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DECREASING MONOTONICITY OF TWO RATIOS DEFINED

BY THREE OR FOUR POLYGAMMA FUNCTIONS

FENG QI

Dedicated to people facing and battling COVID-19

Abstract. In the paper, by virtue of convolution theorem for the Laplace

transforms, by three monotonicity rules for the ratios of two definite integrals,
of two Laplace transforms, and of two functions, and by other analytic tech-

niques, the author presents decreasing monotonicity of two ratios defined by

three or four polygamma functions. These results confirm guesses posed by
the author.
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1. Preliminaries and motivations

In the literature [1, Section 6.4], the function

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0

and its logarithmic derivative ψ(z) = [ln Γ(z)]′ = Γ′(z)
Γ(z) are called Euler’s gamma

function and digamma function respectively. Moreover, the functions ψ′(z), ψ′′(z),
ψ′′′(z), and ψ(4)(z) are known as the trigamma, tetragamma, pentagamma, and
hexagamma functions respectively. Aa a whole, all the derivatives ψ(k)(z) for k ∈
{0} ∪ N are known as polygamma functions.

Recall from Chapter XIII in [9], Chapter 1 in [20], and Chapter IV in [22] that,
if a function f(x) on an interval I has derivatives of all orders on I and satisfies
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2 F. QI

(−1)nf (n)(x) ≥ 0 for x ∈ I and n ∈ {0} ∪ N, then we call f(x) a completely
monotonic function on I.

Let α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) ∈ Rn. A n-tuple α is said to
strictly majorize β (in symbols α � β) if

(
α[1], α[2], . . . , α[n]

)
6=
(
β[1], β[2], . . . , β[n]

)
,∑k

i=1 α[i] ≥
∑k
i=1 β[i] for 1 ≤ k ≤ n − 1, and

∑n
i=1 αi =

∑n
i=1 βi, where α[1] ≥

α[2] ≥ · · · ≥ α[n] and β[1] ≥ β[2] ≥ · · · ≥ β[n] are rearrangements of α and β in a
descending order. See [8, p. 8, Definition A.1] or closely related texts and references
in the papers [5, 19, 21, 25].

Theorem 1.1 ([12, Theorem 3.1]). Let p, q,m, n ∈ {0}∪N satisfying (p, q) � (m,n)
and let

Fp,m,n,q;cp,m,n,q (x) =

{∣∣ψ(m)(x)
∣∣∣∣ψ(n)(x)

∣∣− cp,m,n,q∣∣ψ(p)(x)
∣∣, q = 0∣∣ψ(m)(x)

∣∣∣∣ψ(n)(x)
∣∣− cp,m,n,q∣∣ψ(p)(x)

∣∣∣∣ψ(q)(x)
∣∣, q ≥ 1

for cp,m,n,q ∈ R and x ∈ (0,∞). Then

(1) for q ≥ 0, if and only if

cp,m,n,q ≤


(m− 1)!(n− 1)!

(p− 1)!
, q = 0

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
, q ≥ 1,

the function Fp,m,n,q;cp,m,n,q (x) is completely monotonic in x ∈ (0,∞);

(2) for q ≥ 1, if and only if cp,m,n,q ≥ m!n!
p!q! , the function −Fp,m,n,q;cp,m,n,q (x)

is completely monotonic in x ∈ (0,∞);
(3) the double inequality

− (m+ n− 1)!

(m− 1)!(n− 1)!
<

ψ(m+n)(x)

ψ(m)(x)ψ(n)(x)
< 0 (1.1)

for m,n ∈ N and the double inequality

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
<
ψ(m)(x)ψ(n)(x)

ψ(p)(x)ψ(q)(x)
<
m!n!

p!q!
(1.2)

for m,n, p, q ∈ N with p > m ≥ n > q ≥ 1 and m+ n = p+ q are valid on
(0,∞) and sharp in the sense that the lower and upper bounds cannot be
replaced by any larger and smaller scalars respectively.

Theorem 1.2 ([12, Theorem 3.2]). For k ∈ N and x ∈ (0,∞), let

Fk,ηk(x) = ψ(2k)(x) + ηk
[
ψ(k)(x)

]2
and Fk,ϑk(x) =

ψ(2k)(x)

[(−1)k+1ψ(k)(x)]ϑk
.

Then the following conclusions are true:

(1) if and only if ηk ≥ 1
2

(2k)!
(k−1)!k! , the function Fk,ηk(x) is completely monotonic

on (0,∞);
(2) if and only if ηk ≤ 0, the function −Fk,ηk(x) is completely monotonic on

(0,∞);
(3) if and only if ϑk ≥ 2, the function Fk,ϑk(x) is decreasing on (0,∞);

(4) if and only if ϑk ≤ 2k+1
k+1 , the function Fk,ϑk(x) is increasing on (0,∞);
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(5) the following limits are valid:

lim
x→0+

Fk,ϑk(x) =



− (2k)!

[(k)!]
2k+1
k+1

, ϑk =
2k + 1

k + 1

0, ϑk >
2k + 1

k + 1

−∞, ϑk <
2k + 1

k + 1

and

lim
x→∞

Fk,ϑk(x) =


− (2k − 1)!

[(k − 1)!]2
, ϑk = 2

−∞, ϑk > 2

0, ϑk < 2;

(6) the double inequality

−1

2

(2k)!

(k − 1)!k!
<

ψ(2k)(x)

[(−1)k+1ψ(k)(x)]2
< 0

is valid on (0,∞) and sharp in the sense that the lower and upper bounds
cannot be replaced by any greater and less numbers respectively.

In [12, Remark 6.2], the author guessed that,

(1) for m,n ∈ N, the function

Qm,n(x) =
ψ(m+n)(x)

ψ(m)(x)ψ(n)(x)
(1.3)

should be decreasing on (0,∞);
(2) for m,n, p, q ∈ N such that (p, q) � (m,n), the function

Qm,n;p,q(x) =
ψ(m)(x)ψ(n)(x)

ψ(p)(x)ψ(q)(x)
(1.4)

should be decreasing on (0,∞).

It is clear that Qk,k(x) = Fk,2(x) which is decreasing on (0,∞).
In this paper, we aim to confirm these two guesses. We also supply an alternative

proof of Theorem 1.1.

2. Lemmas

The following lemmas are necessary in this paper.

Lemma 2.1 ([1, p. 260, 6.4.1]). The integral representation

ψ(n)(z) = (−1)n+1

∫ ∞
0

tn

1− e−t
e−ztdt (2.1)

is valid for <(z) > 0 and n ≥ 1.

Lemma 2.2 (Convolution theorem for the Laplace transforms [22, pp. 91–92]). Let
fk(t) for k = 1, 2 be piecewise continuous in arbitrary finite intervals included in
(0,∞). If there exist some constants Mk > 0 and ck ≥ 0 such that |fk(t)| ≤Mke

ckt

for k = 1, 2, then∫ ∞
0

[ ∫ t

0

f1(u)f2(t− u)du

]
e−stdt =

∫ ∞
0

f1(u)e−sudu

∫ ∞
0

f2(v)e−svdv.
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Lemma 2.3 ([24, Lemma 4]). Let the functions A(x) and B(x) 6= 0 be defined on

(0,∞) such that their Laplace transforms exist. If the ratio A(x)
B(x) is increasing, then

the ratio
∫∞
0
A(x)e−xtdx∫∞

0
B(x)e−xtdx

is decreasing on (0,∞).

Lemma 2.4. Let

g(t) =


t

1− e−t
, t 6= 0;

1, t = 0.

Then the following conclusions are valid:

(1) The function g(t) is infinitely differentiable on (−∞,∞), increasing from
(−∞,∞) onto (0,∞), convex on (−∞,∞), and logarithmically concave on
(−∞,∞).

(2) For fixed s ∈ (0, 1), the ratio gs(t)
g(st) is decreasing in t from (0,∞) onto (0, 1).

(3) For s ∈
(
0, 1

2

)
and t ∈ (0,∞), the partial derivative

∂2 ln[g(st)g((1− s)t)]
∂s∂t

> 0. (2.2)

Proof. The differentiability, monotonicity, convexity, and logarithmic concavity of
the function g(t) have been proved in [12, Lemma 2.3].

It is straightforward that

lim
t→0

gs(t)

g(st)
=

limt→0 g
s(t)

limt→0 g(st)
=

1s

1
= 1

and

lim
t→∞

gs(t)

g(st)
=

limt→∞[g(t)/t]s

limt→∞[g(st)/st]
lim
t→∞

ts

st
=

1

s
lim
t→∞

1

t1−s
= 0.

The first derivative of the ratio gs(t)
g(st) is

d

dt

[
gs(t)

g(st)

]
=
sgs(t)

g(st)

[
g′(t)

g(t)
− g′(st)

g(st)

]
.

Hence, for arriving at decreasing monotonicity of the ratio gs(t)
g(st) , it is sufficient to

show that the ratio g′(t)
g(t) is decreasing on (0,∞). For this, it is sufficient to show that

the function g(t) is logarithmically concave on (0,∞). The logarithmic concavity
of the function g(t) on (−∞,∞) was proved in [12, Lemma 2.3].

For a, b ∈ R with a < b, let f(x) and g(x) be continuous on [a, b], differentiable
on (a, b), and g′(x) 6= 0 on (a, b). In [2], the following monotonicity rule was

discovered: if the ratio f ′(x)
g′(x) is increasing on (a, b), then both f(x)−f(a)

g(x)−g(a) and f(x)−f(b)
g(x)−g(b)

are increasing with respect to x ∈ (a, b). Straightforward differentiation gives

∂ ln[g(st)g((1− s)t)]
∂t

=
1

t

t+ 2et + 2− est[(1− s)t+ 2]− e(1−s)t(st+ 2)

(est − 1)[e(1−s)t − 1]
,

lim
s→0

[
t+ 2et + 2− est[(1− s)t+ 2]− e(1−s)t(st+ 2)

]
= lim
s→0

(
(est − 1)[e(1−s)t − 1]

)
= 0,

[t+ 2et + 2− est[(1− s)t+ 2]− e(1−s)t(st+ 2)]′s
[(est − 1)(e(1−s)t − 1)]′s

=
et(st+ 1)− e2st[(1− s)t+ 1]

et − e2st
,

lim
s→1/2

(
et(st+ 1)− e2st[(1− s)t+ 1]

)
= lim
s→1/2

(
et − e2st

)
= 0,
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and (
et(st+ 1)− e2st[(1− s)t+ 1]

)′
s

(et − e2st)′s
=

1

2
− e(1−2s)t − (1− 2s)t− 1

2t

is increasing in s ∈
[
0, 1

2

]
. This means that the partial derivative ∂ ln[g(st)g((1−s)t)]

∂t

is increasing in s ∈
[
0, 1

2

]
for fixed t > 0. As a result, the inequality (2.2) is valid.

The proof of Lemma 2.4 is complete. �

Lemma 2.5 ([12, Lemma 2.1]). For k ∈ N, we have the limits

lim
x→0+

[
xkψ(k−1)(x)

]
= (−1)k(k − 1)! (2.3)

and
lim
x→∞

[
xkψ(k)(x)

]
= (−1)k−1(k − 1)!. (2.4)

Lemma 2.6. For m,n, p, q ∈ N such that (p, q) � (m,n), the function

sm−1(1− s)n−1 + (1− s)m−1sn−1

sp−1(1− s)q−1 + (1− s)p−1sq−1

is increasing in s ∈
(
0, 1

2

)
.

Proof. Direct computation yields

sm−1(1− s)n−1 + (1− s)m−1sn−1

sp−1(1− s)q−1 + (1− s)p−1sq−1
=

(
1
s − 1

)n−1
+
(

1
s − 1

)m−1(
1
s − 1

)q−1
+
(

1
s − 1

)p−1

=
zn−1 + zm−1

zq−1 + zp−1
=
zn−q + zm−q

1 + zp−q

and

d

dz

(
zb + zc

1 + za

)
=

(
bzb + czc

)
(1 + za)− aza

(
zb + zc

)
z(1 + za)2

=
bzb
(
1− z2c

)
+ czc

(
1− z2b

)
z(1 + za)2

< 0,

where z = 1
s −1 ∈ (1,∞) and a = p−q > b = m−q ≥ c = n−q > 0 with a = b+ c.

The proof of Lemma 2.6 is complete. �

Lemma 2.7. Let the functions U(x), V (x) > 0, and W (x, t) > 0 be integrable in

x ∈ (a, b). If the ratios ∂W (x,t)/∂t
W (x,t) and U(x)

V (x) are both increasing or both decreasing

in x ∈ (a, b), then the ratio

R(t) =

∫ b
a
U(x)W (x, t)dx∫ b

a
V (x)W (x, t)dx

is increasing in t; if one of the ratios ∂W (x,t)/∂t
W (x,t) and U(x)

V (x) are increasing and the

other is decreasing in x ∈ (a, b), then the ratio R(t) is decreasing in t.

Proof. Direct differentiation gives

R′(t) =

[ ∫ b
a
U(x)∂W (x,t)

∂t dx
∫ b
a
V (x)W (x, t)dx

−
∫ b
a
U(x)W (x, t)dx

∫ b
a
V (x)∂W (x,t)

∂t dx

]
[∫ b
a
V (x)W (x, t)dx

]2



6 F. QI

=

[ ∫ b
a

∫ b
a
U(x)∂W (x,t)

∂t V (y)W (y, t)dxdy

−
∫ b
a

∫ b
a
U(x)W (x, t)V (y)∂W (y,t)

∂t dxdy

]
[∫ b
a
V (x)W (x, t)dx

]2
=

∫ b
a

∫ b
a
U(x)V (y)W (x, t)W (y, t)

[∂W (x,t)/∂t
W (x,t) − ∂W (y,t)/∂t

W (y,t)

]
dxdy[∫ b

a
V (x)W (x, t)dx

]2

=

∫ b
a

∫ b
a

([U(x)
V (x) −

U(y)
V (y)

][∂W (x,t)/∂t
W (x,t) − ∂W (y,t)/∂t

W (y,t)

]
×V (x)V (y)W (x, t)W (y, t)

)
dxdy

2
[∫ b
a
V (x)W (x, t)dx

]2 .

The proof of Lemma 2.7 is complete. �

Lemma 2.8 ([22, p. 161, Theorem 12b]). A function f(x) is completely monotonic
on (0,∞) if and only if

f(x) =

∫ ∞
0

e−xtdσ(t), x ∈ (0,∞), (2.5)

where σ(s) is non-decreasing and the integral in (2.5) converges for x ∈ (0,∞).

3. Monotonicity of a ratio defined by three polygamma functions

In this section, we prove that the function Qm,n(x) defined in (1.3) is decreasing.

Theorem 3.1. For m,n ∈ N, the function Qm,n(x) defined in (1.3) is decreasing

from (0,∞) onto
(
− (m+n−1)!

(m−1)!(n−1)! , 0
)
. Consequently, the double inequality (1.1), that

is,

− (m+ n− 1)!

(m− 1)!(n− 1)!
< Qm,n < 0, m, n ∈ N,

is valid on (0,∞) and sharp in the sense that the lower and upper bounds cannot
be replaced by any larger and smaller numbers respectively.

Proof. By virtue of the integral representation (2.1), we can rearranged Qm,n(x) as

Qm,n(x) = −
∫∞

0
tm+n−1g(t)e−xtdt∫∞

0
tm−1g(t)e−xtdt

∫∞
0
tn−1g(t)e−xtdt

.

By Lemma 2.2, we obtain

Qm,n(x) = −
∫∞

0
tm+n−1g(t)e−xtdt∫∞

0

[∫ t
0
um−1(t− u)n−1g(u)g(t− u)du

]
e−xtdt

.

By Lemma 2.3, we only need to prove the ratio

Pm,n(t) =
tm+n−1g(t)∫ t

0
um−1(t− u)n−1g(u)g(t− u)du

=
tm+n−1g(t)

tm+n−1
∫ 1

0
sm−1(1− s)n−1g(st)g((1− s)t)ds

=
1∫ 1

0
sm−1(1− s)n−1 g(st)

gs(t)
g((1−s)t)
g1−s(t) ds
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is decreasing on (0,∞). Hence, it suffices to show that the ratio g(st)
gs(t) for fixed

s ∈ (0, 1) is increasing in t ∈ (0,∞). This increasing monotonicity has been proved
in Lemma 2.4 in this paper. As a result, the function Qm,n(x) defined in (1.3) is
decreasing on (0,∞).

Making use of the limits (2.3) and (2.4) in Lemma 2.5 yields

lim
x→0+

Qm,n(x) =
(limx→0+ x) limx→0+

[
xm+n+1ψ(m+n)(x)

]
limx→0+ [xm+1ψ(m)(x)] limx→0+ [xn+1ψ(n)(x)]

= 0

and

lim
x→∞

Qm,n(x) =
limx→∞

[
xm+nψ(m+n)(x)

]
limx→∞[xmψ(m)(x)] limx→∞[xnψ(n)(x)]

=
(−1)m+n−1(m+ n− 1)!

(−1)m−1(m− 1)!(−1)n−1(n− 1)!

= − (m+ n− 1)!

(m− 1)!(n− 1)!
.

The proof of Theorem 3.1 is complete. �

4. Monotonicity of a ratio defined by four polygamma functions

In this section, we prove that the function Qm,n;p,q defined in (1.4) is decreasing.

Theorem 4.1. For m,n, p, q ∈ N with the majorizing relation (p, q) � (m,n), the

ratio Qm,n;p,q(x) defined in (1.4) is decreasing from (0,∞) onto
( (m−1)!(n−1)!

(p−1)!(q−1)! ,
m!n!
p!q!

)
.

Consequently, for m,n, p, q ∈ N with (p, q) � (m,n), the double inequality (1.2),
that is,

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
< Qm,n;p,q(x) <

m!n!

p!q!
,

is valid on (0,∞) and sharp in the sense that the lower and upper bounds cannot
be replaced by any larger and smaller scalars respectively.

Proof. By the limits (2.3) and (2.4) in Lemma 2.5, we obtain

lim
x→0+

Qm,n;p,q(x) =
limx→0+

[
xm+1ψ(m)(x)

]
limx→0+

[
xn+1ψ(n)(x)

]
limx→0+

[
xp+1ψ(p)(x)

]
limx→0+

[
xq+1ψ(q)(x)

]
=

(−1)m+1m!(−1)n+1n!

(−1)p+1p!(−1)q+1q!

=
m!n!

p!q!

and

lim
x→∞

Qm,n;p,q(x) =
limx→∞

[
xmψ(m)(x)

]
limx→∞

[
xnψ(n)(x)

]
limx→∞

[
xpψ(p)(x)

]
limx→∞

[
xqψ(q)(x)

]
=

(−1)m−1(m− 1)!(−1)n−1(n− 1)!

(−1)p−1(p− 1)!(−1)q−1(q − 1)!

=
(q − 1)!(n− 1)!

(p− 1)!(q − 1)!
.
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Making use of the integral representation (2.1) yields

Qm,n;p,q(x) =

∫∞
0
tm−1g(t)e−xtdt

∫∞
0
tn−1g(t)e−xtdt∫∞

0
tp−1g(t)e−xtdt

∫∞
0
tq−1g(t)e−xtdt

.

Utilizing Lemma 2.2 gives

Qm,n;p,q(x) =

∫∞
0

[∫ t
0
um−1(t− u)n−1g(u)g(t− u)du

]
e−xtdt∫∞

0

[∫ t
0
up−1(t− u)q−1g(u)g(t− u)du

]
e−xtdt

.

Employing Lemma 2.3 tells us that, it suffices to prove the increasing monotonicity
in t of the ratio∫ t

0
um−1(t− u)n−1g(u)g(t− u)du∫ t

0
up−1(t− u)q−1g(u)g(t− u)du

=

∫ 1

0
sm−1(1− s)n−1g(st)g((1− s)t)ds∫ 1

0
sp−1(1− s)q−1g(st)g((1− s)t)ds

=

∫ 1/2

0

[
sm−1(1− s)n−1 + (1− s)m−1sn−1

]
g(st)g((1− s)t)ds∫ 1/2

0
[sp−1(1− s)q−1 + (1− s)p−1sq−1]g(st)g((1− s)t)ds

=

∫ 1/2

0
φm,n(s)ϕ(s, t)ds∫ 1/2

0
φp,q(s)ϕ(s, t)ds

,

where

φi,j(s) = si−1(1− s)j−1 + (1− s)i−1sj−1 and ϕ(s, t) = g(st)g((1− s)t). (4.1)

Lemma 2.6 implies that the ratio
φm,n(s)
φp,q(s)

is increasing in s ∈
(
0, 1

2

)
for (p, q) �

(m,n). Further making use of the inequality (2.2) in Lemma 2.4 and utilizing
Lemma 2.7 reveal that the function Qm,n;p,q(x) is decreasing in x ∈ (0,∞). The
proof of Theorem 4.1 is complete. �

5. An alternative proof of Theorem 1.1

In this section, we supply an alternative proof of Theorem 1.1.

An alternative proof of Theorem 1.1. For q = 0, we have

Fp,m,n,0;cp,m,n,0(x) =
∣∣ψ(m)(x)

∣∣∣∣ψ(n)(x)
∣∣− cp,m,n,0∣∣ψ(p)(x)

∣∣
=

∫ ∞
0

tm

1− e−t
e−xtdt

∫ ∞
0

tn

1− e−t
e−xtdt− cp,m,n,0

∫ ∞
0

tp

1− e−t
e−xtdt

=

∫ ∞
0

[∫ t

0

um−1(t− u)n−1g(u)g(t− u)du− cp,m,n,0tm+n−1g(t)

]
e−xtdt

=

∫ ∞
0

[∫ 1

0

sm−1(1− s)n−1 g(st)g((1− s)t)
g(t)

ds− cp,m,n,0
]
tm+n−1g(t)e−xtdt,

where we used the integral representation (2.1) and Lemma 2.2. From the second
property in Lemma 2.4, it follows that the function∫ 1

0

sm−1(1− s)n−1 g(st)g((1− s)t)
g(t)

ds
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is decreasing in t ∈ (0,∞) and has the limits∫ 1

0

sm−1(1− s)n−1 g(st)g((1− s)t)
g(t)

ds→


∫ 1

0

sm−1(1− s)n−1ds, t→ 0

∞, t→∞.
Consequently, basing on Lemma 2.8, we see that, if and only if

cp,m,n,0 ≤
∫ 1

0

sm−1(1− s)n−1ds = B(m,n) =
(m− 1)!(n− 1)!

(m+ n− 1)!
,

the function Fp,m,n,0;cp,m,n,0(x) is completely monotonic on (0,∞).
For q ≥ 1, we have

Fp,m,n,q;cp,m,n,q (x) =
∣∣ψ(m)(x)

∣∣∣∣ψ(n)(x)
∣∣− cp,m,n,q∣∣ψ(p)(x)

∣∣∣∣ψ(q)(x)
∣∣

=

∫ ∞
0

tm−1g(t)e−xtdt

∫ ∞
0

tn−1g(t)e−xtdt

−cp,m,n,q
∫ ∞

0

tp−1g(t)e−xtdt

∫ ∞
0

tq−1g(t)e−xtdt

=

∫ ∞
0

[∫ t

0

um−1(t− u)n−1g(u)g(t− u)du

]
e−xtdt

−cp,m,n,q
∫ ∞

0

[∫ t

0

up−1(t− u)q−1g(u)g(t− u)du

]
e−xtdt

=

∫ ∞
0

[
tm+n−1

∫ 1

0

sm−1(1− s)n−1g(st)g((1− s)t)ds

−cp,m,n,qtp+q−1

∫ 1

0

sp−1(1− s)q−1g(st)g((1− s)t)ds
]
e−xtdt

=

∫ ∞
0

[∫ 1

0
sm−1(1− s)n−1g(st)g((1− s)t)ds∫ 1

0
sp−1(1− s)q−1g(st)g((1− s)t)ds

− cp,m,n,q

]

×
[
tm+n−1

∫ 1

0

sp−1(1− s)q−1g(st)g((1− s)t)ds
]
e−xtdt

=

∫ ∞
0

[∫ 1/2

0
[sm−1(1− s)n−1 + sn−1(1− s)m−1]g(st)g((1− s)t)ds∫ 1/2

0
[sp−1(1− s)q−1 + sq−1(1− s)p−1]g(st)g((1− s)t)ds

−cp,m,n,q

][
tm+n−1

∫ 1

0

sp−1(1− s)q−1g(st)g((1− s)t)ds
]
e−xtdt,

where we used the integral representation (2.1) and Lemma 2.2. Employing the
inequality (2.2) in Lemma 2.4 and applying Lemmas 2.6 and 2.7 reveal that the
function∫ 1/2

0
[sm−1(1− s)n−1 + sn−1(1− s)m−1]g(st)g((1− s)t)ds∫ 1/2

0
[sp−1(1− s)q−1 + sq−1(1− s)p−1]g(st)g((1− s)t)ds

=

∫ 1/2

0
φm,n(s)ϕ(s, t)ds∫ 1/2

0
φp,q(s)ϕ(s, t)ds

is increasing in t ∈ (0,∞), where φi,j(s) and ϕ(s, t) are defined in (4.1). It is easy
to see that

lim
t→0

∫ 1/2

0
φm,n(s)ϕ(s, t)ds∫ 1/2

0
φp,q(s)ϕ(s, t)ds

=

∫ 1/2

0
[sm−1(1− s)n−1 + sn−1(1− s)m−1]ds∫ 1/2

0
[sp−1(1− s)q−1 + sq−1(1− s)p−1]ds
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=

∫ 1

0
sm−1(1− s)n−1ds∫ 1

0
sp−1(1− s)q−1ds

=
B(m,n)

B(p, q)
=

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
.

Since limt→∞
g(t)
t = 1, we acquire

lim
t→∞

∫ 1/2

0
φm,n(s)ϕ(s, t)ds∫ 1/2

0
φp,q(s)ϕ(s, t)ds

=

∫ 1/2

0
[sm−1(1− s)n−1 + sn−1(1− s)m−1]s(1− s)ds∫ 1/2

0
[sp−1(1− s)q−1 + sq−1(1− s)p−1]s(1− s)ds

=

∫ 1

0
sm(1− s)nds∫ 1

0
sp(1− s)qds

=
B(m+ 1, n+ 1)

B(p+ 1, q + 1)
=
m!n!

p!q!
.

Combining these with Lemma 2.8 concludes that,

(1) if and only if

cp,m,n,q ≤
(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
,

the function Fp,m,n,q;cp,m,n,q (x) is completely monotonic in x ∈ (0,∞);

(2) if and only if cp,m,n,q ≥ m!n!
p!q! , the function −Fp,m,n,q;cp,m,n,q (x) is completely

monotonic in x ∈ (0,∞).

The proof of Theorem 1.1 is complete. �

6. Remarks

Finally, we list several remarks on our main results an their proofs.

Remark 6.1. The papers [3, 4, 6, 7, 23] are related to Theorem 1.1. Theorems 3.1
and 4.1 in this paper are related to results reviewed and surveyed in [10, 17] and
closely related references therein.

Remark 6.2. Lemma 2.4 in this paper generalizes a conclusion in [12, Lemma 2.3]:

the function g(2t)
g2(t) is decreasing from (0,∞) onto (0, 1).

Remark 6.3. Taking W (x, t) = e−xt in Lemma 2.7 gives

∂W (x, t)/∂t

W (x, t)
=
∂e−xt/∂t

e−xt
= −x

which is decreasing in x ∈ (−∞,∞). Further setting U(x) = A(x), V (x) = B(x),
and (a, b) = (0,∞) in Lemma 2.7 leads to Lemma 2.3 which was established in [24,
Lemma 4]. This means that Lemma 2.7 in this paper is a generalization of [24,
Lemma 4].

Remark 6.4. Since the majorizing relation (n + 2, n) � (n + 1, n+ 1), we see that
Theorem 4.1 in this paper generalizes a conclusion in [23, Theorem 2]: the function

[ψ(n+1)(x)]2

ψ(n)(x)ψ(n+2)(x)
for n ≥ 1 is decreasing from (0,∞) onto

(
n
n+1 ,

n+1
n+2

)
.

Remark 6.5. Direct differentiation gives

Q′m,n(x) =
ψ(m+n+1)(x)ψ(m)(x)ψ(n)(x)− ψ(m+n)(x)

[
ψ(m)(x)ψ(n)(x)

]′
[ψ(m)(x)ψ(n)(x)]2

.

The decreasing monotonicity of Qm,n(x) in Theorem 3.1 implies that the inequality

ψ(m+n)(x)
[
ψ(m)(x)ψ(n)(x)

]′ − ψ(m+n+1)(x)ψ(m)(x)ψ(n)(x) > 0,
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equivalently, [
ψ(m)(x)ψ(n)(x)

]′
ψ(m)(x)ψ(n)(x)

>
ψ(m+n+1)(x)

ψ(m+n)(x)
,

is valid on (0,∞) for m,n ∈ N.
We guess that, for m,n ∈ N, the function

ψ(m+n)(x)
[
ψ(m)(x)ψ(n)(x)

]′ − ψ(m+n+1)(x)ψ(m)(x)ψ(n)(x)

should be completely monotonic in x ∈ (0,∞).
Generally, one can discuss necessary and sufficient conditions on Ωm,n ∈ R such

that the function

ψ(m+n)(x)
[
ψ(m)(x)ψ(n)(x)

]′ − Ωm,nψ
(m+n+1)(x)ψ(m)(x)ψ(n)(x)

and its negativity are respectively completely monotonic on (0,∞).

Remark 6.6. It is immediate that

Q′m,n;p,q(x) =

( [
ψ(m)(x)ψ(n)(x)

]′
[ψ(p)(x)ψ(q)(x)]

−
[
ψ(m)(x)ψ(n)(x)

]
[ψ(p)(x)ψ(q)(x)]′

)
[ψ(p)(x)ψ(q)(x)]2

.

The monotonicity of Qm,n;p,q(x) in Theorem 4.1 implies that the inequality[
ψ(m)(x)ψ(n)(x)

]
[ψ(p)(x)ψ(q)(x)]′ −

[
ψ(m)(x)ψ(n)(x)

]′
[ψ(p)(x)ψ(q)(x)] > 0,

equivalently,

[ψ(p)(x)ψ(q)(x)]′

ψ(p)(x)ψ(q)(x)
>

[
ψ(m)(x)ψ(n)(x)

]′
ψ(m)(x)ψ(n)(x)

,

is valid on (0,∞) for (p, q) � (m,n).
We guess that, for (p, q) � (m,n), the function[

ψ(m)(x)ψ(n)(x)
]
[ψ(p)(x)ψ(q)(x)]′ −

[
ψ(m)(x)ψ(n)(x)

]′
[ψ(p)(x)ψ(q)(x)]

should be completely monotonic in x ∈ (0,∞).
Generally, for (p, q) � (m,n), one can discuss necessary and sufficient conditions

on Ωm,n;p,q ∈ R such that the function[
ψ(m)(x)ψ(n)(x)

]
[ψ(p)(x)ψ(q)(x)]′ − Ωm,n;p,q

[
ψ(m)(x)ψ(n)(x)

]′
[ψ(p)(x)ψ(q)(x)]

and its negativity are respectively completely monotonic on (0,∞).

Remark 6.7. For N0 = {0} ∪ N, n ≥ 2, and two nonnegative integer tuples α =
(α1, α2, . . . , αn) ∈ Nn0 and β = (β1, β2, . . . , βn) ∈ Nn, let

Pα,β;Cα,β (x) =

n∏
r=1

ψ(αr)(x)− Cα,β
n∏
r=1

ψ(βr)(x)

and

Qα,β(x) =

∏n
r=1 ψ

(αr)(x)∏n
r=1 ψ

(βr)(x)

on (0,∞), where we denote ψ(0)(x) = −1 for convenience. It is clear that

P(2k,0),(k,k);C(2k,0),(k,k)
(x) = Fk,−C(2k,0),(k,k)

(x), Q(2k,0),(k,k)(x) = Fk,2(x),

Q(m+n,0),(m,n)(x) = Qm,n(x), Q(m,n),(p,q)(x) = Qm,n;p,q(x).
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We guess that, if α � β, the function Qα,β(x) is increasing from (0,∞) onto the
interval (

n∏
r=1

αr!

βr!
,

n∏
r=1

(αr − 1)!

(βr − 1)!

)
.

Generally, for α � β, one can discuss necessary and sufficient conditions on
Cα,β ∈ R such that the function Pα,β;Cα,β (x) and its negativity are respectively
completely monotonic on (0,∞).

Remark 6.8. This paper is the eighth one in a series of articles including [11, 12,
13, 14, 15, 16, 18].
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