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In the paper, by virtue of convolution theorem for the Laplace transforms, with the aid of three monotonicity rules for the ratios of two functions, of two definite integrals, and of two Laplace transforms, in terms of the majorization, and in the light of other analytic techniques, the author presents decreasing properties of two ratios defined by three and four polygamma functions.

In the literature [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards[END_REF]Section 6.4], the function Γ(z) = ∞ 0 t z-1 e -t d t, ℜ(z) > 0 and its logarithmic derivative ψ(z) = [ln Γ(z)] ′ = Γ ′ (z) Γ(z) are called Euler's gamma function and digamma function respectively. Moreover, the functions ψ ′ (z), ψ ′′ (z), ψ ′′′ (z), and ψ (4) (z) are known as the trigamma, tetragamma, pentagamma, and hexagamma functions respectively. As a set, all the derivatives ψ (k) (z) for k ∈ N 0 = {0} ∪ N are known as polygamma functions.

Recall from Chapter XIII in [START_REF] Mitrinović | Classical and New Inequalities in Analysis[END_REF], Chapter 1 in [START_REF] Schilling | Bernstein Functions[END_REF], and Chapter IV in [START_REF] Widder | The Laplace Transform[END_REF] that, if a function f (x) on an interval I has derivatives of all orders on I and satisfies (-1) n f (n) (x) ≥ 0 for x ∈ I and n ∈ N 0 , then we call f (x) a completely monotonic function on I.

In [START_REF] Qi | Complete monotonicity of divided differences of the di-and tri-gamma functions with applications[END_REF]Theorem 1.1] and [START_REF] Qi | Necessary and sufficient conditions for functions involving the triand tetra-gamma functions to be completely monotonic[END_REF]Theorem 3], among other things, the function

[ψ ′ (x)] 2 + λψ ′′ (x)
was proved to be completely monotonic on (0, ∞) if and only if λ ≤ 1. In [10, Theorem 1], it was proved that, among the functions

f m,n (x) = ψ (m) (x) 2 +ψ (n) (x), m, n ∈ N, x ∈ (0, ∞),
(1) the functions

f 1,2 (x) = [ψ ′ (x)] 2 + ψ ′′ (x)
and f m,2n-1 (x) = ψ (m) (x) 2 +ψ (2n-1) (x) are completely monotonic on (0, ∞), but the complete monotonicity of f m,2n-1 (x) is trivial; (2) the functions

f m,2n (x) = ψ (m) (x) 2 +ψ (2n) (x)
for (m, n) ̸ = (1, 1) are not monotonic and does not keep the same sign on (0, ∞). For k ∈ N and x ∈ (0, ∞), let

F k,η k (x) = ψ (2k) (x) + η k ψ (k) (x) 2 and F k,ϑ k (x) = ψ (2k) (x) [(-1) k+1 ψ (k) (x)] ϑ k .
In [START_REF] Qi | Lower bound of sectional curvature of Fisher-Rao manifold of beta distributions and complete monotonicity of functions involving polygamma functions[END_REF]Theorem 3.2], the author proved the following conclusions:

(1) if and only if η k ≥ 1 2 (2k)! (k-1)!k! , the function F k,η k (x) is completely monotonic on (0, ∞);

(2) if and only if η k ≤ 0, the function -F k,η k (x) is completely monotonic on (0, ∞); (3) if and only if ϑ k ≥ 2, the function F k,ϑ k (x) is decreasing on (0, ∞); (4) if and only if ϑ k ≤ 2k+1 k+1 , the function F k,ϑ k (x) is increasing on (0, ∞); (5) the following limits are valid:

lim x→0 + F k,ϑ k (x) =                - (2k)! [(k)!] (2k+1)/(k+1) , ϑ k = 2k + 1 k + 1 0, ϑ k > 2k + 1 k + 1 -∞, ϑ k < 2k + 1 k + 1 and lim x→∞ F k,ϑ k (x) =          - (2k -1)! [(k -1)!] 2 , ϑ k = 2 -∞, ϑ k > 2 0, ϑ k < 2;
(6) the double inequality

- 1 2 (2k)! (k -1)!k! < ψ (2k) (x) [(-1) k+1 ψ (k) (x)] 2 < 0
is valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced by any greater and less numbers respectively.

Let α = (α 1 , α 2 , . . . , α n ) and β = (β 1 , β 2 , . . . , β n ) ∈ R n . A n-tuple α is said to strictly majorize β (in symbols α ≻ β) if α [1] , α [2] , . . . , α [n] ̸ = β [1] , β [2] , . . . , β [n] , k i=1 α [i] ≥ k i=1 β [i] for 1 ≤ k ≤ n -1, and n i=1 α i = n i=1 β i , where α [1] ≥ α [2] ≥ • • • ≥ α [n] and β [1] ≥ β [2] ≥ • • • ≥ β [n]
are rearrangements of α and β in a descending order. See [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF]p. 8,Definition A.1] or closely related texts and references in the papers [START_REF] Chu | Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave[END_REF][START_REF] Qi | Schur-convexity of the Catalan-Qi function related to the Catalan numbers[END_REF][START_REF] Shi | Two Schur-convex functions related to Hadamard-type integral inequalities[END_REF][START_REF] Yin | Necessary and sufficient conditions on the Schur convexity of a bivariate mean[END_REF].

Theorem 1.1 ([18, Theorem 3.1]). Let p, q, m, n ∈ N 0 satisfying (p, q) ≻ (m, n) and let F p,m,n,q;c (x) = ψ (m) (x) ψ (n) (x) -c ψ (p) (x) , q = 0 ψ (m) (x) ψ (n) (x) -c ψ (p) (x) ψ (q) (x) , q ≥ 1
for c ∈ R and x ∈ (0, ∞). Then

(1) for q ≥ 0, if and only if

c ≤        (m -1)!(n -1)! (p -1)! , q = 0 (m -1)!(n -1)! (p -1)!(q -1)! , q ≥ 1, the function F p,m,n,q;c (x) is completely monotonic in x ∈ (0, ∞); (2) for q ≥ 1, if and only if c ≥ m!n! p!q! , the function -F p,m,n,q;c (x) is completely monotonic in x ∈ (0, ∞); (3) the double inequality - (m + n -1)! (m -1)!(n -1)! < ψ (m+n) (x) ψ (m) (x)ψ (n) (x) < 0 (1.1)
for m, n ∈ N and the double inequality

(m -1)!(n -1)! (p -1)!(q -1)! < ψ (m) (x)ψ (n) (x) ψ (p) (x)ψ (q) (x) < m!n! p!q! (1.2)
for m, n, p, q ∈ N with p > m ≥ n > q ≥ 1 and m + n = p + q are valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced by any larger and smaller scalars respectively.

In [START_REF] Qi | Lower bound of sectional curvature of manifold of beta distributions and complete monotonicity of functions involving polygamma functions[END_REF]Remark 6.2], the preprint of the formally published paper [START_REF] Qi | Lower bound of sectional curvature of Fisher-Rao manifold of beta distributions and complete monotonicity of functions involving polygamma functions[END_REF], the author guessed that, (1) for m, n ∈ N, the function

Q m,n (x) = ψ (m+n) (x) ψ (m) (x)ψ (n) (x) (1.3)
should be decreasing on (0, ∞); (2) for m, n, p, q ∈ N such that (p, q) ≻ (m, n), the function

Q m,n;p,q (x) = ψ (m) (x)ψ (n) (x) ψ (p) (x)ψ (q) (x) (1.4)
should be decreasing on (0, ∞).

It is clear that Q k,k (x) = F k,2 (x) for k ∈ N, which is decreasing on (0, ∞).
In this paper, we aim to confirm these two guesses. We also supply an alternative proof of Theorem 1.1.

Lemmas

The following lemmas are necessary in this paper. 

ψ (n) (z) = (-1) n+1 ∞ 0 t n 1 -e -t e -zt d t (2.1)
is valid for ℜ(z) > 0 and n ≥ 1.

Lemma 2.3 (Convolution theorem for the Laplace transforms [40, pp. 91-92]). Let the functions f k (t) for k = 1, 2 be piecewise continuous in arbitrary finite intervals included in (0, ∞). If there exist some constants

M k > 0 and c k ≥ 0 such that the inequalities |f k (t)| ≤ M k e c k t for k = 1, 2 are valid, then ∞ 0 t 0 f 1 (u)f 2 (t -u) d u e -st d t = ∞ 0 f 1 (u) e -su d u ∞ 0 f 2 (v) e -sv d v.
Lemma 2.4 ([44, Lemma 4] and [START_REF] Yang | Monotonicity rules for the ratio of two Laplace transforms with applications[END_REF]Section 3]). Let the functions A(x) and B(x) ̸ = 0 be defined on (0, ∞) such that their Laplace transforms exist. If the ratio

A(x) B(x) is increasing, then the ratio ∞ 0 A(x) e -xt d x ∞ 0 B(x) e -xt d x is decreasing on (0, ∞). Lemma 2.5. Let g(t) =    t 1 -e -t , t ̸ = 0; 1, t = 0.
Then the following conclusions are valid.

(1) The function g(t) is infinitely differentiable on (-∞, ∞), increasing from (-∞, ∞) onto (0, ∞), convex on (-∞, ∞), and logarithmically concave on (-∞, ∞). (2) For fixed s ∈ (0, 1), the ratio g s (t) g(st) is decreasing in t from (0, ∞) onto (0, 1). (3) For s ∈ 0, 1 2 and t ∈ (0, ∞), the mixed second-order partial derivative

∂ 2 ln[g(st)g((1 -s)t)] ∂s∂t > 0. (2.2)
Proof. The differentiability, monotonicity, and convexity of g(t

) come from utiliza- tion of [22, Lemma 2.3]. Direct computation yields [ln g(t)] ′′ = [ln g(-t)] ′′ = - e 2t -e t t 2 + 2 + 1 (e t -1) 2 t 2 = - 1 (e t -1) 2 t 2 ∞ k=4 [2 k -(k -1)k -2] t k k! < 0 on (0, ∞). Hence, the function g(t) is logarithmically concave on (-∞, ∞). See also the proof of [19, Lemma 2.3]. It is straightforward that lim t→0 g s (t) g(st) = lim t→0 g s (t) lim t→0 g(st) = 1 s 1 = 1 and lim t→∞ g s (t) g(st) = lim t→∞ [g(t)/t] s lim t→∞ [g(st)/st] lim t→∞ t s st = 1 s lim t→∞ 1 t 1-s = 0.
The first derivative of the ratio g s (t)

g(st) is d d t g s (t) g(st) = sg s (t) g(st) g ′ (t) g(t) - g ′ (st) g(st) .
Hence, for arriving at decreasing property of the ratio g s (t) g(st) , it is sufficient to show that the ratio g ′ (t) g(t) is decreasing on (0, ∞). For this, it is sufficient to show that the function g(t) is logarithmically concave on (0, ∞). This requirement has been verified in last paragraph.

By Lemma 2.1, straightforward differentiation gives

∂ ln[g(st)g((1 -s)t)] ∂t = 1 t t + 2 e t +2 -e st [(1 -s)t + 2] -e (1-s)t (st + 2) (e st -1)[e (1-s)t -1] , lim s→0 t + 2 e t +2 -e st [(1 -s)t + 2] -e (1-s)t (st + 2) = lim s→0 (e st -1)[e (1-s)t -1] = 0, [t + 2 e t +2 -e st [(1 -s)t + 2] -e (1-s)t (st + 2)] ′ s [(e st -1)(e (1-s)t -1)] ′ s = e t (st + 1) -e 2st [(1 -s)t + 1] e t -e 2st , lim s→1/2 e t (st + 1) -e 2st [(1 -s)t + 1] = lim s→1/2
e t -e 2st = 0, and e t (st + 1)

-e 2st [(1 -s)t + 1] ′ s (e t -e 2st ) ′ s = 1 2 - e (1-2s)t -(1 -2s)t -1 2t
is increasing in s ∈ 0, 1 2 . This means that the partial derivative ∂ ln[g(st)g((1-s)t)] ∂t is increasing in s ∈ 0, 1 2 for fixed t > 0. As a result, the inequality (2.2) is valid. The proof of Lemma 2.5 is complete. □ Lemma 2.6 ([18, Lemma 2.1]). For k ∈ N, we have the limits

lim x→0 + x k ψ (k-1) (x) = (-1) k (k -1)! (2.3) and lim x→∞ x k ψ (k) (x) = (-1) k-1 (k -1)!. (2.4)
Lemma 2.7. For m, n, p, q ∈ N such that (p, q) ≻ (m, n), the function

s m-1 (1 -s) n-1 + (1 -s) m-1 s n-1 s p-1 (1 -s) q-1 + (1 -s) p-1 s q-1 is increasing in s ∈ 0, 1 2 . Proof. Direct computation yields s m-1 (1 -s) n-1 + (1 -s) m-1 s n-1 s p-1 (1 -s) q-1 + (1 -s) p-1 s q-1 = 1 s -1 n-1 + 1 s -1 m-1 1 s -1 q-1 + 1 s -1 p-1 = z n-1 + z m-1 z q-1 + z p-1 = z n-q + z m-q 1 + z p-q and d d z z b + z c 1 + z a = bz b + cz c (1 + z a ) -az a z b + z c z(1 + z a ) 2 = bz b 1 -z 2c + cz c 1 -z 2b z(1 + z a ) 2 < 0, where z = 1 s -1 ∈ (1, ∞) and a = p -q > b = m -q ≥ c = n -q > 0 with a = b + c. The proof of Lemma 2.7 is complete. □ Lemma 2.8. Let the functions U (x), V (x) > 0, and W (x, t) > 0 be integrable in x ∈ (a, b). If the ratios ∂W (x,t)/∂t W (x,t)
and U (x) V (x) are both increasing or both decreasing in x ∈ (a, b), then the ratio

R(t) = b a U (x)W (x, t) d x b a V (x)W (x, t) d x is increasing in t; if one of the ratios ∂W (x,t)/∂t W (x,t)
and U (x)

V (x) are increasing and the other is decreasing in x ∈ (a, b), then the ratio R(t) is decreasing in t.

Proof. Direct differentiation gives

R ′ (t) = b a U (x) ∂W (x,t) ∂t d x b a V (x)W (x, t) d x - b a U (x)W (x, t) d x b a V (x) ∂W (x,t) ∂t d x b a V (x)W (x, t) d x 2 = b a b a U (x) ∂W (x,t) ∂t V (y)W (y, t) d x d y - b a b a U (x)W (x, t)V (y) ∂W (y,t) ∂t d x d y b a V (x)W (x, t) d x 2 = b a b a U (x)V (y)W (x, t)W (y, t) ∂W (x,t)/∂t W (x,t) -∂W (y,t)/∂t W (y,t) d x d y b a V (x)W (x, t) d x 2 = b a b a U (x) V (x) -U (y) V (y) ∂W (x,t)/∂t W (x,t) -∂W (y,t)/∂t W (y,t) ×V (x)V (y)W (x, t)W (y, t) d x d y 2 b a V (x)W (x, t) d x 2 .
The proof of Lemma 2.8 is complete. □ Lemma 2.9 ([40, p. 161, Theorem 12b]). A function f (x) is completely monotonic on (0, ∞) if and only if

f (x) = ∞ 0 e -xt d σ(t), x ∈ (0, ∞), (2.5) 
where σ(s) is non-decreasing and the integral in (2.5) converges for x ∈ (0, ∞).

Decreasing property of a ratio defined by three polygamma functions

In this section, we prove that the function Q m,n (x) defined in (1.3) is decreasing.

Theorem 3.1. For m, n ∈ N, the function Q m,n (x) defined in (1.3) is decreasing from (0, ∞) onto -(m+n-1)! (m-1)!(n-1)! , 0 . Consequently, the double inequality (1.1), that is,

- (m + n -1)! (m -1)!(n -1)! < Q m,n < 0, m, n ∈ N,
is valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced by any larger and smaller numbers respectively.

Proof. By virtue of the integral representation (2.1), we can rearranged Q m,n (x) as

Q m,n (x) = - ∞ 0 t m+n-1 g(t) e -xt d t ∞ 0 t m-1 g(t) e -xt d t ∞ 0 t n-1 g(t) e -xt d t
.

By Lemma 2.3, we obtain

Q m,n (x) = - ∞ 0 t m+n-1 g(t) e -xt d t ∞ 0 t 0 u m-1 (t -u) n-1 g(u)g(t -u) d u e -xt d t .
By Lemma 2.4, we only need to prove the ratio

P m,n (t) = t m+n-1 g(t) t 0 u m-1 (t -u) n-1 g(u)g(t -u) d u = t m+n-1 g(t) t m+n-1 1 0 s m-1 (1 -s) n-1 g(st)g((1 -s)t) d s = 1 1 0 s m-1 (1 -s) n-1 g(st) g s (t) g((1-s)t) g 1-s (t) d s
is decreasing on (0, ∞). Hence, it suffices to show that the ratio g(st) g s (t) for fixed s ∈ (0, 1) is increasing in t ∈ (0, ∞). This increasing property of g (st) g s (t) has been proved in Lemma 2.5 in this paper. As a result, the function Q m,n (x) defined in (1.3) is decreasing on (0, ∞).

Making use of the limits (2.3) and (2.4) in Lemma 2.6 yields

lim x→0 + Q m,n (x) = (lim x→0 + x) lim x→0 + x m+n+1 ψ (m+n) (x) lim x→0 + [x m+1 ψ (m) (x)] lim x→0 + [x n+1 ψ (n) (x)] = 0 and lim x→∞ Q m,n (x) = lim x→∞ x m+n ψ (m+n) (x) lim x→∞ [x m ψ (m) (x)] lim x→∞ [x n ψ (n) (x)] = (-1) m+n-1 (m + n -1)! (-1) m-1 (m -1)!(-1) n-1 (n -1)! = - (m + n -1)! (m -1)!(n -1)! .
The proof of Theorem 3.1 is complete. □

Decreasing property of a ratio defined by four polygamma functions

In this section, we prove that the function Q m,n;p,q defined in (1.4) is decreasing.

Theorem 4.1. For m, n, p, q ∈ N with the majorizing relation (p, q) ≻ (m, n), the ratio Q m,n;p,q (x) defined in (1.4) is decreasing from (0, ∞) onto the interval F. QI (m-1)!(n-1)! (p-1)!(q-1)! , m!n! p!q! . Consequently, for m, n, p, q ∈ N with (p, q) ≻ (m, n), the double inequality (1.2), that is,

(m -1)!(n -1)! (p -1)!(q -1)! < Q m,n;p,q (x) < m!n! p!q! ,
is valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced by any larger and smaller scalars respectively.

Proof. By the limits (2.3) and (2.4) in Lemma 2.6, we obtain

lim x→0 + Q m,n;p,q (x) = lim x→0 + x m+1 ψ (m) (x) lim x→0 + x n+1 ψ (n) (x) lim x→0 + x p+1 ψ (p) (x) lim x→0 + x q+1 ψ (q) (x) = (-1) m+1 m!(-1) n+1 n! (-1) p+1 p!(-1) q+1 q! = m!n! p!q! and lim x→∞ Q m,n;p,q (x) = lim x→∞ x m ψ (m) (x) lim x→∞ x n ψ (n) (x) lim x→∞ x p ψ (p) (x) lim x→∞ x q ψ (q) (x) = (-1) m-1 (m -1)!(-1) n-1 (n -1)! (-1) p-1 (p -1)!(-1) q-1 (q -1)! = (q -1)!(n -1)! (p -1)!(q -1)! .
Making use of the integral representation (2.1) yields

Q m,n;p,q (x) = ∞ 0 t m-1 g(t) e -xt d t ∞ 0 t n-1 g(t) e -xt d t ∞ 0 t p-1 g(t) e -xt d t ∞ 0 t q-1 g(t) e -xt d t .
Utilizing Lemma 2.3 gives

Q m,n;p,q (x) = ∞ 0 t 0 u m-1 (t -u) n-1 g(u)g(t -u) d u e -xt d t ∞ 0 t 0 u p-1 (t -u) q-1 g(u)g(t -u) d u e -xt d t .
Employing Lemma 2.4 tells us that, it suffices to prove the increasing property in t of the ratio

t 0 u m-1 (t -u) n-1 g(u)g(t -u) d u t 0 u p-1 (t -u) q-1 g(u)g(t -u) d u = 1 0 s m-1 (1 -s) n-1 g(st)g((1 -s)t) d s 1 0 s p-1 (1 -s) q-1 g(st)g((1 -s)t) d s = 1/2 0 s m-1 (1 -s) n-1 + (1 -s) m-1 s n-1 g(st)g((1 -s)t) d s 1/2 0 [s p-1 (1 -s) q-1 + (1 -s) p-1 s q-1 ]g(st)g((1 -s)t) d s = 1/2 0 ϕ m,n (s)φ(s, t) d s 1/2 0 ϕ p,q (s)φ(s, t) d s ,
where

ϕ i,j (s) = s i-1 (1 -s) j-1 + (1 -s) i-1 s j-1 and φ(s, t) = g(st)g((1 -s)t). (4.1)
Lemma 2.7 implies that the ratio ϕm,n(s) ϕp,q(s) is increasing in s ∈ 0, 1 2 for (p, q) ≻ (m, n). Further making use of the inequality (2.2) in Lemma 2.5 and utilizing Lemma 2.8 reveal that the function Q m,n;p,q (x) is decreasing in x ∈ (0, ∞). The proof of Theorem 4.1 is complete. □

An alternative proof of Theorem 1.1

In this section, we supply an alternative proof of Theorem 1.1.

For q = 0, we have

F p,m,n,0;c (x) = ψ (m) (x) ψ (n) (x) -c ψ (p) (x) = ∞ 0 t m 1 -e -t e -xt d t ∞ 0 t n 1 -e -t e -xt d t -c ∞ 0 t p 1 -e -t e -xt d t = ∞ 0 t 0 u m-1 (t -u) n-1 g(u)g(t -u) d u -ct m+n-1 g(t) e -xt d t = ∞ 0 1 0 s m-1 (1 -s) n-1 g(st)g((1 -s)t) g(t) d s -c t m+n-1 g(t) e -xt d t,
where we used the integral representation (2.1) and Lemma 2.3. From the second property in Lemma 2.5, it follows that the function

1 0 s m-1 (1 -s) n-1 g(st)g((1 -s)t) g(t) d s
is decreasing in t ∈ (0, ∞) and has the limits

1 0 s m-1 (1 -s) n-1 g(st)g((1 -s)t) g(t) d s →    1 0 s m-1 (1 -s) n-1 d s, t → 0; ∞, t → ∞.
Consequently, basing on Lemma 2.9, we see that, if and only if

c ≤ 1 0 s m-1 (1 -s) n-1 d s = B(m, n) = (m -1)!(n -1)! (m + n -1)! ,
the function F p,m,n,0;c (x) is completely monotonic on (0, ∞).

For q ≥ 1, we have

F p,m,n,q;c (x) = ψ (m) (x) ψ (n) (x) -c ψ (p) (x) ψ (q) (x) = ∞ 0 t m-1 g(t) e -xt d t ∞ 0 t n-1 g(t) e -xt d t -c ∞ 0 t p-1 g(t) e -xt d t ∞ 0 t q-1 g(t) e -xt d t = ∞ 0 t 0 u m-1 (t -u) n-1 g(u)g(t -u) d u e -xt d t -c ∞ 0 t 0 u p-1 (t -u) q-1 g(u)g(t -u) d u e -xt d t = ∞ 0 t m+n-1 1 0 s m-1 (1 -s) n-1 g(st)g((1 -s)t) d s -ct p+q-1 1 0 s p-1 (1 -s) q-1 g(st)g((1 -s)t) d s e -xt d t = ∞ 0 1 0 s m-1 (1 -s) n-1 g(st)g((1 -s)t) d s 1 0 s p-1 (1 -s) q-1 g(st)g((1 -s)t) d s -c × t m+n-1 1 0 s p-1 (1 -s) q-1 g(st)g((1 -s)t) d s e -xt d t = ∞ 0 1/2 0 [s m-1 (1 -s) n-1 + s n-1 (1 -s) m-1 ]g(st)g((1 -s)t) d s 1/2 0 [s p-1 (1 -s) q-1 + s q-1 (1 -s) p-1 ]g(st)g((1 -s)t) d s F. QI -c t m+n-1 1 0 s p-1 (1 -s) q-1 g(st)g((1 -s)t) d s e -xt d t,
where we used the integral representation (2.1) and Lemma 2.3. Employing the inequality (2.2) in Lemma 2.5 and applying Lemmas 2.7 and 2.8 reveal that the function

1/2 0 [s m-1 (1 -s) n-1 + s n-1 (1 -s) m-1 ]g(st)g((1 -s)t) d s 1/2 0 [s p-1 (1 -s) q-1 + s q-1 (1 -s) p-1 ]g(st)g((1 -s)t) d s = 1/2 0 ϕ m,n (s)φ(s, t) d s 1/2 0 ϕ p,q (s)φ(s, t) d s is increasing in t ∈ (0, ∞)
, where ϕ i,j (s) and φ(s, t) are defined in (4.1). It is easy to see that

lim t→0 1/2 0 ϕ m,n (s)φ(s, t) d s 1/2 0 ϕ p,q (s)φ(s, t) d s = 1/2 0 [s m-1 (1 -s) n-1 + s n-1 (1 -s) m-1 ] d s 1/2 0 [s p-1 (1 -s) q-1 + s q-1 (1 -s) p-1 ] d s = 1 0 s m-1 (1 -s) n-1 d s 1 0 s p-1 (1 -s) q-1 d s = B(m, n) B(p, q) = (m -1)!(n -1)! (p -1)!(q -1)! . Since lim t→∞ g(t) t = 1, we acquire lim t→∞ 1/2 0 ϕ m,n (s)φ(s, t) d s 1/2 0 ϕ p,q (s)φ(s, t) d s = 1/2 0 [s m-1 (1 -s) n-1 + s n-1 (1 -s) m-1 ]s(1 -s) d s 1/2 0 [s p-1 (1 -s) q-1 + s q-1 (1 -s) p-1 ]s(1 -s) d s = 1 0 s m (1 -s) n d s 1 0 s p (1 -s) q d s = B(m + 1, n + 1) B(p + 1, q + 1) = m!n! p!q! .
Combining these with Lemma 2.9 concludes that, (1) if and only if c ≤ (m -1)!(n -1)! (p -1)!(q -1)! , the function F p,m,n,q;c (x) is completely monotonic in x ∈ (0, ∞); (2) if and only if c ≥ m!n! p!q! , the function -F p,m,n,q;c (x) is completely monotonic in x ∈ (0, ∞). The proof of Theorem 1.1 is complete.

Remarks

Finally, we list several remarks on our main results and their proofs. Remark 6.1. The papers [START_REF] Alzer | Inequalities for the polygamma functions[END_REF][START_REF] Batır | On some properties of digamma and polygamma functions[END_REF][START_REF] Gao | Some completely monotonic functions involving the polygamma functions[END_REF][START_REF] Gao | Some monotonicity properties of gamma and q-gamma functions[END_REF][START_REF] Yang | Some properties of the divided difference of psi and polygamma functions[END_REF] are related to Theorem 1.1. Theorems 3.1 and 4.1 in this paper are related to some results reviewed and surveyed in [START_REF] Qi | Completely monotonic degree of a function involving trigamma and tetragamma functions[END_REF][START_REF] Qi | On complete monotonicity for several classes of functions related to ratios of gamma functions[END_REF] and closely related references therein. Remark 6.2. Lemma 2.5 in this paper generalizes the second item in [START_REF] Qi | Lower bound of sectional curvature of manifold of beta distributions and complete monotonicity of functions involving polygamma functions[END_REF]Lemma 2.3], which reads that the function g(2t) g 2 (t) is decreasing from (0, ∞) onto (0, 1 

[ψ (n+1) (x)] 2 ψ (n) (x)ψ (n+2) (x)
for n ≥ 1 is decreasing from (0, ∞) onto the interval n n+1 , n+1 n+2 . Remark 6.5. Direct differentiation gives

Q ′ m,n (x) = ψ (m+n+1) (x)ψ (m) (x)ψ (n) (x) -ψ (m+n) (x) ψ (m) (x)ψ (n) (x) ′ [ψ (m) (x)ψ (n) (x)] 2 .
The decreasing property of Q m,n (x) in Theorem 3.1 implies that the inequality

ψ (m+n) (x) ψ (m) (x)ψ (n) (x) ′ -ψ (m+n+1) (x)ψ (m) (x)ψ (n) (x) > 0, equivalently, ψ (m) (x)ψ (n) (x) ′ ψ (m) (x)ψ (n) (x) > ψ (m+n+1) (x) ψ (m+n) (x) , is valid on (0, ∞) for m, n ∈ N.
We guess that, for m, n ∈ N, the function

ψ (m+n) (x) ψ (m) (x)ψ (n) (x) ′ -ψ (m+n+1) (x)ψ (m) (x)ψ (n) (x)
should be completely monotonic in x ∈ (0, ∞). Generally, one can discuss necessary and sufficient conditions on Ω m,n ∈ R such that the function

ψ (m+n) (x) ψ (m) (x)ψ (n) (x) ′ -Ω m,n ψ (m+n+1) (x)ψ (m) (x)ψ (n) (x)
and its opposite are respectively completely monotonic on (0, ∞).

Remark 6.6. It is immediate that

Q ′ m,n;p,q (x) = ψ (m) (x)ψ (n) (x) ′ [ψ (p) (x)ψ (q) (x)] -ψ (m) (x)ψ (n) (x) [ψ (p) (x)ψ (q) (x)] ′ [ψ (p) (x)ψ (q) (x)] 2 .
The decreasing property of Q m,n;p,q (x) in Theorem 4.1 implies that the inequality

ψ (m) (x)ψ (n) (x) [ψ (p) (x)ψ (q) (x)] ′ -ψ (m) (x)ψ (n) (x) ′ [ψ (p) (x)ψ (q) (x)] > 0, equivalently, [ψ (p) (x)ψ (q) (x)] ′ ψ (p) (x)ψ (q) (x) > ψ (m) (x)ψ (n) (x) ′ ψ (m) (x)ψ (n) (x) , is valid on (0, ∞) for (p, q) ≻ (m, n).
We guess that, for (p, q) ≻ (m, n), the function

ψ (m) (x)ψ (n) (x) [ψ (p) (x)ψ (q) (x)] ′ -ψ (m) (x)ψ (n) (x) ′ [ψ (p) (x)ψ (q) (x)]
should be completely monotonic in x ∈ (0, ∞). Generally, for (p, q) ≻ (m, n), one can discuss necessary and sufficient conditions on Ω m,n;p,q ∈ R such that the function

ψ (m) (x)ψ (n) (x) [ψ (p) (x)ψ (q) (x)] ′ -Ω m,n;p,q ψ (m) (x)ψ (n) (x) ′ [ψ (p) (x)ψ (q) (x)]
and its opposite are respectively completely monotonic on (0, ∞).

Remark 6.7. For n ≥ 2 and two nonnegative integer tuples α

= (α 1 , α 2 , . . . , α n ) ∈ N n 0 and β = (β 1 , β 2 , . . . , β n ) ∈ N n , let P α,β;C α,β (x) = n r=1 ψ (αr) (x) -C α,β n r=1 ψ (βr) (x)
and

Q α,β (x) = n r=1 ψ (αr) (x)
n r=1 ψ (βr) (x) on (0, ∞), where we denote ψ (0) (x) = -1 for our own convenience. It is clear that

P (2k,0),(k,k);C (2k,0),(k,k) (x) = F k,-C (2k,0),(k,k) (x), Q (2k,0),(k,k) (x) = F k,2 (x), Q (m+n,0),(m,n) (x) = Q m,n (x), Q (m,n),(p,q) (x) = Q m,n;p,q (x).
We guess that, if α ≻ β, the function Q α,β (x) is increasing from (0, ∞) onto the interval Generally, for α ≻ β, one can discuss necessary and sufficient conditions on C α,β ∈ R such that the function P α,β;C α,β (x) and its opposite are respectively completely monotonic on (0, ∞). Remark 6.8. Gurland's ratio T (s, t) = Γ(s)Γ(t) [Γ((s + t)/2)] 2 was firstly defined in [START_REF] Gurland | An inequality satisfied by the gamma function[END_REF]. In appearance, we can regard the functions Q m,n (x) and Q m,n;p,q (x) defined in (1.3) and (1.4) as analogues of Gurland's ratio T (s, t). In [START_REF] Qi | Bounds for the ratio of two gamma functions: from Wendel's asymptotic relation to Elezović-Giordano-Pečarić's theorem[END_REF][START_REF] Tian | Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders[END_REF], there existed a detailed survey and review of Gurland's ratio T (s, t) and related results. In [START_REF] Yang | Some properties of the generalized Gaussian ratio and their applications[END_REF], the functions T 1 p , 3 p and T 1 p , 5 p with their statistical backgrounds were mentioned. Remark 6.9. The ratios of finitely many gamma functions and polygamma functions have applications in differential geometry, manifolds, statistics, probability, and their intersections. See, for example, the papers [START_REF] Brigant | Fisher-Rao geometry of Dirichlet distributions[END_REF][START_REF] Guo | On the increasing monotonicity of a sequence originating from computation of the probability of intersecting between a plane couple and a convex body[END_REF][START_REF] Qi | Some properties of a function originating from geometric probability for pairs of hyperplanes intersecting with a convex body[END_REF][START_REF] Qi | Some properties of a sequence arising from geometric probability for pairs of hyperplanes intersecting with a convex body[END_REF][START_REF] Zhao | Geometric probability for pairs of hyperplanes intersecting with a convex body[END_REF]. Remark 6.10. As a generalization of decreasing property of real functions of one variable, one can consider (logarithmically) complete monotonicity and completely monotonic degrees. For details, please refer to [START_REF] Qi | Bounds for completely monotonic degree of a remainder for an asymptotic expansion of the trigamma function[END_REF][START_REF] Qi | Completely monotonic degree of a function involving trigamma and tetragamma functions[END_REF][START_REF] Qi | Completely monotonic degrees for a difference between the logarithmic and psi functions[END_REF][START_REF] Tian | New properties of the divided difference of psi and polygamma functions[END_REF][START_REF] Xu | Qi's conjectures on completely monotonic degrees of remainders of asymptotic formulas of di-and tri-gamma functions[END_REF][START_REF] Yang | A class of completely mixed monotonic functions involving the gamma function with applications[END_REF][START_REF] Zhu | Completely monotonic integer degrees for a class of special functions[END_REF] and the review article [START_REF] Qi | On complete monotonicity for several classes of functions related to ratios of gamma functions[END_REF]. Remark 6.11. This paper is a revised version of the electronic preprint [START_REF] Qi | Decreasing monotonicity of two ratios defined by three or four polygamma functions[END_REF] and is the eighth one in a series of articles including [START_REF] Qi | Decreasing property and complete monotonicity of two functions constituted via three derivatives of a function involving trigamma function[END_REF][START_REF] Qi | Lower bound of sectional curvature of Fisher-Rao manifold of beta distributions and complete monotonicity of functions involving polygamma functions[END_REF][START_REF] Qi | Necessary and sufficient conditions for a difference constituted by four derivatives of a function involving trigamma function to be completely monotonic[END_REF][START_REF] Qi | Necessary and sufficient conditions for a difference defined by four derivatives of a function containing trigamma function to be completely monotonic[END_REF][START_REF] Qi | Necessary and sufficient conditions for a ratio involving trigamma and tetragamma functions to be monotonic[END_REF][START_REF] Qi | Necessary and sufficient conditions for complete monotonicity and monotonicity of two functions defined by two derivatives of a function involving trigamma function[END_REF][START_REF] Qi | Two monotonic functions defined by two derivatives of a function involving trigamma function[END_REF][START_REF] Qi | Some properties of several functions involving polygamma functions and originating from the sectional curvature of the beta manifold[END_REF][START_REF] Qi | Monotonicity and complete monotonicity of two functions defined by three derivatives of a function involving trigamma function[END_REF].
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Lemma 2 . 1 (

 21 [START_REF] Anderson | Conformal Invariants, Inequalities, and Quasiconformal Maps[END_REF] Theorem 1.25]). For a, b ∈ R with a < b, let f (x) and g(x) be continuous on [a, b], differentiable on (a, b), and g ′ (x) ̸ = 0 on (a, b). If the ratio f ′ (x) g ′ (x) is increasing on (a, b), then both f (x)-f (a) g(x)-g(a) and f (x)-f (b) g(x)-g(b) are increasing in x ∈ (a, b).

Lemma 2 . 2 (

 22 [1, p. 260, 6.4.1]). The integral representation

  r -1)! (β r -1)! .

  ). Remark 6.3. Taking W (x, t) = e -xt in Lemma 2.8 gives

	which is decreasing in x ∈ (-∞, ∞). Further setting U (x) = A(x), V (x) = B(x),
	and (a, b) = (0, ∞) in Lemma 2.8 leads to Lemma 2.4, which was established in [44,
	Lemma 4]. This means that Lemma 2.8 in this paper is a generalization of [44,
	Lemma 4]. Lemma 2.8 has been announced in [30, Remark 7.2].
	Remark 6.4. From the majorizing relation (n + 2, n) ≻ (n + 1, n + 1), we see that
	Theorem 4.1 in this paper generalizes a conclusion in [42, Theorem 2], which states
	that the function			
	∂W (x, t)/∂t W (x, t)	=	∂ e -xt /∂t e -xt	= -x,