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DECREASING PROPERTIES OF TWO RATIOS DEFINED BY

THREE AND FOUR POLYGAMMA FUNCTIONS

FENG QI

Dedicated to my elder brother, Can-Long Qi, and his family

Abstract. In the paper, by virtue of convolution theorem for the Laplace

transforms, with the aid of three monotonicity rules for the ratios of two func-
tions, of two definite integrals, and of two Laplace transforms, in terms of the

majorization, and in the light of other analytic techniques, the author presents

decreasing properties of two ratios defined by three and four polygamma func-
tions.
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1. Motivations

In the literature [1, Section 6.4], the function

Γ(z) =

∫ ∞

0

tz−1 e−t d t, ℜ(z) > 0

and its logarithmic derivative ψ(z) = [ln Γ(z)]′ = Γ′(z)
Γ(z) are called Euler’s gamma

function and digamma function respectively. Moreover, the functions ψ′(z), ψ′′(z),
ψ′′′(z), and ψ(4)(z) are known as the trigamma, tetragamma, pentagamma, and
hexagamma functions respectively. As a set, all the derivatives ψ(k)(z) for k ∈
N0 = {0} ∪ N are known as polygamma functions.

Recall from Chapter XIII in [13], Chapter 1 in [36], and Chapter IV in [40] that,
if a function f(x) on an interval I has derivatives of all orders on I and satisfies
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(−1)nf (n)(x) ≥ 0 for x ∈ I and n ∈ N0, then we call f(x) a completely monotonic
function on I.

In [27, Theorem 1.1] and [28, Theorem 3], among other things, the function

[ψ′(x)]2 + λψ′′(x)

was proved to be completely monotonic on (0,∞) if and only if λ ≤ 1. In [10,
Theorem 1], it was proved that, among the functions

fm,n(x) =
[
ψ(m)(x)

]2
+ψ(n)(x), m, n ∈ N, x ∈ (0,∞),

(1) the functions

f1,2(x) = [ψ′(x)]2 + ψ′′(x)

and

fm,2n−1(x) =
[
ψ(m)(x)

]2
+ψ(2n−1)(x)

are completely monotonic on (0,∞), but the complete monotonicity of
fm,2n−1(x) is trivial;

(2) the functions

fm,2n(x) =
[
ψ(m)(x)

]2
+ψ(2n)(x)

for (m,n) ̸= (1, 1) are not monotonic and does not keep the same sign on
(0,∞).

For k ∈ N and x ∈ (0,∞), let

Fk,ηk(x) = ψ(2k)(x) + ηk
[
ψ(k)(x)

]2
and Fk,ϑk

(x) =
ψ(2k)(x)

[(−1)k+1ψ(k)(x)]ϑk
.

In [18, Theorem 3.2], the author proved the following conclusions:

(1) if and only if ηk ≥ 1
2

(2k)!
(k−1)!k! , the function Fk,ηk(x) is completely monotonic

on (0,∞);
(2) if and only if ηk ≤ 0, the function −Fk,ηk(x) is completely monotonic on

(0,∞);
(3) if and only if ϑk ≥ 2, the function Fk,ϑk

(x) is decreasing on (0,∞);

(4) if and only if ϑk ≤ 2k+1
k+1 , the function Fk,ϑk

(x) is increasing on (0,∞);

(5) the following limits are valid:

lim
x→0+

Fk,ϑk
(x) =



− (2k)!

[(k)!](2k+1)/(k+1)
, ϑk =

2k + 1

k + 1

0, ϑk >
2k + 1

k + 1

−∞, ϑk <
2k + 1

k + 1

and

lim
x→∞

Fk,ϑk
(x) =


− (2k − 1)!

[(k − 1)!]2
, ϑk = 2

−∞, ϑk > 2

0, ϑk < 2;

(6) the double inequality

−1

2

(2k)!

(k − 1)!k!
<

ψ(2k)(x)

[(−1)k+1ψ(k)(x)]2
< 0

is valid on (0,∞) and sharp in the sense that the lower and upper bounds
cannot be replaced by any greater and less numbers respectively.
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Let α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) ∈ Rn. A n-tuple α is said to
strictly majorize β (in symbols α ≻ β) if

(
α[1], α[2], . . . , α[n]

)
̸=
(
β[1], β[2], . . . , β[n]

)
,∑k

i=1 α[i] ≥
∑k
i=1 β[i] for 1 ≤ k ≤ n − 1, and

∑n
i=1 αi =

∑n
i=1 βi, where α[1] ≥

α[2] ≥ · · · ≥ α[n] and β[1] ≥ β[2] ≥ · · · ≥ β[n] are rearrangements of α and β
in a descending order. See [12, p. 8, Definition A.1] or closely related texts and
references in the papers [6, 35, 37, 47].

Theorem 1.1 ([18, Theorem 3.1]). Let p, q,m, n ∈ N0 satisfying (p, q) ≻ (m,n)
and let

Fp,m,n,q;c(x) =

{∣∣ψ(m)(x)
∣∣∣∣ψ(n)(x)

∣∣− c
∣∣ψ(p)(x)

∣∣, q = 0∣∣ψ(m)(x)
∣∣∣∣ψ(n)(x)

∣∣− c
∣∣ψ(p)(x)

∣∣∣∣ψ(q)(x)
∣∣, q ≥ 1

for c ∈ R and x ∈ (0,∞). Then

(1) for q ≥ 0, if and only if

c ≤


(m− 1)!(n− 1)!

(p− 1)!
, q = 0

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
, q ≥ 1,

the function Fp,m,n,q;c(x) is completely monotonic in x ∈ (0,∞);

(2) for q ≥ 1, if and only if c ≥ m!n!
p!q! , the function −Fp,m,n,q;c(x) is completely

monotonic in x ∈ (0,∞);
(3) the double inequality

− (m+ n− 1)!

(m− 1)!(n− 1)!
<

ψ(m+n)(x)

ψ(m)(x)ψ(n)(x)
< 0 (1.1)

for m,n ∈ N and the double inequality

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
<
ψ(m)(x)ψ(n)(x)

ψ(p)(x)ψ(q)(x)
<
m!n!

p!q!
(1.2)

for m,n, p, q ∈ N with p > m ≥ n > q ≥ 1 and m+ n = p+ q are valid on
(0,∞) and sharp in the sense that the lower and upper bounds cannot be
replaced by any larger and smaller scalars respectively.

In [19, Remark 6.2], the preprint of the formally published paper [18], the author
guessed that,

(1) for m,n ∈ N, the function

Qm,n(x) =
ψ(m+n)(x)

ψ(m)(x)ψ(n)(x)
(1.3)

should be decreasing on (0,∞);
(2) for m,n, p, q ∈ N such that (p, q) ≻ (m,n), the function

Qm,n;p,q(x) =
ψ(m)(x)ψ(n)(x)

ψ(p)(x)ψ(q)(x)
(1.4)

should be decreasing on (0,∞).

It is clear that Qk,k(x) = Fk,2(x) for k ∈ N, which is decreasing on (0,∞).
In this paper, we aim to confirm these two guesses. We also supply an alternative

proof of Theorem 1.1.



4 F. QI

2. Lemmas

The following lemmas are necessary in this paper.

Lemma 2.1 ([2, pp. 10–11, Theorem 1.25]). For a, b ∈ R with a < b, let f(x) and
g(x) be continuous on [a, b], differentiable on (a, b), and g′(x) ̸= 0 on (a, b). If the

ratio f ′(x)
g′(x) is increasing on (a, b), then both f(x)−f(a)

g(x)−g(a) and f(x)−f(b)
g(x)−g(b) are increasing

in x ∈ (a, b).

Lemma 2.2 ([1, p. 260, 6.4.1]). The integral representation

ψ(n)(z) = (−1)n+1

∫ ∞

0

tn

1− e−t
e−zt d t (2.1)

is valid for ℜ(z) > 0 and n ≥ 1.

Lemma 2.3 (Convolution theorem for the Laplace transforms [40, pp. 91–92]). Let
the functions fk(t) for k = 1, 2 be piecewise continuous in arbitrary finite intervals
included in (0,∞). If there exist some constants Mk > 0 and ck ≥ 0 such that the
inequalities |fk(t)| ≤Mke

ckt for k = 1, 2 are valid, then∫ ∞

0

[ ∫ t

0

f1(u)f2(t− u) du

]
e−st d t =

∫ ∞

0

f1(u) e
−su du

∫ ∞

0

f2(v) e
−sv d v.

Lemma 2.4 ([44, Lemma 4] and [45, Section 3]). Let the functions A(x) and
B(x) ̸= 0 be defined on (0,∞) such that their Laplace transforms exist. If the ratio
A(x)
B(x) is increasing, then the ratio

∫ ∞
0
A(x) e−xt d x∫ ∞

0
B(x) e−xt d x

is decreasing on (0,∞).

Lemma 2.5. Let

g(t) =


t

1− e−t
, t ̸= 0;

1, t = 0.

Then the following conclusions are valid.

(1) The function g(t) is infinitely differentiable on (−∞,∞), increasing from
(−∞,∞) onto (0,∞), convex on (−∞,∞), and logarithmically concave on
(−∞,∞).

(2) For fixed s ∈ (0, 1), the ratio gs(t)
g(st) is decreasing in t from (0,∞) onto (0, 1).

(3) For s ∈
(
0, 12

)
and t ∈ (0,∞), the mixed second-order partial derivative

∂2 ln[g(st)g((1− s)t)]

∂s∂t
> 0. (2.2)

Proof. The differentiability, monotonicity, and convexity of g(t) come from utiliza-
tion of [22, Lemma 2.3].

Direct computation yields

[ln g(t)]′′ = [ln g(−t)]′′ = −
e2t− et

(
t2 + 2

)
+ 1

(et−1)2t2

= − 1

(et−1)2t2

∞∑
k=4

[2k − (k − 1)k − 2]
tk

k!
< 0

on (0,∞). Hence, the function g(t) is logarithmically concave on (−∞,∞). See
also the proof of [19, Lemma 2.3].

It is straightforward that

lim
t→0

gs(t)

g(st)
=

limt→0 g
s(t)

limt→0 g(st)
=

1s

1
= 1
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and

lim
t→∞

gs(t)

g(st)
=

limt→∞[g(t)/t]s

limt→∞[g(st)/st]
lim
t→∞

ts

st
=

1

s
lim
t→∞

1

t1−s
= 0.

The first derivative of the ratio gs(t)
g(st) is

d

d t

[
gs(t)

g(st)

]
=
sgs(t)

g(st)

[
g′(t)

g(t)
− g′(st)

g(st)

]
.

Hence, for arriving at decreasing property of the ratio gs(t)
g(st) , it is sufficient to show

that the ratio g′(t)
g(t) is decreasing on (0,∞). For this, it is sufficient to show that

the function g(t) is logarithmically concave on (0,∞). This requirement has been
verified in last paragraph.

By Lemma 2.1, straightforward differentiation gives

∂ ln[g(st)g((1− s)t)]

∂t
=

1

t

t+ 2 et+2− est[(1− s)t+ 2]− e(1−s)t(st+ 2)

(est−1)[e(1−s)t−1]
,

lim
s→0

[
t+ 2 et+2− est[(1− s)t+ 2]− e(1−s)t(st+ 2)

]
= lim
s→0

(
(est−1)[e(1−s)t−1]

)
= 0,

[t+ 2 et+2− est[(1− s)t+ 2]− e(1−s)t(st+ 2)]′s
[(est−1)(e(1−s)t−1)]′s

=
et(st+ 1)− e2st[(1− s)t+ 1]

et− e2st
,

lim
s→1/2

(
et(st+ 1)− e2st[(1− s)t+ 1]

)
= lim
s→1/2

(
et− e2st

)
= 0,

and (
et(st+ 1)− e2st[(1− s)t+ 1]

)′
s

(et− e2st)′s
=

1

2
− e(1−2s)t−(1− 2s)t− 1

2t

is increasing in s ∈
[
0, 12

]
. This means that the partial derivative ∂ ln[g(st)g((1−s)t)]

∂t

is increasing in s ∈
[
0, 12

]
for fixed t > 0. As a result, the inequality (2.2) is valid.

The proof of Lemma 2.5 is complete. □

Lemma 2.6 ([18, Lemma 2.1]). For k ∈ N, we have the limits

lim
x→0+

[
xkψ(k−1)(x)

]
= (−1)k(k − 1)! (2.3)

and

lim
x→∞

[
xkψ(k)(x)

]
= (−1)k−1(k − 1)!. (2.4)

Lemma 2.7. For m,n, p, q ∈ N such that (p, q) ≻ (m,n), the function

sm−1(1− s)n−1 + (1− s)m−1sn−1

sp−1(1− s)q−1 + (1− s)p−1sq−1

is increasing in s ∈
(
0, 12

)
.

Proof. Direct computation yields

sm−1(1− s)n−1 + (1− s)m−1sn−1

sp−1(1− s)q−1 + (1− s)p−1sq−1
=

(
1
s − 1

)n−1
+
(
1
s − 1

)m−1(
1
s − 1

)q−1
+
(
1
s − 1

)p−1

=
zn−1 + zm−1

zq−1 + zp−1
=
zn−q + zm−q

1 + zp−q
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and

d

d z

(
zb + zc

1 + za

)
=

(
bzb + czc

)
(1 + za)− aza

(
zb + zc

)
z(1 + za)2

=
bzb
(
1− z2c

)
+ czc

(
1− z2b

)
z(1 + za)2

< 0,

where z = 1
s −1 ∈ (1,∞) and a = p−q > b = m−q ≥ c = n−q > 0 with a = b+ c.

The proof of Lemma 2.7 is complete. □

Lemma 2.8. Let the functions U(x), V (x) > 0, and W (x, t) > 0 be integrable in

x ∈ (a, b). If the ratios ∂W (x,t)/∂t
W (x,t) and U(x)

V (x) are both increasing or both decreasing

in x ∈ (a, b), then the ratio

R(t) =

∫ b
a
U(x)W (x, t) dx∫ b

a
V (x)W (x, t) dx

is increasing in t; if one of the ratios ∂W (x,t)/∂t
W (x,t) and U(x)

V (x) are increasing and the

other is decreasing in x ∈ (a, b), then the ratio R(t) is decreasing in t.

Proof. Direct differentiation gives

R′(t) =

[ ∫ b
a
U(x)∂W (x,t)

∂t dx
∫ b
a
V (x)W (x, t) dx

−
∫ b
a
U(x)W (x, t) dx

∫ b
a
V (x)∂W (x,t)

∂t dx

]
[∫ b
a
V (x)W (x, t) dx

]2

=

[ ∫ b
a

∫ b
a
U(x)∂W (x,t)

∂t V (y)W (y, t) dx d y

−
∫ b
a

∫ b
a
U(x)W (x, t)V (y)∂W (y,t)

∂t dx d y

]
[∫ b
a
V (x)W (x, t) dx

]2
=

∫ b
a

∫ b
a
U(x)V (y)W (x, t)W (y, t)

[∂W (x,t)/∂t
W (x,t) − ∂W (y,t)/∂t

W (y,t)

]
dxd y[∫ b

a
V (x)W (x, t) dx

]2

=

∫ b
a

∫ b
a

([U(x)
V (x) −

U(y)
V (y)

][∂W (x,t)/∂t
W (x,t) − ∂W (y,t)/∂t

W (y,t)

]
×V (x)V (y)W (x, t)W (y, t)

)
dx d y

2
[∫ b
a
V (x)W (x, t) dx

]2 .

The proof of Lemma 2.8 is complete. □

Lemma 2.9 ([40, p. 161, Theorem 12b]). A function f(x) is completely monotonic
on (0,∞) if and only if

f(x) =

∫ ∞

0

e−xt dσ(t), x ∈ (0,∞), (2.5)

where σ(s) is non-decreasing and the integral in (2.5) converges for x ∈ (0,∞).

3. Decreasing property of a ratio defined by three polygamma
functions

In this section, we prove that the function Qm,n(x) defined in (1.3) is decreasing.
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Theorem 3.1. For m,n ∈ N, the function Qm,n(x) defined in (1.3) is decreasing

from (0,∞) onto
(
− (m+n−1)!

(m−1)!(n−1)! , 0
)
. Consequently, the double inequality (1.1), that

is,

− (m+ n− 1)!

(m− 1)!(n− 1)!
< Qm,n < 0, m, n ∈ N,

is valid on (0,∞) and sharp in the sense that the lower and upper bounds cannot
be replaced by any larger and smaller numbers respectively.

Proof. By virtue of the integral representation (2.1), we can rearranged Qm,n(x) as

Qm,n(x) = −
∫∞
0
tm+n−1g(t) e−xt d t∫∞

0
tm−1g(t) e−xt d t

∫∞
0
tn−1g(t) e−xt d t

.

By Lemma 2.3, we obtain

Qm,n(x) = −
∫∞
0
tm+n−1g(t) e−xt d t∫∞

0

[∫ t
0
um−1(t− u)n−1g(u)g(t− u) du

]
e−xt d t

.

By Lemma 2.4, we only need to prove the ratio

Pm,n(t) =
tm+n−1g(t)∫ t

0
um−1(t− u)n−1g(u)g(t− u) du

=
tm+n−1g(t)

tm+n−1
∫ 1

0
sm−1(1− s)n−1g(st)g((1− s)t) d s

=
1∫ 1

0
sm−1(1− s)n−1 g(st)

gs(t)
g((1−s)t)
g1−s(t) d s

is decreasing on (0,∞). Hence, it suffices to show that the ratio g(st)
gs(t) for fixed

s ∈ (0, 1) is increasing in t ∈ (0,∞). This increasing property of g(st)
gs(t) has been

proved in Lemma 2.5 in this paper. As a result, the function Qm,n(x) defined
in (1.3) is decreasing on (0,∞).

Making use of the limits (2.3) and (2.4) in Lemma 2.6 yields

lim
x→0+

Qm,n(x) =
(limx→0+ x) limx→0+

[
xm+n+1ψ(m+n)(x)

]
limx→0+ [xm+1ψ(m)(x)] limx→0+ [xn+1ψ(n)(x)]

= 0

and

lim
x→∞

Qm,n(x) =
limx→∞

[
xm+nψ(m+n)(x)

]
limx→∞[xmψ(m)(x)] limx→∞[xnψ(n)(x)]

=
(−1)m+n−1(m+ n− 1)!

(−1)m−1(m− 1)!(−1)n−1(n− 1)!

= − (m+ n− 1)!

(m− 1)!(n− 1)!
.

The proof of Theorem 3.1 is complete. □

4. Decreasing property of a ratio defined by four polygamma
functions

In this section, we prove that the function Qm,n;p,q defined in (1.4) is decreasing.

Theorem 4.1. For m,n, p, q ∈ N with the majorizing relation (p, q) ≻ (m,n),
the ratio Qm,n;p,q(x) defined in (1.4) is decreasing from (0,∞) onto the interval
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(p−1)!(q−1)! ,

m!n!
p!q!

)
. Consequently, for m,n, p, q ∈ N with (p, q) ≻ (m,n), the

double inequality (1.2), that is,

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
< Qm,n;p,q(x) <

m!n!

p!q!
,

is valid on (0,∞) and sharp in the sense that the lower and upper bounds cannot
be replaced by any larger and smaller scalars respectively.

Proof. By the limits (2.3) and (2.4) in Lemma 2.6, we obtain

lim
x→0+

Qm,n;p,q(x) =
limx→0+

[
xm+1ψ(m)(x)

]
limx→0+

[
xn+1ψ(n)(x)

]
limx→0+

[
xp+1ψ(p)(x)

]
limx→0+

[
xq+1ψ(q)(x)

]
=

(−1)m+1m!(−1)n+1n!

(−1)p+1p!(−1)q+1q!

=
m!n!

p!q!

and

lim
x→∞

Qm,n;p,q(x) =
limx→∞

[
xmψ(m)(x)

]
limx→∞

[
xnψ(n)(x)

]
limx→∞

[
xpψ(p)(x)

]
limx→∞

[
xqψ(q)(x)

]
=

(−1)m−1(m− 1)!(−1)n−1(n− 1)!

(−1)p−1(p− 1)!(−1)q−1(q − 1)!

=
(q − 1)!(n− 1)!

(p− 1)!(q − 1)!
.

Making use of the integral representation (2.1) yields

Qm,n;p,q(x) =

∫∞
0
tm−1g(t) e−xt d t

∫∞
0
tn−1g(t) e−xt d t∫∞

0
tp−1g(t) e−xt d t

∫∞
0
tq−1g(t) e−xt d t

.

Utilizing Lemma 2.3 gives

Qm,n;p,q(x) =

∫∞
0

[∫ t
0
um−1(t− u)n−1g(u)g(t− u) du

]
e−xt d t∫∞

0

[∫ t
0
up−1(t− u)q−1g(u)g(t− u) du

]
e−xt d t

.

Employing Lemma 2.4 tells us that, it suffices to prove the increasing property in
t of the ratio∫ t

0
um−1(t− u)n−1g(u)g(t− u) du∫ t

0
up−1(t− u)q−1g(u)g(t− u) du

=

∫ 1

0
sm−1(1− s)n−1g(st)g((1− s)t) d s∫ 1

0
sp−1(1− s)q−1g(st)g((1− s)t) d s

=

∫ 1/2

0

[
sm−1(1− s)n−1 + (1− s)m−1sn−1

]
g(st)g((1− s)t) d s∫ 1/2

0
[sp−1(1− s)q−1 + (1− s)p−1sq−1]g(st)g((1− s)t) d s

=

∫ 1/2

0
ϕm,n(s)φ(s, t) d s∫ 1/2

0
ϕp,q(s)φ(s, t) d s

,

where

ϕi,j(s) = si−1(1− s)j−1 + (1− s)i−1sj−1 and φ(s, t) = g(st)g((1− s)t). (4.1)

Lemma 2.7 implies that the ratio
ϕm,n(s)
ϕp,q(s)

is increasing in s ∈
(
0, 12

)
for (p, q) ≻

(m,n). Further making use of the inequality (2.2) in Lemma 2.5 and utilizing
Lemma 2.8 reveal that the function Qm,n;p,q(x) is decreasing in x ∈ (0,∞). The
proof of Theorem 4.1 is complete. □
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5. An alternative proof of Theorem 1.1

In this section, we supply an alternative proof of Theorem 1.1.
For q = 0, we have

Fp,m,n,0;c(x) =
∣∣ψ(m)(x)

∣∣∣∣ψ(n)(x)
∣∣− c

∣∣ψ(p)(x)
∣∣

=

∫ ∞

0

tm

1− e−t
e−xt d t

∫ ∞

0

tn

1− e−t
e−xt d t− c

∫ ∞

0

tp

1− e−t
e−xt d t

=

∫ ∞

0

[∫ t

0

um−1(t− u)n−1g(u)g(t− u) du− ctm+n−1g(t)

]
e−xt d t

=

∫ ∞

0

[∫ 1

0

sm−1(1− s)n−1 g(st)g((1− s)t)

g(t)
d s− c

]
tm+n−1g(t) e−xt d t,

where we used the integral representation (2.1) and Lemma 2.3. From the second
property in Lemma 2.5, it follows that the function∫ 1

0

sm−1(1− s)n−1 g(st)g((1− s)t)

g(t)
d s

is decreasing in t ∈ (0,∞) and has the limits∫ 1

0

sm−1(1− s)n−1 g(st)g((1− s)t)

g(t)
d s→


∫ 1

0

sm−1(1− s)n−1 d s, t→ 0;

∞, t→ ∞.

Consequently, basing on Lemma 2.9, we see that, if and only if

c ≤
∫ 1

0

sm−1(1− s)n−1 d s = B(m,n) =
(m− 1)!(n− 1)!

(m+ n− 1)!
,

the function Fp,m,n,0;c(x) is completely monotonic on (0,∞).
For q ≥ 1, we have

Fp,m,n,q;c(x) =
∣∣ψ(m)(x)

∣∣∣∣ψ(n)(x)
∣∣− c

∣∣ψ(p)(x)
∣∣∣∣ψ(q)(x)

∣∣
=

∫ ∞

0

tm−1g(t) e−xt d t

∫ ∞

0

tn−1g(t) e−xt d t

−c
∫ ∞

0

tp−1g(t) e−xt d t

∫ ∞

0

tq−1g(t) e−xt d t

=

∫ ∞

0

[∫ t

0

um−1(t− u)n−1g(u)g(t− u) du

]
e−xt d t

−c
∫ ∞

0

[∫ t

0

up−1(t− u)q−1g(u)g(t− u) du

]
e−xt d t

=

∫ ∞

0

[
tm+n−1

∫ 1

0

sm−1(1− s)n−1g(st)g((1− s)t) d s

−ctp+q−1

∫ 1

0

sp−1(1− s)q−1g(st)g((1− s)t) d s

]
e−xt d t

=

∫ ∞

0

[∫ 1

0
sm−1(1− s)n−1g(st)g((1− s)t) d s∫ 1

0
sp−1(1− s)q−1g(st)g((1− s)t) d s

− c

]

×
[
tm+n−1

∫ 1

0

sp−1(1− s)q−1g(st)g((1− s)t) d s

]
e−xt d t

=

∫ ∞

0

[∫ 1/2

0
[sm−1(1− s)n−1 + sn−1(1− s)m−1]g(st)g((1− s)t) d s∫ 1/2

0
[sp−1(1− s)q−1 + sq−1(1− s)p−1]g(st)g((1− s)t) d s
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−c

][
tm+n−1

∫ 1

0

sp−1(1− s)q−1g(st)g((1− s)t) d s

]
e−xt d t,

where we used the integral representation (2.1) and Lemma 2.3. Employing the
inequality (2.2) in Lemma 2.5 and applying Lemmas 2.7 and 2.8 reveal that the
function∫ 1/2

0
[sm−1(1− s)n−1 + sn−1(1− s)m−1]g(st)g((1− s)t) d s∫ 1/2

0
[sp−1(1− s)q−1 + sq−1(1− s)p−1]g(st)g((1− s)t) d s

=

∫ 1/2

0
ϕm,n(s)φ(s, t) d s∫ 1/2

0
ϕp,q(s)φ(s, t) d s

is increasing in t ∈ (0,∞), where ϕi,j(s) and φ(s, t) are defined in (4.1). It is easy
to see that

lim
t→0

∫ 1/2

0
ϕm,n(s)φ(s, t) d s∫ 1/2

0
ϕp,q(s)φ(s, t) d s

=

∫ 1/2

0
[sm−1(1− s)n−1 + sn−1(1− s)m−1] d s∫ 1/2

0
[sp−1(1− s)q−1 + sq−1(1− s)p−1] d s

=

∫ 1

0
sm−1(1− s)n−1 d s∫ 1

0
sp−1(1− s)q−1 d s

=
B(m,n)

B(p, q)
=

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
.

Since limt→∞
g(t)
t = 1, we acquire

lim
t→∞

∫ 1/2

0
ϕm,n(s)φ(s, t) d s∫ 1/2

0
ϕp,q(s)φ(s, t) d s

=

∫ 1/2

0
[sm−1(1− s)n−1 + sn−1(1− s)m−1]s(1− s) d s∫ 1/2

0
[sp−1(1− s)q−1 + sq−1(1− s)p−1]s(1− s) d s

=

∫ 1

0
sm(1− s)n d s∫ 1

0
sp(1− s)q d s

=
B(m+ 1, n+ 1)

B(p+ 1, q + 1)
=
m!n!

p!q!
.

Combining these with Lemma 2.9 concludes that,

(1) if and only if

c ≤ (m− 1)!(n− 1)!

(p− 1)!(q − 1)!
,

the function Fp,m,n,q;c(x) is completely monotonic in x ∈ (0,∞);

(2) if and only if c ≥ m!n!
p!q! , the function −Fp,m,n,q;c(x) is completely monotonic

in x ∈ (0,∞).

The proof of Theorem 1.1 is complete.

6. Remarks

Finally, we list several remarks on our main results and their proofs.

Remark 6.1. The papers [3, 4, 7, 8, 42] are related to Theorem 1.1. Theorems 3.1
and 4.1 in this paper are related to some results reviewed and surveyed in [15, 26]
and closely related references therein.

Remark 6.2. Lemma 2.5 in this paper generalizes the second item in [19, Lemma 2.3],

which reads that the function g(2t)
g2(t) is decreasing from (0,∞) onto (0, 1).

Remark 6.3. Taking W (x, t) = e−xt in Lemma 2.8 gives

∂W (x, t)/∂t

W (x, t)
=
∂ e−xt /∂t

e−xt
= −x,
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which is decreasing in x ∈ (−∞,∞). Further setting U(x) = A(x), V (x) = B(x),
and (a, b) = (0,∞) in Lemma 2.8 leads to Lemma 2.4, which was established in [44,
Lemma 4]. This means that Lemma 2.8 in this paper is a generalization of [44,
Lemma 4]. Lemma 2.8 has been announced in [30, Remark 7.2].

Remark 6.4. From the majorizing relation (n+ 2, n) ≻ (n+ 1, n+ 1), we see that
Theorem 4.1 in this paper generalizes a conclusion in [42, Theorem 2], which states

that the function [ψ(n+1)(x)]2

ψ(n)(x)ψ(n+2)(x)
for n ≥ 1 is decreasing from (0,∞) onto the

interval
(

n
n+1 ,

n+1
n+2

)
.

Remark 6.5. Direct differentiation gives

Q′
m,n(x) =

ψ(m+n+1)(x)ψ(m)(x)ψ(n)(x)− ψ(m+n)(x)
[
ψ(m)(x)ψ(n)(x)

]′
[ψ(m)(x)ψ(n)(x)]2

.

The decreasing property of Qm,n(x) in Theorem 3.1 implies that the inequality

ψ(m+n)(x)
[
ψ(m)(x)ψ(n)(x)

]′ − ψ(m+n+1)(x)ψ(m)(x)ψ(n)(x) > 0,

equivalently, [
ψ(m)(x)ψ(n)(x)

]′
ψ(m)(x)ψ(n)(x)

>
ψ(m+n+1)(x)

ψ(m+n)(x)
,

is valid on (0,∞) for m,n ∈ N.
We guess that, for m,n ∈ N, the function

ψ(m+n)(x)
[
ψ(m)(x)ψ(n)(x)

]′ − ψ(m+n+1)(x)ψ(m)(x)ψ(n)(x)

should be completely monotonic in x ∈ (0,∞).
Generally, one can discuss necessary and sufficient conditions on Ωm,n ∈ R such

that the function

ψ(m+n)(x)
[
ψ(m)(x)ψ(n)(x)

]′ − Ωm,nψ
(m+n+1)(x)ψ(m)(x)ψ(n)(x)

and its opposite are respectively completely monotonic on (0,∞).

Remark 6.6. It is immediate that

Q′
m,n;p,q(x) =

( [
ψ(m)(x)ψ(n)(x)

]′
[ψ(p)(x)ψ(q)(x)]

−
[
ψ(m)(x)ψ(n)(x)

]
[ψ(p)(x)ψ(q)(x)]′

)
[ψ(p)(x)ψ(q)(x)]2

.

The decreasing property of Qm,n;p,q(x) in Theorem 4.1 implies that the inequality[
ψ(m)(x)ψ(n)(x)

]
[ψ(p)(x)ψ(q)(x)]′ −

[
ψ(m)(x)ψ(n)(x)

]′
[ψ(p)(x)ψ(q)(x)] > 0,

equivalently,

[ψ(p)(x)ψ(q)(x)]′

ψ(p)(x)ψ(q)(x)
>

[
ψ(m)(x)ψ(n)(x)

]′
ψ(m)(x)ψ(n)(x)

,

is valid on (0,∞) for (p, q) ≻ (m,n).
We guess that, for (p, q) ≻ (m,n), the function[

ψ(m)(x)ψ(n)(x)
]
[ψ(p)(x)ψ(q)(x)]′ −

[
ψ(m)(x)ψ(n)(x)

]′
[ψ(p)(x)ψ(q)(x)]

should be completely monotonic in x ∈ (0,∞).
Generally, for (p, q) ≻ (m,n), one can discuss necessary and sufficient conditions

on Ωm,n;p,q ∈ R such that the function[
ψ(m)(x)ψ(n)(x)

]
[ψ(p)(x)ψ(q)(x)]′ − Ωm,n;p,q

[
ψ(m)(x)ψ(n)(x)

]′
[ψ(p)(x)ψ(q)(x)]

and its opposite are respectively completely monotonic on (0,∞).
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Remark 6.7. For n ≥ 2 and two nonnegative integer tuples α = (α1, α2, . . . , αn) ∈
Nn0 and β = (β1, β2, . . . , βn) ∈ Nn, let

Pα,β;Cα,β
(x) =

n∏
r=1

ψ(αr)(x)− Cα,β

n∏
r=1

ψ(βr)(x)

and

Qα,β(x) =

∏n
r=1 ψ

(αr)(x)∏n
r=1 ψ

(βr)(x)

on (0,∞), where we denote ψ(0)(x) = −1 for our own convenience. It is clear that

P(2k,0),(k,k);C(2k,0),(k,k)
(x) = Fk,−C(2k,0),(k,k)

(x), Q(2k,0),(k,k)(x) = Fk,2(x),

Q(m+n,0),(m,n)(x) = Qm,n(x), Q(m,n),(p,q)(x) = Qm,n;p,q(x).

We guess that, if α ≻ β, the function Qα,β(x) is increasing from (0,∞) onto the
interval (

n∏
r=1

αr!

βr!
,

n∏
r=1

(αr − 1)!

(βr − 1)!

)
.

Generally, for α ≻ β, one can discuss necessary and sufficient conditions on
Cα,β ∈ R such that the function Pα,β;Cα,β

(x) and its opposite are respectively
completely monotonic on (0,∞).

Remark 6.8. Gurland’s ratio

T (s, t) =
Γ(s)Γ(t)

[Γ((s+ t)/2)]2

was firstly defined in [11]. In appearance, we can regard the functions Qm,n(x)
and Qm,n;p,q(x) defined in (1.3) and (1.4) as analogues of Gurland’s ratio T (s, t).
In [32, 38], there existed a detailed survey and review of Gurland’s ratio T (s, t)
and related results. In [46], the functions T

(
1
p ,

3
p

)
and T

(
1
p ,

5
p

)
with their statistical

backgrounds were mentioned.

Remark 6.9. The ratios of finitely many gamma functions and polygamma functions
have applications in differential geometry, manifolds, statistics, probability, and
their intersections. See, for example, the papers [5, 9, 33, 34, 48].

Remark 6.10. As a generalization of decreasing property of real functions of one
variable, one can consider (logarithmically) complete monotonicity and completely
monotonic degrees. For details, please refer to [14, 15, 31, 39, 41, 43, 49] and the
review article [26].

Remark 6.11. This paper is a revised version of the electronic preprint [16] and is
the eighth one in a series of articles including [17, 18, 20, 21, 22, 23, 24, 25, 29].
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