that therefore fish only very
specific, shallow water dwelling species.

We further define NA,i(t) the number of vessels from port A fishing at zone i at time t (and NP,i(t) respec-
tively). The number of fishing vessels in each port is fixed, implying for all t: NA,1(t) + NA,2(t) = NA. Our
assumptions translate into following evolution for the fish population:

mi(t + 1)−mi(t) = mi(t)
�

νg(mi(t))− β
�

NA,i(t) + NP,i(t)
��

, (4)

where the function g must satisfy g(0) = 1 and g(1) = 0.

On the right hand side, the first term νmi g(mi(t)) models the amount of fish that are born between t and
t + 1 in absence of fishing; it is given by a birth-rate ν when the fish aren’t too plentiful, but goes to 0 as the
zone gets saturated and cannot sustain any more fish. The simplest assumption one can make is that of logistic
growth, leading to g(mi(t)) = 1 − mi(t). It follows that mi(t) ∈ [0;1], ∀t, where m = 1 corresponds to a
fishing area at full capacity and m= 0 corresponds to a depleted area. Under these assumptions, the evolution
of the fish population is of the Lotka-Volterra type, as advocated in [4].6 The second term on the right hand
side corresponds simply to the decrease in fish population because of fishing activity.

Furthermore, we assume that a fishing vessel based at A fishing at i can randomly decide to go elsewhere
with probability εA,i f (mi(t)), where the function f satisfies f (1) = 1 and f (0) = 1+κ. Here, εA,i controls the
base intensity of the noise, that can take a maximal value εA,i(1+ κ) when the zone is depleted. Fishermen
have then a higher incentive to go elsewhere as their fishing yield decreases, and we highlight the preference
of fishermen from A for zone 1 by setting ε := εA,1 = εA,2/Cε with Cε > 1 a parameter controlling the degree of
asymmetry between zones S1 and S2 for a fisher from A. This allows us to have a higher spontaneous switching
rate S2→ S1 for fishermen from A.

Besides this random switching rate, we add in the crucial element in our model, which is that agents imitate
each other. Each day, a fisherman randomly picks one of his peers and decides to imitate him with probability
µ/N , so that µ is the average fraction of boats deciding to take an imitation strategy at each step. In this case,
the probability that a boat from A initially at zone Si decides to move to zone S j is given by:

PA(Si → S j) = εA,i f (mi(t)) +
µ

NA

NA, j(t)

NA − 1
. (5)

Writing then nA,i = NA,i/NA, we take the limit NA, NP → ∞ with NP/NA = CN fixed. Within this limit, we
denote nA = (nA,1, nA,2) and m= (m1, m2) and study the probability density ρ(nA,nP,m) of all the variables of
the model. The equation one obtains is called the Fokker-Planck equation [21], also known as the Kolmogorov
forward equation in applied mathematics and closely related to the Hamilton-Jacobi-Bellman equations de-
scribing the optimal choice of a rational agent; it can be interpreted as the continuous limit of a Markovian
transition matrix. In the case of our model, the Fokker-Planck equation reads:

∂tρ = −ε∂nA,1

�

Cε f (m2)− nA,1 [Cε f (m2) + f (m1)]
�

ρ +µ∂ 2
nA,1,nA,1

�

nA,1(1− nA,1)
�

ρ +
�

(nA,1, m1)↔ (nP,2, m2)
�

−∂m1

�

ν(1−m1)− β
�

nA,1 + CN (1− nP,2)
��

m1ρ +
�

(m1, nA,1, nP,2)↔ (m2, 1− nA,1, 1− nP,2)
�

, (6)

where the bracket [x ↔ y] is shorthand for the same expression where one replaces x by y .

These equations fully close the model, which in our view represent the simplest setting for a system with
limited resources exploited by entities with a myopic exploration/imitation strategy. As they stand, however,
they cannot be solved analytically. We shall now resort to a mean-field approximation to find a solution.

6 As an interesting anecdote, we learned in [20] that “Vito Volterra was born in the Jewish ghetto of Ancona in 1860, shortly before the
unification of Italy, when the city still belonged to the Papal States”, and that “in 1925, at age 65, Volterra became interested in a study
by the zoologist Umberto D’Ancona, who would later become his son-in-law, on the proportion of cartilaginous fish (such as sharks and
rays) landed in the fishery during the years 1905–1923 in three harbours of the Adriatic Sea: Trieste, Fiume and Venice. D’Ancona had
noticed that the proportion of these fish had increased during the First World War, when the fishing effort had been reduced”. This
led him to take interest in models that Alfred Lotka had first used to model very general population dynamics, and that we now apply,
without knowing any of this at first, to the fish population dynamics at the ports of Ancona and Pescara.
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IV. MEAN-FIELD APPROXIMATION

Solving the Fokker-Planck equation (6) is a very difficult task, as the different terms that intervene take into
account the interactions between the proportion of fishermen in a given zone and the fish population in it. In
general, these two quantities fluctuate in time, and the main difficulty lies in unravelling how these fluctuations
interact. However, if one is interested in a very aggregated picture, one can simplify the problem significantly
by calculating the behaviour of the fish as if they were only subject to the averaged, fluctuation-free, action
of the fishing boats and vice-versa. This is what is known as the mean-field approximation, which allows to
replace, as a first step, the behaviour of the fish populations mi with their long-time averages. Taking Eq. (4)
in the continuous time limit, the evolution of the fish population of, e.g., zone 1 follows:

dm1

dt
= m1(t)

�

ν(1−m1(t))− β
�

nA,1 + CN

�

1− nP,2

���

. (7)

If we take the average of this equation, we expect the left hand side to be dE[m1]
dt = 0 as the average is not

expected to fluctuate in time.7 This yields the following expression for the right hand side:

E [m1] =
�

1− β
ν

�

E
�

nA,1

�

+ CN

�

1−E �nP,2

���

�

+
, (8)

where [x]+ = x1x>0 denotes the positive part of x . In particular, one can see that there exists a trivial extinction
line for the fish population for:

ν= β
�

E
�

nA,1

�

+ CN

�

1−E �nP,2

���

, (9)

which corresponds to the case where the reproductive rate of fish corresponds exactly to the rate at which they
are fished.

We now do the same mean-field approximation the other way around to simplify the evolution of the fish-
ermen. We insert Eq. (8) into the vessels’ dynamics by replacing the argument of f (mi) by the average, as
f (E [mi]) := fi , which amounts to saying that the boats only interact with the average behaviour of the fish.
Choosing, to be precise, a linear function for f , i.e. f (x) = 1+κ(1− x), the average E

�

nA,1

�

can now be easily
computed from Eq. (6) by setting the drift term to 0, as:

E
�

nA,1

�

=
Cε f2

Cε f2 + f1
=

Cε (1+ κ(1−E [m2]))
2+ κ [1−E [m1] + Cε (1−E [m2])]

. (10)

Therefore, the mean-field approximation applied to the quantities m1 and nA have allowed to derive the two
Eqs. (8) and (10), and therefore to obtain self-consistently the averages of these quantities. The next step is
to obtain a fuller picture of the aggregate behaviour of the vessels within the mean-field approximation, and
to obtain for example the probability density associated with it.

A. Stationary solutions

Consistent with our mean-field approximation, we set m1 = E [m1] (resp. m2 = E [m2]) in Eq. (6) to obtain
a Fokker-Planck equation that describes the vessels. In the previous equation, vessels from the two ports
interacted indirectly through fishing in the same zone and depleting the fish in it, motivating all the boats in

7 This average is taken with respect to infinitely many possible realizations of the stochastic process describing the evolution of our model.
Nonetheless, because the model is ergodic we expect that this averaging is also true when one considers time-averages, meaning that
we take a single realization of the process and look at the average of m1 in time.
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that zone to leave. Replacing the behaviour of the fish by its average amounts to neglecting this effect, and to
an effective decoupling of the two variables nA and nP, as:

∂tρ = ∂nA,1
J1 + ∂nP,2

J2, (11)

where:

J1 = −ε
�

Cε f2 − nA,1 [Cε f2 + f1]
�

ρ +µ∂nA,1

�

nA,1(1− nA,1)
�

ρ, (12)

and where the transposition to find the definition of J2 is transparent. The two quantities J1 and J2 are
probability fluxes, and for example J1

�

nA,1, t
�

can be interpreted as the probability mass going from nA,1+∆n
to nA,1 for an infinitesimal ∆n during an infinitesimal amount of time.

The stationary state is found by setting J1 = 0 and J2 = 0, meaning that there is no probability flux in the
model, and solving the obtained equations for ρ. The decoupling of the two variables nA,1 and nP,2 allows one
to write the density as the product of two independent densities, as

ρ(nA,1, nP,2) = ρ1

�

nA,1

�

ρ2

�

nP,2

�

, (13)

with:

ρ1(nA,1) = C1n
γA,0−1
A,1

�

1− nA,1

�γA,1−1
, ρ2

�

nP,2

�

= C2n
γP,0−1
P,2

�

1− nP,2

�γP,1−1
, (14)

where C1 and C2 are normalisation constants and the γ parameters for the ρ1 distribution (the parameters for
ρ2 can be easily deduced) read:

γA,0 =
ε

µ
Cε f2, γA,1 =

ε

µ
f1. (15)

Note also that full dynamical solutions ρ(nA,1, t), ρ(nP,2, t) can be obtained in terms of hypergeometric
functions, in the same spirit as [9], see Appendix A.

For the reader unfamiliar with Fokker-Planck equations and stochastic processes, the following thought
experiment may help in understanding what we’ve stated mathematically above. The model in Sec. III can be
run as a computer simulation where nA,1 and nP,2 correspond to numbers between 0 and 1 and can be known
at all times. It is then possible to run a very large number of simulations with the same initial conditions for
these two variables and to compute cross-sectional histograms for these variables at a given time-point, that
is the histograms of the same variable at the same time but through different simulations. The Fokker-Planck
equation describes how these histograms will change in time, before eventually settling onto distributions
described by Eq. (14). The model is however ergodic, and if we also take one single simulation and run it for a
very long time, we can plot the histogram of, say, nA,1 ({t i}) at randomly sampled times t i and we will observe
a histogram described by the density ρ1(nA,1).

Our model thus replicates successfully the observed distributions shown in Fig. 2, and captures the qualitative
behaviour from Fig. 1. An example of numerical simulation of the model is provided in Fig. 3. For this Figure,
we have set µ = 1 as it only amounts to a certain choice of the timescale, while picking a small value κ = 0.1
to keep f2, f1 ≈ 1. We have then picked ε and Cε such as to match the values for γ0 and γ1 from Fig. 2.

B. Dynamics and correlation functions

Within the mean-field model above, it is straightforward to show using tools from stochastic calculus (see
the appendices in Ref [9]) that the variable nA,1 follows a stochastic differential equation:

dnA,1

dt
= µ

�

γA,0 −
�

γA,0 + γA,1

�

nA,1

�

+
Ç

2µnA,1

�

1− nA,1

�

η(t), (16)
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FIG. 3. Numerical simulation of our model. We have chosen the different parameters to obtain the same stationary Beta
distribution as that observed in Fig. 2. Note also the similarity of the Figure on the left with plot (a) in Figure 1. We have
used the parameters ε = 0.69, ν = 10, β = 5, CN = 1, Cε = 26.5 for Ancona and 15.7 for Pescara and κ = 0.1. The upper
panel shows two trajectories nA,1(t) and nP,2(t). The middle panel shows the fish populations m1(t) and m2(t). The bottom
left panel shows the cumulative density function for nA,1 along with a Beta distribution fit. The bottom right panel shows the
empirical correlation function as defined by Eq. (17) along with an exponential fit. Note that the fish populations oscillate
around the theoretical mean-field value m = 0.5, and that large oscillations coincide with large collective movements of
the fishermen in both areas.

with η a gaussian white noise of unit variance. This equation may be solved formally by integration, just as one
would for a standard ordinary differential equation. With this formal solution, it is then possible to compute
the auto-correlation of 1− nA,1, defined as in Eq. (3), to find

C1−nA,1
(τ) = exp

�−µ �γA,0 + γA,1

�

τ
�

, (17)

which is exactly what one sees from the data in Fig. 1 (d) and (e), provided one interprets the delta-peak at
τ = 0 as the result of exogenous noise, e.g. weather conditions. Indeed if one considers that the measured
signal is, in fact, a noisy signal,

ñ(t) = (1−σ)n(t) +σξ(t), (18)
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FIG. 4. Empirical correlation function Cσ(τ) as defined in Eqs. (20) and (21). The solid black line is the theoretical
prediction given the estimations of γ0 and γ1 from the empirical probability distribution in Fig. 2 and from the subsequent
estimation of µ using the exponential decay factor from Fig. 1. The reliable computation of σ depends of course on the
proper estimation of these parameters, and we expect them to be noisy. Nonetheless, the agreement with theory, especially
in the case of Pescara, is rather good.

where n(t) is the “true” process and ξ(t) is a gaussian white noise of unit variance, then one can show directly
that the measured correlation function reads:

C1−ñ(τ) = δ (τ) +
(1−σ)2
σ2

C1−n(τ). (19)

We have checked that the correlation function given in Eq. (17) agrees with our numerical simulations as
well; the results are shown in the bottom right panel in Fig. 3.

The agreement is excellent both between the mean-field theory and the data, indicating that our model
can correctly replicate the main dynamical features of real data from fishing dynamics. Furthermore, one can
deduce the value of µ from the values of γ0, γ1 and the decay factor in the exponential, that should match
µ (γ0 + γ1). Using this formula, we find µ= 4.3 · 10−3 for Ancona and µ= 1.7 · 10−3 for Pescara.

Note that the middle panel in Fig. 3 shows very interesting dynamics, with the fish population oscillating
about its average value E [m1] = E [m2] = 0.5 through visible interactions with the amount of boats fishing in
the two areas. Note for example that the fish population tends to increase when the boats leave an area, but
this is detrimental to the fish in the other area. In the Figure, it is also visible that boats from Pescara arriving
at t ≈ 7000 arriving in the zone close to Ancona had a detrimental effect to the population m1 of fish close to
Ancona, and the population in that zone did not necessarily have the time to recover from that excess in the
time allowed by the simulation.

More complicated correlation functions can also be computed, along the lines of [9], although they are more
prone to statistical noise. For example, using using the techniques described in detail in Ref. [9], one can show
that the polynomial defined by:

σA(nA,1) = n2
A,1 −

2(γA,0 + 1)

γA,0 + γA,1 + 2
nA,1, (20)

has an autocorrelation function that is exponential, meaning that CσA
(τ) = Cor

�

σA

�

nA,1(t +τ)
�

,σA

�

nA,1(t)
��

verifies:

CσA
(τ) = exp

�−2µ(1+ γA,0 + γA,0)τ
�

, (21)

and the same can of course be transposed to the variables indexed by P.
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FIG. 5. Left: Numercial results (same parameters as in Figs 3 and 4). The simulation was run for T = 105 steps and with
ν = 10. Note that the convergence of the simulation to the mean-field results from Eq. (23) improves as T or ν grow
larger. Right: Phase diagram of the model. Note that the high/low noise frontier line could be extended in the extinct
phase; indeed, without further ingredients, in the extinct phase boats move between the two areas as in the non-extinct
phase even though they are not able to fish anymore.

We have tested this prediction in Fig. 4. This correlator is necessarily more affected by measurement noise,
because it is of order two in the n variables and because it depends on a reliable estimation of the γ and µ
variables. Considering these limitations, the theoretical prediction is rather satisfactory when compared with
the data, especially in the case of Pescara.

V. THE SYMMETRIC LIMIT

In general, the fixed point equations defined at the beginning of Section IV linking the averages E [mi] with
the averages E [ni] cannot be solved directly. Nonetheless, if one takes CN = 1 to have two fishing areas that
are perfectly symmetric, then the equations simplify considerably as this immediately implies f1 = f2, with
Eq. (10) becoming:

E
�

nA,1

�

= E
�

nP,2

�

=
Cε

Cε + 1
. (22)

One can then write Eq. (8) more explicitly, to obtain the following extinction line:

E [m1] = E [m2] =

�

1− β
ν if β < ν

0 if β ≥ ν,
(23)

which has the intuitive interpretation that the population within a given area goes extinct if the fishing rate is
larger than the reproduction rate of fish in the area. Figure 5 shows that the agreement of numerical simulations
with our mean-field analysis is excellent. One should note however that convergence may be slow when ν→ 0,
as this parameter controls the global fish population typical timescale.

Note also that in this case, one can directly compute f1 = f2 = 1+ κβ
ν . The parameters in Eq. (15) simplify

to yield:

γ0 =
ε̃

µ
Cε, γ1 =

ε̃

µ
, (24)

where we’ve dropped the A index as the parameters for both areas A and P are identical, and where we’ve set
ε̃ := ε

�

1+ κβ
ν

�

.
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FIG. 6. Numerical simulations in the case γ1 > 1. The parameters are the same as that of Fig. 3, but with κ = 10 instead.
The Beta fit is compatible with the predicted theoretical values from Eq. (24). Note that, in contrast with Fig. 2, we show
the probability density instead of the cumulative density function.

In this limit it is very clear that our mean-field model amounts to a modification of the original ant model
[8], where the noise ε is augmented because of the sensitivity of the fishermen to the local fish population
by the factor given above, and where we have introduced an asymmetry between the two areas/food-sources
through the parameter Cε.

One would then typically expect to have always have γ0 > 1 because of the strong preference for the fishing
area closest to one’s home port. However, if ε or κ are strong enough, one can have a crossover at γ1 = 1,
separating a regime where the boats are all frequently found to be close to their home port, corresponding to
γ= 1 and nA,1 = 1 as the most probable value in the distribution, from a regime where there is mixing and the
most probable value is nA,1 < 1, corresponding to γ1 > 1.

The simulations displayed in Fig. 3 correspond to γ1 < 1, the empirical data shown in Figs 1 and 2 has
γ1 < 1 for Ancona, and γ1 ¦ 1 for Pescara. As stated above, when γ1 > 1 the behaviour is qualitatively
different: instead of having the majority of the boats nearly always fish in their home area, with occasional
“jumps” to go to the neighbouring zone, there is always a degree of “mixing”, as at any given time there is
always a fraction ≈ 1−E �nA,0

�

of fishermen from Ancona fishing near Pescara. For the sake of completeness
Fig. 6 displays a simulation of this case, with γ1 well above 1. This last regime is qualitatively very different
to that with γ1 < 1 and corresponding to Figs. 1 (top panel) and 3, as stressed above: there are always close
to 95% of the fishermen from Ancona fishing near ththeir home port with no large collective excursions to
Pescara’s area.

VI. CONCLUSION

In this paper, we empirically analysed the distribution of the locations of fishing vessels in the two areas near
to Ancona and Pescara. By detecting to which port a vessel belongs, we computed the fraction of fishermen
fishing in their home zone and looked at their statistical properties. We found that the empirical distribution
functions are well approximated by asymmetric Beta distributions, and their auto-correlations by exponentials.
Inspired by such evidence, we extended Kirman and Föllmer’s ants recruitment model to finite and asymmetric
resources. We performed a numerical and theoretical analysis in the mean field approximation, and showed
that the auto-correlations and the stationary distribution of the fraction of fishermen appear to be respectively
exponential and Beta distributed. Finally, we provided the phase diagram that separates a low and high herding
phase, as well as a fish extinction phase.

We have further tested our dynamics by looking at higher order correlations that can be empirically com-
puted. This signal appears to be very noisy and of low intensity but consistent with an exponential decay, with a
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timescale compatible with that predicted by our model. Given the results that we have described, we are quite
confident in our minimal model since it is able to reproduce surprisingly well the generic stylized facts within
a limited though behaviourally sound framework. In particular, we have shown in Appendix B that while a
multi-zone model (with more than two zones) would possibility be more realistic, the results for our two-zone
model can be seen as the result of the aggregation of several zones, providing solid micro-foundations to our
approach and justifying our looking at two aggregated zones for empirical analysis.

ACKNOWLEDGMENTS

We thank Jean-Philippe Bouchaud, Alexandre Darmon, Mauro Gallegati and Gianfranco Giulioni for fruitful
discussions and help in interpreting the data. This research was conducted within the Econophysics & Complex
Systems Research Chair, under the aegis of the Fondation du Risque, the Fondation de l’Ecole polytechnique,
the Ecole polytechnique and Capital Fund Management, and within the New Approaches to Economic Challenges
(NAEC) OECD programme on complex systems.

Electronic copy available at: https://ssrn.com/abstract=3697348



15

[1] Garrett Hardin. The tragedy of the commons. Science, 162(3859):1243–1248, 1968.
[2] Stratis Gavaris. Use of a multiplicative model to estimate catch rate and effort from commercial data. Canadian

Journal of Fisheries and Aquatic Sciences, 37(12):2272–2275, 1980.
[3] Marianne Vignaux. Analysis of vessel movements and strategies using commercial catch and effort data from the new

zealand hoki fishery. Canadian Journal of Fisheries and Aquatic Sciences, 53(9):2126–2136, 1996.
[4] Peter M Allen and Jacqueline M McGlade. Dynamics of discovery and exploitation: the case of the scotian shelf

groundfish fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 43(6):1187–1200, 1986.
[5] Sorin Dascalu, Tudor Scurtu, Andreea Urzica, Mihai Trascau, and Adina Magda Florea. Using norm emergence in

addressing the tragedy of the commons. In International conference on computational collective intelligence, pages
165–174. Springer, 2013.

[6] Global Fishing Watch, Fishing Vessels Dataset,
https://globalfishingwatch.org/datasets-and-code/vessel-identity, 2020.

[7] Mauro Gallegati, Gianfranco Giulioni, Alan Kirman, and Antonio Palestrini. What’s that got to do with the price of
fish? buyers behavior on the ancona fish market. Journal of Economic Behavior & Organization, 80(1):20–33, 2011.

[8] Alan Kirman. Ants, rationality, and recruitment. The Quarterly Journal of Economics, 108(1):137–156, 1993.
[9] José Moran, Antoine Fosset, Michael Benzaquen, and Jean-Philippe Bouchaud. Schrödinger’s ants: a continuous

description of Kirman’s recruitment model. Journal of Physics: Complexity, 1(3):035002, aug 2020.
[10] P. A. P. Moran. Random processes in genetics. Mathematical Proceedings of the Cambridge Philosophical Society,

54(1):60–71, 1958.
[11] Sewall Wright. Statistical genetics and evolution. Bull. Amer. Math. Soc., 48(4):223–246, 04 1942.
[12] J. L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels. The self-organizing exploratory pattern of the argentine ant.

Journal of Insect Behavior, 3(2):159–168, March 1990.
[13] R. Beckers, J. L. Deneubourg, S. Goss, and J. M. Pasteels. Collective decision making through food recruitment.

Insectes Sociaux, 37(3):258–267, September 1990.
[14] Gary S. Becker. A note on restaurant pricing and other examples of social influences on price. Journal of Political

Economy, 99(5):1109–1116, 1991.
[15] David S. Scharfstein and Jeremy C. Stein. Herd behavior and investment. The American Economic Review, 80(3):465–

479, 1990.
[16] Robert J. Shiller and John Pound. Survey evidence on diffusion of interest and information among investors. Journal

of Economic Behavior & Organization, 12(1):47–66, August 1989.
[17] Thomas Lux. Herd behaviour, bubbles and crashes. The Economic Journal, 105(431):881, July 1995.
[18] Robert MacArthur. Species packing and competitive equilibrium for many species. Theoretical population biology,

1(1):1–11, 1970.
[19] Robert Mac Arthur. Species packing, and what competition minimizes. Proceedings of the National Academy of Sciences,

64(4):1369–1371, 1969.
[20] Nicolas Bacaër. Lotka, Volterra and the predator–prey system (1920–1926), pages 71–76. Springer, 2011.
[21] Hannes Risken. Fokker-planck equation. In The Fokker-Planck Equation, pages 63–95. Springer Berlin Heidelberg,

1996.
[22] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical

tables, volume 55. US Government printing office, 1948.

Electronic copy available at: https://ssrn.com/abstract=3697348

https://globalfishingwatch.org/datasets-and-code/vessel-identity


16

Appendix A: Full dynamical solution

The goal of this section is to sketch a full dynamical solution for the dynamics of Eq. (16). We drop the
indices A or P for clarity, obtaining:

dn
dt
= µ (γ0 − (γ0 + γ1)n) +

Æ

2µn(1− n)η(t), (A1)

a stochastic differential equation that corresponds to the following Fokker-Planck equation [21]:

∂tρ = µ∂nn (n(1− n)ρ)−µ∂n ((γ0 − (γ0 + γ1)n)ρ) , (A2)

with reflecting boundary conditions in n= 0 and n= 1.

As in Ref. [9], one can “diagonalize” this equation, writing it as:

∂tρ =Aρ, (A3)

withA a Fokker-Planck operator that gives the right-hand side of Eq. (A2) when applied to ρ. It is in principle
possible to apply the same techniques as in Ref. [9] to obtain a Schrödinger’s equation for an alternative
function Ψ, that one could then use to compute ρ explicitly.

However, one can also solve the eigenvalue problemAρE = EρE , so that the general solution for ρ reads:

ρ(n, t) =
∑

E
λEρE (n)e

−E t . (A4)

In this setting, E and ρE are respectively the eigenvalues and eigenvectors of the operatorA . These eigenvec-
tors should also be normalized so that the integral of ρ is equal to 1.

The problem therefore translates into finding functions ρE and numbers (or “energies”) E that satisfy:

µEρE = µ∂nn (n(1− n)ρE )−µ∂n ((γ0 − (γ0 + γ1)n)ρE ) (A5a)

JE (0) = JE (1) = 0 (A5b)
∫ 1

0 dn ρE (n)<∞, (A5c)

with JE (n) = µ∂n (n(1− n)ρE )−µ (γ0 − (γ0 + γ1)n)ρE .

In order to solve Eq. (A5a), we rewrite it as:

n(1− n)ρ′′E + (2− γ0 − (4− γ0 − γ1)n)ρ
′
E − (2+ E − γ0 − γ1)ρE = 0 (A6)

The solutions of this differential equation are given in terms of the hypergeometric function:

2F1(a, b; c; n) =
∑

k

(a)k(b)k
(c)k

nk

k!
, (a)k =

k−1
∏

i=0

(a+ i). (A7)

Here the two linear independent solutions well defined around zero, see [22], are 2F1(a, b; 2 − γ0; n) and
nγ0−1

2 F1(a+ γ0 − 1, b+ γ0 − 1;γ0; n), where a, b are the solutions of:

a+ b = 3− γ0 − γ1 (A8a)

ab = 2+ E − γ0 − γ1. (A8b)

Only the second solution cited above verifies the boundary condition at n = 0. Applying then an Euler
transformation8 on this solution leads to:

ρE (n) = CEnγ0−1(1− n)γ1−1
2F1(1− a, 1− b;γ0; n), (A9)

8 The Euler transformation for the hypergeometric function states that 2F1(a, b; c; n) = (1− n)c−a−b
2 F1(c − a, c − b; c; n).
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with CE a constant. This solution is well defined at n = 1 and also verifies the boundary condition. To check
the integrability condition one can compute explicitly

∫ 1

0

dn ρE (n) = CE
∑

k

(1− a)k(1− b)kΓ (γ0 + k)Γ (γ1)
(γ0)kΓ (γ0 + γ1 + k)k!

, (A10)

with Γ the Gamma function. If 1 − a is a non-negative integer9 all terms in the series are non-zero. Using
then (x)k ∝ Γ (x + k) together with the Stirling formula Γ (x + 1) ≈ p2πx x+1/2e−x for x � 1, we find that
the general term of the series converges to a constant when k→ +∞ and therefore that

∫ 1

0 dn ρE (n) = +∞.
Therefore, the condition that the functions ρE have a finite integral implies that there exists a positive integer
k such that 1− a = −k, and so also that b = 2− k−γ0−γ1 and E = −k(γ0+γ1+ k−1). Since the numbers E
are discrete, and are indexed by k, we write ρk := ρEk

.

In conclusion, the eigenvectors ρk and eigenvalues Ek are discrete and given by:

Ek = −k(γ0 + γ1 + k− 1) (A11)

ρk(n) = Cknγ0−1(1− n)γ1−1
2F1(−k,γ0 + γ1 + k− 1;γ0; n), (A12)

which allows then for a solution of the form given in Eq. (A4).

There only remains to find the coefficients λE that depend on the initial condition. This can be done by
transforming the Fokker-Planck equation into a Schrödinger’s equation as in Ref. [9], noticing that the solutions
to said Schrödinger equation can be found in terms of the eigenvalues and eigenvectors ρk, and one can
therefore find the coefficients λE by projecting the initial condition onto the orthogonal set of eigenvectors of
the Schrödinger operators, see the Appendices in Ref. [9] for a detailed technical explanation.

Appendix B: A symmetric multizones extension

Here we present a very natural extension of our model to the general case of M symmetric zones with finite
resources. Without loss of generality we set Cε = 1 to have lighter notations, but this doesn’t change our main
message. We also introduce the vector notations n(t) = (n1(t), . . . , nM (t)) and m(t) = (m1(t) . . . , mM (t)),
where the index accounts for the zone, and call p j→i(n(t),m(t)) the infinitesimal probability that an agent
initially present in zone j at time t moves to zone i at t + d t. It follows that the evolution of n and m is given
by:

dmi(t) = mi(t)(ν(1−mi(t))− βni(t))dt (B1)

p j→i(n(t),m(t)) =
n j(t)N

M − 1

�

ε f
�

m j(t)
��

+µN2ni(t)n j(t). (B2)

Introducing for simplicity h(n, m) = m(ν(1−m)−βn), the joint density ρ of the variables (n(t),m(t)) evolves
according to the following Fokker-Planck equation:

∂tρ(n,m) =−
∑

i

∂mi
(h(ni , mi)ρ) +

∑

i 6= j

�

∂ni
− ∂n j

�

�

ε f
�

m j

�

M − 1
n jρ

�

+µ
∑

i 6= j

�

∂ni ni
− ∂n j ni

�

�

nin jρ
�

.
(B3)

9 As the hypergeometric function is symmetric with respect to its two first arguments, we restrict our analysis to the first one only.
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Owing to the symmetry of the problem, one may generalize the argument used in Section IV to obtain the
stationary averages:

E [ni] =
1
M

, E [mi] =
�

1− β

Mν

�

+
(B4)

with (x)+ the positive part of x . This again shows the existence of an extinction regime whenever β = Mν. In
what follows we assume that β/ν < 1/M , to study the behaviour of the system outside of extinction.

When κ= 0 the density of n is a Dirichlet distribution with all parameters equal to (ε/δ), namely:

ρn(n1, . . . , nM ) =

�

M
∏

i=1

nε/µi

�

1{∑M
i=1 ni=1}. (B5)

As argued previously, whenever the noise-level is coupled to the fish population with κ > 0, we postulate
that the solution can be approximated by a Dirichlet distribution with all parameters set to (ε̃/µ) with ε̃ =
f (1− β

Mν )ε.

The Dirichlet distribution has one key property:
∑

i≥k ni follows a Beta distribution with parameters
(kε̃/µ, (M − k)ε̃/µ), corresponding to the stationary state of our two-zone model. We have also checked
that the mean-field approximation of Eq. B1 follows the same type of property: the variable

∑

i≥k ni(t) is ruled
by the mean-field approximation of Eq. (6). This result gives solid micro-foundations to our approach, and
justifies our looking at two aggregated zones for empirical analysis. This likely contributes to the very good
agreement found between empirical results and our model.
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