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Abstract

The availability of high spatial resolution synthetic aperture radar (SAR) sensors with a wide range
of acquisition modes has increased greatly over the past decade and contributed significantly to the study
of wetland ecosystems. However, the relative influence of acquisition configurations (i.e. band frequency,
polarization mode, number of acquisition dates) in wetland analysis remains poorly explored. This arti-
cle investigated the relative influence of X-/C-band frequency, dual-/quad-polarization and single-/multi-
acquisition features on discrimination of vegetation types in 632 ha Ramsar-protected temperate riverine
marshes (Mont-Saint-Michel Bay, France). Three SAR datasets (i.e. quad-pol/C-band, dual-pol/C-band
and dual-pol/X-band) were generated from five pairs of TerraSAR-X and RADARSAT-2 images. First, a
set of 25 SAR features, including backscattering coefficients and polarimetric parameters, was extracted from
the SAR datasets. Second, correlation between each pair of images was calculated using the polarimetric
parameter Shannon entropy to select the most similar pairs in the time series. Third, the importance of
each SAR feature and modeling accuracy were calculated using a conditional random forest model for each
of the three datasets. Finally, analysis of variance was performed to assess the impact of band frequency,
polarization mode and number of acquisition dates on the classification of vegetation types. The results
highlighted that although the time-shift of each pair of TerraSAR-X and RADARSAT-2 images was short
(3–11 days), only three pairs were sufficiently similar, highlighting the high variability in wetland ecosys-
tems. The polarimetric parameter Shannon entropy was the most discriminating feature, regardless of the
frequency or polarization. Most variance in the model accuracy was explained by the number of acquisition
dates (68%), followed by the frequency (23%), while polarization explained little. This article will help select
the most suitable SAR sensor acquisition modes for wetland conservation.
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1 Introduction

Wetland conservation is critically important to the
planet, since wetlands provide hydrological, biogeo-
chemical and ecological functions (Maltby and Barker
2009). However, most of these ecosystems are currently
damaged or threatened, especially due to human mod-
ifications and agricultural intensification (Kingsford,
Basset, and Jackson 2016). Managing and monitor-
ing these highly dynamic and fine-grained patterned
wetland ecosystems remain challenging due to limited
field observations in time and space (S. Rapinel et al.
2019) and the limitations of optical remote sensing im-
ages due to cloud cover (Gallant 2015). In this context,
many studies have recently highlighted the advantage

of very high spatial resolution (1–10 m) SAR satellite
data, such as ALOS-2, RADARSAT-2, TerraSAR-X
or Sentinel-1 images, for monitoring and characteriz-
ing wetlands (Adeli et al. 2020; Mahdavi, Salehi, et al.
2018; Wohlfart et al. 2018). However, managers and
scientists who use SAR data to study wetland ecosys-
tems could be confused by the wide range of possi-
ble configurations of these data, such as polarization
(dual- or quad-pol), frequency (C-, X- or L-band) and
the number of acquisition dates, especially since the
configuration influences the ability to discriminate dif-
ferent vegetation types (Mahdavi, Salehi, et al. 2018).
In this context, Adeli et al (2020) recently highlighted
the absence of consensus on the most appropriate SAR
configuration to characterize wetlands and the need for
future research.
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Figure 1: Study site presenta-
tion: (a) location in northwestern
Europe, (b) location within the
Couesnon valley included in the
Ramsar-protected natural zone of
Mont-Saint-Michel Bay, (c) loca-
tion of reference plots and field
map of vegetation in the marshes
of the lower Couesnon valley
(Lanoé, 2008), (d) field photo-
graph of a hygrophilic grassland
with Cardamine pratensis plant
species (white flowers) and (e)
field photograph of a pond sur-
rounded by Eleocharis palustris
plant species (long-flooded grass-
land).

SAR analysis of wetland ecosystems is particularly
challenging given (i) the highly hydrodynamic nature
of wetlands, with a flooded area that can change by
several ha in a few days (Gallant 2015; Rapinel et
al. 2018), and (ii) the strong impact of water on the
SAR impulse response of wetland vegetation (Cazals
et al. 2016; Mahdianpari, Salehi, Mohammadimanesh,
and Brian Brisco 2017). Unfortunately, multi-sensor
SAR data studies rarely considered the high spatio-
temporal dynamics of wetland ecosystems. For ex-
ample, RADARSAT-2 (quad-pol/C-band), Sentinel-
1 (dual-pol/C-band) and ALOS-2 (dual-pol/L-band)
data acquired with time-shifts of 1–19 days were com-
pared to discriminate peatland vegetation (Amani et
al. 2019). Elsewhere, two time series, TerraSAR-X
(dual-pol/X-band) and RADARSAT-2 (quad-pol/C-
band), were acquired with 4-month time-shifts to map
boreal wetlands (Mohammadimanesh, Salehi, Mahdi-
anpari, Motagh, et al. 2018). In another study, one
ALOS-1 (quad-pol/L-band) and one Sentinel-1 (dual-
pol/C-band) image with a 7-year time-shift were com-
pared to delineate a wetland marsh (Simioni et al.
2019). Thus, new comparative analyses of band fre-

quency, polarization mode and number of acquisition
dates with SAR data acquired under similar hydrolog-
ical and phenological conditions are needed.

The ability of SAR data to characterize wetlands
also relies on the features used (Mahdavi, Salehi, et
al. 2018). In this perspective, the relative influence
of SAR features (i.e. polarimetric parameters and
backscattering coefficients) on discrimination of wet-
land vegetation has been investigated extensively, al-
though the conclusions differ depending on the features
considered, the conditions under which SAR data were
acquired and wetland type. For example, for quad-
pol C-band RADARSAT-2 data, some studies have
demonstrated the advantage of polarimetric param-
eters from Cloude-Pottier decomposition over those
from Freeman-Durden decomposition and backscatter-
ing coefficients to discriminate herbaceous (Morandeira
et al. 2016) or boreal (B. Brisco et al. 2011) vegeta-
tion types. Conversely, other studies using also quad-
pol RADARSAT-2 data have highlighted the advan-
tage of polarimetric parameters from Freeman-Durden
decomposition over those from Cloude-Pottier decom-
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position to discriminate vegetation types in várzea
forests (de Almeida Furtado, Silva, and de Moraes
Novo 2016) or boreal wetlands (Mahdianpari, Salehi,
Mohammadimanesh, Brian Brisco, et al. 2018; Mahdi-
anpari, Salehi, Mohammadimanesh, and Brian Brisco
2017). In another study, the advantage of backscat-
tering coefficients over polarimetric parameters from
Freeman-Durden or Cloude-Pottier decomposition de-
rived from L-band ALOS-2 and C-band RADARSAT-
2 was highlighted for the same boreal wetland site
(Amani et al. 2019; Mohammadimanesh, Salehi, Mah-

dianpari, Motagh, et al. 2018). In addition, while po-
larimetric parameters are frequently used in the quad-
pol configuration, they are rarely used in the dual-pol
configuration, for example for X-band TerraSAR-X or
C-band Sentinel-1 data (Amani et al. 2019; Betbeder,
Sébastien Rapinel, Corgne, et al. 2015). Thus, the rel-
ative advantages of backscattering coefficients and po-
larimetric parameters for discriminating wetland veg-
etation types depending on the frequency and polar-
ization of the SAR data remained an open issue and
needed to be investigated more thoroughly.

Table 1: Description of vegetation types at the study site.

Vegetation type Typical plant species Physiognomy Vegetation
height (m)

Months
flooded per
year

Crops
Wheat Bare soil

0.0 – 2.0 < 1
Maize Cereal

Woods
Salix alba

Broadleaf tree 6.0 – 20.0 < 1
Populus alba

Mesophilic grasslands
Festuca arundinacea

Herbaceous 0.2 – 0.5 < 1
Arrhenatherum elatius

Meso-hygrophilic grasslands
Anthoxanthum odoratum

Herbaceous 0.1 – 0.3 2 – 3
Bromus racemosus

Hygrophilic grasslands
Oenanthe fistulosa

Herbaceous 0.1 – 0.2 3 – 6
Cardamine pratensis

Long-flooded grasslands
Glyceria fluitans

Herbaceous 0.1 – 0.2 6 – 8
Eleocharis palustris

Ponds
Myriophyllum spicatum

Standing water 0.0 – 0.1 12
Lemna minor

The influence of SAR data-acquisition configura-
tions (i.e. band frequency, polarization mode, num-
ber of acquisition dates) on discrimination of wet-
land vegetation has been studied extensively in recent
years (Mahdavi, Salehi Sr, et al. 2017; Wohlfart et al.
2018). Regarding band frequency, the advantage of
the X-band over the C-band (Maleki et al. 2020; Mo-
hammadimanesh, Salehi, Mahdianpari, Brian Brisco,
and Motagh 2018) and S-band (van Beijma, Comber,
and Lamb 2014) for discriminating wetland vegetation
types has been described, as has the advantage of the L-
band over the C-band for mapping emergent (Simioni
et al. 2019) or woody (Amani et al. 2019; Mahdianpari,
Salehi, Mohammadimanesh, and Motagh 2017) vege-
tations. The literature also describes the advantage
of quad-polarized data over dual-polarized data to dis-
criminate woody (de Almeida Furtado, Silva, and de
Moraes Novo 2016; Mahdianpari, Salehi, Mohammadi-
manesh, and Motagh 2017) (de Almeida Furtado et
al., 2016, Mahdianpari et al., 2017a) or boreal (Mah-
dianpari, Salehi, and Mohammadimanesh 2017) wet-

land vegetation types. In addition, there is clear ev-
idence that using multi-date data instead of single-
date data for classifications increases the accuracy of
wetland vegetation mapping significantly (Banks et al.
2019; Mahdianpari, Salehi, Mohammadimanesh, Brian
Brisco, et al. 2018; Schuster et al. 2015), especially in
spring images (Betbeder, Sébastien Rapinel, Corgne,
et al. 2015; Jahncke et al. 2018). However, the relative
influence of each acquisition configuration on discrim-
ination of vegetation types in wetland ecosystems has
never been addressed. This issue is crucial because the
choice of which SAR data to acquire to study wetland
ecosystems is a compromise among band frequency, po-
larization mode and number of acquisition dates.

This study investigated the relative influence of
three SAR acquisition configurations (i.e. band-
frequency, polarization mode and number of acqui-
sition dates) on discrimination of wetland vegetation
types. To this end, we investigated three questions:
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(i) How similar are the acquisition parameters of
SAR data collected by different sensors in wet-
land ecosystems?

(ii) Are the most discriminating SAR features of wet-
land vegetation the same regardless of the polar-
ization or frequency used?

(iii) Is the influence of band frequency, polarization
mode and number of acquisition dates the same
regardless of vegetation type?

To answer these questions, 25 features were generated
from RADARSAT-2 and TerraSAR-X images acquired
over temperate riverine marshes. Random forest (RF)
models were then used to discriminate seven wetland
vegetation types, and analysis of variance (ANOVA)
of classification accuracy scores was performed. The
strengths and weaknesses of the method developed are
discussed.

2 Materials and methods

2.1 Study site and reference data

The study focuses on 632 ha of wet grassland marshes
in the Couesnon River floodplain, near Mont-Saint-
Michel Bay, France (48.52°N, 1.53°W). The climate
is temperate and humid (annual rainfall 1000 mm)
throughout the year. The site lies within the bound-
aries of environmentally protected areas (i.e. European
Union Natura 2000 (1992/43/EEC) and international
Ramsar). The topography is flat, with elevation 6–7
m above sea level. Grasslands are managed exclusively
for mowing or alternate grazing/mowing cycles. A field
vegetation map was created in 2008 at 1:2,500 scale
from phytosociological surveys (Lanoé 2008). It high-
lights the dominance of four grassland vegetation types
(Fig. 1) patterned by a gradient of flooding that ranges
from 0 to 8 months/year (Marechal et al. 2012) . The
site contains smaller areas of three other vegetation
types: ponds, woods and crops (Table 1).

Reference plots were extracted from a vector map of
field vegetation. Additional field observations in 2013
(Fig. 1d-e) confirmed that the vegetation pattern in
the study area had remained stable from 2008 to 2013.
To avoid mixed pixels, each of the 182 reference plots
was selected in GIS within 3 × 3 SAR-pixel windows
contained strictly within a polygon of a given vegeta-
tion type.

2.2 Satellite data

The initial satellite dataset consisted of five pairs (i.e.
“time-steps”) of dual-pol RADARSAT-2 and dual-pol
TerraSAR-X images acquired in 2013 from late winter
to mid-summer (Table 2). To minimize bias due to en-
vironmental dynamics such as flooding and grassland
mowing, we selected dates for each pair of acquisitions
that were close in time. Based on the literature, we
chose an incidence angle>30° to maximize vegetation

penetration and water detection (Mahdavi, Salehi Sr,
et al. 2017). All SAR satellite data were acquired in
single look complex mode (i.e. Single Look Complex
for RADARSAT-2 and Single Look Slant Range Com-
plex for TerraSAR-X). Specifically, RADARSAT-2 im-
ages were acquired in Fine Quad polarization mode
(HH, HV, VH and VV polarization channels); with an
incidence angles of 30–47° and an approximate pixel
size of 4×8 m. TerraSAR-X images were acquired in
High-Resolution SpotLight mode (HH and VV polar-
ization channels), with an incidence angle of 36–37°
and a pixel size of 1.8×1.0 m.

Table 2: Characteristics of the five pairs of SAR im-
ages acquired for the study from TerraSAR-X (TSX)
and RADARSAT-2 (RST-2) sensors.

Time-
step

Sensor Acquisition date Time-
shift

Spatial
resolution
(azimuth
× ground)

Acquisition
angle

1
TSX Feb. 14, 2013

2 days
1.8×1.0 m 36–37°

RST-2 Feb. 16, 2013 4.7×6.4 m 46–48°

2
TSX March 10, 2013

3 days
1.8×1.0 m 36–37°

RST-2 March 13, 2013 4.8×8.1 m 34–36°

3
TSX April 15, 2013

2 days
1.8×1.0 m 36–37°

RST-2 April 13, 2013 4.8×7.4 m 37–39°

4
TSX May 4, 2013

11 days
1.8×1.0 m 36–37°

RST-2 April 23, 2013 5.5×9.0 m 30–31°

5
TSX July 20, 2013

11 days
1.8×1.0 m 36–37°

RST-2 July 31, 2013 4.9×7.6 m 37–39°

2.3 Generation of three SAR datasets

From the full SAR images acquired, the objective
was to generate three different datasets corresponding
to three equivalent acquisition configurations (quad-
pol/C-band-Band, dual-pol/C-band-Band and dual-
pol/X-band-Band) to be able to compare the band fre-
quencies and channel polarizations of RADARSAT-2
and TerraSAR-X.

After radiometrically calibrating all images,
RADARSAT-2 images were converted from quad- to
dual-polarization, and TerraSAR-X images were re-
sampled at the spatial resolution of RADARSAT-2
images:

(i) The quad-pol/C-band dataset was produced di-
rectly from RADARSAT-2 images.

(ii) The dual-pol/C-band dataset was produced by
extracting the HH and VV polarization channels,
then deriving for each pixel of the RADARSAT-2
image the corresponding 2 × 2 covariance matrix
C2.

(iii) The dual-pol/X-band dataset was produced by
applying a multilook of three looks in azimuth
and five in the range direction to the 2 × 2 covari-
ance matrix C2 of each pixel of the TerraSAR-X
image. As a result, this dataset had a spatial res-
olution similar to that of the other two datasets.
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Table 3: Acronyms and description of the 25 SAR features used in this study per polarization mode.

Acronym SAR feature description Quad-pol Dual-pol

HH Horizontal transmit and horizontal receive √ √

VV Vertical transmit and vertical receive √ √

HV Horizontal transmit and vertical receive √

HH/VV Co-polarization ratio √ √

HH/HV Co-polarization ratio √

VV/HV Co-polarization ratio √

T11 First diagonal element from the coherency matrix √

T22 Second diagonal element from the coherency matrix √

T33 Third diagonal element from the coherency matrix √

C11 First diagonal element from the covariance matrix √

C22 Second diagonal element from the covariance matrix √

CP_alpha Alpha angle from Cloude-Pottier decomposition √

CP_aniso Anisotropy from Cloude-Pottier decomposition √

CP_ent Entropy from Cloude-Pottier decomposition √

FD_vol Volume scattering from Freeman-Durden decomposition √

FD_dbl Double-bounce scattering from Freeman-Durden decomposition √

FD_odd Single-bounce scattering from Freeman-Durden decomposition √

Yam_vol Volume scattering from Yamaguchi decomposition √

Yam_dbl Double-bounce scattering from Yamaguchi decomposition √

Yam_odd Single-bounce scattering from Yamaguchi decomposition √

Yam_hlx Helix scattering from Yamaguchi decomposition √

SE Sum of the Shannon entropy intensity and polarization √ √

Sei Shannon entropy intensity √ √

Sep Shannon entropy polarization √ √

SPAN Total scattered power √ √

2.4 Extracting SAR features

Next, the most frequently used SAR features (Adeli et
al. 2020), including backscattering coefficients and po-
larimetric parameters (Table 3), were extracted from
the three configuration datasets defined previously.

2.4.1 Quad-pol dataset

Backscattering coefficients (σ°HH, σ°VV and σ°HV)
were extracted from the quad-pol/C-band dataset and
then despeckled using the refined Lee filter (Lee and
Eric Pottier 2009) with a sliding window of 7 × 7 pix-
els (sigma 0.8, target 3 × 3 pixels). Next, the images
were geocoded using Shuttle Radar Topography Mis-
sion (SRTM) data with a pixel spacing of 7 m (nearest
neighbor resampling) to correct topographic deforma-
tions (geometric correction accuracy < 1 pixel) and
were then projected into the Lambert-RGF93/IGN-69
system. Three intensity ratios (HH/VV, VV/HV and

HH/HV) were calculated from the images and con-
verted into decibels (dB) using the following equation:

σ◦(db) = 10.log10(σ)
◦

Quad-polarimetric parameters were also generated
from this dataset, as follows:

(i) A 3 × 3 coherency matrix (T3) and a 3 × 3 covari-
ance matrix (C3) were extracted from each pixel
of the SAR image described by its each scattering
matrix (S).

(ii) Speckle filtering was applied to the coherency
(T3) and covariance (C3) matrices using a refined
Lee filter with a sliding window of 7 × 7 pixels.

(iii) Geometric correction was applied to the co-
herency (T3) and covariance (C3) matrices using
SRTM data with a pixel spacing of 7 m (nearest
neighbor resampling).

(iv) First T11
〈
|SHH + SV V |2

〉
, as well as second

T22
〈
|SHH − SV V |2

〉
and third T33

〈
|SHV |2

〉
el-
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Figure 2: Comparison (us-
ing Pearson’s correlation coef-
ficient) of the similarity of five
pairs of Shannon entropy im-
ages from the dual-pol/X-band
and dual-pol/C-band datasets.
Black areas (lower values) indi-
cate flooded areas, while white
areas (higher values) indicate
woods or crops.).

ements of the diagonal coherency matrix were
used to describe single-bounce, double-bounce
and volume-scattering mechanisms, respectively.

(v) Cloude-Pottier decomposition (Cloude and E.
Pottier 1997) was performed on the coherency
matrix (T3) to generate entropy (CP_ent), alpha
angle (CP_alpha) and anisotropy (CP_aniso)
polarimetric parameters.

(vi) Freeman-Durden decomposition (Freeman and
Durden 1998) was performed on the covariance
matrix (C3) to generate single-bounce scattering
(FD_odd), double-bounce scattering (FD_dbl)
and volume scattering (FD_vol) parameters.

(vii) Yamaguchi decomposition (Yamaguchi et al.
2005) was performed on the covariance ma-
trix (C3) to generate single-bounce scat-
tering (Yam_odd), double-bounce scattering
(Yam_dbl), volume scattering (Yam_vol) and
helix scattering (Yam_hlx) parameters.

(viii) The shannon entropy parameters (SE, SEi and
SEp), as well as the total scattered power (SPAN)
were also calculated (Lee and Eric Pottier 2009).

2.4.2 Dual-pol datasets

Backscattering coefficients (σ°HH and σ°VV) and the
ratio HH/VV were generated from the dual-pol/C-
band and dual-pol/X-band datasets using the method
described previously for the quad-pol dataset. Dual-
polarimetric parameters were then extracted from the
two datasets as follows:

(i) From each pixel of the SAR image described by
its scattering elements, the corresponding 2 × 2
covariance matrix (C2) was extracted.

(ii) Speckle filtering was applied to the covariance
matrix (C2) using a refined Lee filter with a slid-
ing window of 7 × 7 pixels.

(iii) Geometric correction was applied to the covari-
ance matrix (C2) using SRTM data with a pixel
spacing of 7 m (nearest neighbor resampling).

(iv) First C11|SHH |2 and second C22|SV V |2 elements
of the diagonal covariance matrix (C2) were ex-
tracted.

(v) SE, SEi, SEp and SPAN were calculated (Lee and
Eric Pottier 2009).

2.5 Selection of similar pairs of images

To ensure that the pairs of images were sufficiently
similar to compare given the high temporal variabil-
ity in wetland hydrodynamics, a Pearson correlation
coefficient (r) was calculated between the SE of each
pair of images in each dual-pol dataset. SE was se-
lected because it is highly sensitive to the presence of
open water, which varies greatly in wetland ecosys-
tems (Marechal et al. 2012). Based on the conven-
tional approach and visual analysis (Schober, Boer,
and Schwarte 2018), image pairs with r < 0.7 were
considered as moderate or weak correlation and were
excluded from subsequent analysis.

2.6 Ranking the importance of SAR
features for discriminating wetland
vegetation types

The next step identified the SAR features and dates
that discriminated wetland vegetation types the most

for each of the three SAR datasets. First, all pixel
values of SAR features were standardized by setting
the overall mean of each feature to 0 and the standard
deviation to 0.25, since the wide range of pixel val-
ues among SAR features and dates could have caused
certain features to dominate the classification. Then,
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Figure 3: Mean decrease in ac-
curacy cumulated per time-step
of SAR features (see Table 3
for definitions) for wetland veg-
etation discrimination calculated
using the random forest model
for each of three SAR datasets.
Backscattering coefficients are in
bold font, while polarimetric pa-
rameters are in regular font. Dots
indicate the cumulative mean de-
crease in accuracy.

for each SAR dataset, the values of SAR features
were extracted for each reference plot, and a specific
conditional RF model (Strobl, Boulesteix, Kneib, et
al. 2008), calibrated and validated by 5-fold cross-
validation repeated two times (Kuhn and Johnson
2013), was fitted. Compared to the commonly used
RF model (Breiman 2001), the conditional RF algo-
rithm is designed to avoid ranking bias of correlated
variables (Strobl, Boulesteix, Zeileis, et al. 2007), as
may be the case with SAR features. To this end,
the conditional RF model was first calibrated using
conditional inference trees constructed on subsampling
without replacement (Strobl, Boulesteix, Zeileis, et al.
2007), then SAR features were ranked by conditional
permutation (Debeer and Strobl 2020). A cumulative
mean decrease in accuracy was calculated for each SAR
dataset for each feature and each date. Features or
dates with a high mean decrease in accuracy influenced
the RF modeling of wetland vegetation types the most.

2.7 ANOVA of model output

To quantify the percentage of the variance in model
output (F1 scores) explained by polarization, frequency
and the number of acquisition dates, ten F1 scores were
derived per model (i.e. 5 folds × 2 replicates) of the
RF model for each SAR dataset. To quantify the in-
fluence of the number of acquisition dates on model
accuracy, the conditional RF model was replicated for
each of the three datasets with the 2 most important
dates and then the most important date. As a result,
for each dataset, the model was iteratively run with 3
dates, 2 dates and 1 date, respectively. An indepen-
dent three-way ANOVA was performed for each vege-
tation type to estimate model accuracy based on its
specific F1 scores as a function of polarization, fre-
quency and number of acquisition dates. Similarly,
another independent ANOVA was performed for all
vegetation types based on global F1 scores. While

some vegetation types violated the assumption of nor-
mality or heteroscedasticity, a three-way permutation
ANOVA was performed (Wheeler, M. Torchiano, and
M. M. Torchiano 2016) because this method is not
restricted by distributional assumptions and accom-
modates differences among within-group distributions
(Anderson 2014). Permutation ANOVA was performed
using type III sum of squares since sample sizes dif-
fered (i.e. more dual-pol than quad-pol occurrences)
(Shaw and Mitchell-Olds 1993). The percentage of
variance in the F1 score explained by each factor (po-
larization, frequency and number of acquisition dates)
in the ANOVA was calculated using the index eta2,
which is the ratio of a factor’s sum of squares to the
total sum of squares (Cohen 2008).

3 Results

3.1 Similar pairs of SAR images

Comparison of the pairs of SE images from the dual-
pol/C-band and dual-pol/X-band datasets yielded r <
0.7 for time-steps 2 and 4, which were excluded from
subsequent analysis (Fig. 2). In detail, time-step 1
(winter), with a time-shift of 2 days, revealed a large
and similar area of marsh flooding on February 14 and
16 (r = 0.87). Conversely, time-step 2 (winter), de-
spite having a time-shift of only 3 days, revealed more
marsh flooding on March 13 than on March 10, which
yielded its low correlation (r = 0.32). For time-step
3 (spring), the 2-day time-shift revealed a similar de-
crease in the flood area (r = 0.83). For time-step 4
(spring), the longer time-shift (11 days) revealed much
less open water area on May 4 than on April 23, which
explained its low correlation (r = 0.27). Conversely,
time-step 5 (summer) also had a time-shift of 11 days,
but its flooded area was similar (r = 0.70). Based on
these results, three pairs of SAR images (time-steps 1,
3 and 5) were retained for subsequent analysis.
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Table 4: Results of a 3-factor permutation ANOVA
that quantified the percentage of variance (expressed as
eta2) in the accuracy of the random forest model (F1
score) of each vegetation type explained by polariza-
tion (POL), frequency (FREQ), number of acquisition
dates (NOD) and their interactions.

Vegetation
type

POL FREQ NOD POL
×
NOD

FREQ
×
NOD

All types 1.4** 13.3*** 68.4*** 0.2ns 10.1***

Crops 2.0* 10.1*** 52.7*** 3.5** 0.7ns

Woods 6.5*** 1.4* 48.8*** 8.5*** 6.4***

Mesophilic
grasslands

2.9*** 2.2*** 58.0*** 9.4*** 19.4***

Meso-
hygrophilic
grasslands

4.8*** 32.7*** 27.1*** 1.9* 8.0***

Hygrophilic
grasslands

0.7ns 0.1ns 64.8*** 2.8** 7.7***

Long-
flooded
grasslands

7.3*** 17.3*** 37.2*** 5.6*** 28.0***

Ponds 2.2ns 1.4ns 0.8ns 1.0ns 6.2*
Asterisks indicate a significant result (*** p < 0.001,

** p < 0.01, * p < 0.05), while "ns" indicates a
non–significant result (p ≥ 0.05).

3.2 Importance of SAR features for
discriminating wetland vegetation
types

For the quad-pol dataset, most discriminating of the
25 SAR features were the polarimetric parameters SE
(mean decrease in accuracy = 0.024) and SEi (0.016),
followed by HV backscattering coefficient (0.014) (Fig.
3). Volume scattering, HH and VV backscatter-
ing coefficients, diagonal elements of the coherency
matrix and SPAN were moderately discriminating
(mean decrease in accuracy = 0.005–0.013). The
least discriminating features were the co-polarization
and cross-polarization ratios; the parameters derived
from Cloude-Pottier decomposition; and Yam_hlx,
Yam_odd, Yam_dbl, FD_odd, FD_dbl and SEp
(mean decrease in accuracy < 0.003). Time-step 5 was
the most important date (mean decrease in accuracy =
0.061) while time-steps 3 and 1 were less contributing
(0.047 and 0.043, respectively).

For the dual-pol datasets, the most discriminating
of the nine parameters were SE and SEi (mean de-
crease in accuracy = 0.042 and 0.029, respectively, in
the C-band and 0.027 and 0.021, respectively, in the
X-band) (Fig. 3). Backscattering coefficients, diago-
nal elements of the covariance matrix and SPAN were
moderately discriminating (mean decrease in accuracy

= 0.007–0.022 in the C-band and 0.009–0.021 in the X-
band). The co-polarization ratio was one of the least
discriminating parameters in both C-band and X-band
(mean decrease in accuracy = 0.004 and 0.003 respec-
tively). In the C-band, time-step 5 was the most impor-
tant date (mean decrease in accuracy = 0.057) while
time-steps 3 and 1 were similarly less discriminating
(0.048 and 0.047, respectively). Conversely, in the X-
band, time-step 3 was the most important date (mean
decrease in accuracy = 0.056), while time-steps 5 and
1 were similarly less discriminating (0.040 and 0.038
respectively).

3.3 Influence of polarization, frequency
and number of dates on discrimina-
tion of wetland vegetation types

Generally, results of the 3-factor permutation ANOVA
indicated that both frequency and number of acquisi-
tion dates as well as their interactions influenced over-
all accuracy (F1 score) of the RF model significantly (p
< 0.001) (Table 4). Conversely, polarization had little
influence on overall accuracy (p < 0.01), since the F1
scores had similar median values in dual-pol (0.59 ±
0.09) and quad-pol (0.60 ± 0.11) modes (Table 4 and
Fig. 4). Interactions between polarization and num-
ber of acquisition dates were non-significant (p > 0.05)
when considering all wetland vegetation types. Con-
versely, for individual vegetation types, polarization in-
fluenced accuracy significantly (p < 0.001), especially
for discriminating woods, mesophilic grasslands, hy-
grophilic grasslands and long-flooded grasslands. More
specifically, for woods, polarization and its interaction
with the number of acquisition dates, explained 6.5%
and 8.5% of the variance in model accuracy, respec-
tively. Indeed, although the median F1 score was sim-
ilar in quad-pol mode (0.86 ± 0.02) or dual-pol mode
(0.86 ± 0.01) when two acquisition dates were used, it
was much lower in dual-pol mode (0.85 ± 0.02) than
in quad-pol mode (0.92 ± 0.02) when three acquisition
dates were used (Fig. 5). For mesophilic grasslands,
polarization and its interaction with the number of ac-
quisition dates explained 2.9% and 9.4% of the vari-
ance in model accuracy, respectively, with higher F1
scores of 0.07 in dual-pol mode with three dates and
even up to 0.16 with two dates (Fig. 5). For meso-
hygrophilic grasslands, polarization explained 4.8% of
the variance in model accuracy, with higher F1 scores
in dual-pol mode (0.45 ± 0.12) than in quad-pol mode
(0.37 ± 0.10). For long-flooded grasslands, polarization
also explained a part of the variance in model accuracy
(7.3%, p < 0.001), with higher F1 scores in quad-pol
mode (0.83 ± 0.27) than in dual-pol mode (0.71 ±
0.20) (Fig. 4). The interaction between polarization
and number of acquisition dates explained 5.6% of the
variation in model accuracy for long-flooded grasslands
(p < 0.001), since the difference in F1 scores between
quad-pol and dual-pol modes was larger (0.85 ± 0.02
and 0.65 ± 0.07, respectively) when two acquisition
dates were used (Fig. 5). A minor (<4%) but signif-
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icant (p < 0.05) influence of polarization and its in-
teractions with the number of acquisition dates was
observed for crops and hygrophilic grasslands (Table
4).

Frequency explained 13.3% (p < 0.001) of the vari-
ance in model accuracy for discriminating wetland veg-
etation types, since median F1 scores were slightly
higher and with a lower variance in the X-band than
the C-band (Fig. 4). The interaction between fre-
quency and number of acquisition dates explained
10.1% (p < 0.001) of the variance in overall model
accuracy, since the advantage of the X-band over the
C-band for the F1 score increased as the number of
acquisition dates decreased (Fig. 5). Analysis of indi-
vidual vegetation types indicated that frequency also
influenced discrimination of each vegetation type sig-
nificantly. For crops, frequency explained for 10.1%
of the variance in overall model accuracy, with higher
F1 scores in X-band frequency (0.59 ± 0.10) than in
C-band frequency (0.52 ± 0.11) (Fig. 4). For woods,
mesophilic grasslands and hygrophilic grasslands, in-
teractions between frequency and the number of ac-
quisition dates explained for 6.4%, 19.4% and 7.7%
of the variance in overall model accuracy respectively.
Whereas for woods, F1 scores were higher in C-band
frequency than in X-band frequency except when two
acquisition dates were used, conversely, for mesophilic
and hygrophilic grasslands, F1 scores were higher in
X-band frequency than in C-band frequency except
when 2 acquisition dates were used (Fig. 5). For
meso-hygrophilic grasslands, frequency and its inter-
actions with the number of acquisition dates explained
for 32.7% and 8% (p < 0.001) of the variance in model
accuracy respectively, since F1 scores were globally
higher in the X-band (0.49 ± 0.06) than in the C-bands
(0.35 ± 0.11) (Fig. 4). Though, F1 scores were sim-
ilar in frequency (0.53 ± 0.03 in X-band, and 0.52 ±
0.04 in C-band) when three acquisition dates were used
(Fig. 5). For long-flooded grasslands, frequency and its

interactions with the number of acquisition dates ex-
plained for 17.3% and 28% (p < 0.001) of the variance
in model accuracy respectively. Although F1 scores
were similar regardless of the frequency when using two
or three acquisition dates, scores differed greatly when
using only one acquisition date, with clear discrimina-
tion in the X-band (0.72 ± 0.02) but poor discrimi-
nation in the C-band (0.26 ± 0.07). Interactions of
frequency with the number of acquisition dates also in-
fluenced slightly (6.2%) but less significantly (p < 0.05)
discrimination of ponds (Table 4).

The number of acquisition dates explained more
than half of the variance in model accuracy (68.4%, p
< 0.001) (Table 4), with the median F1 score equal to
0.45 ± 0.07 with one date, 0.59 ± 0.02 with two dates
and 0.69 ± 0.03 with three dates (Fig. 4). Moreover,
the number of acquisition dates significantly explained
(p < 0.001) for variance in model accuracy for each
vegetation class except for ponds (Table 4). In details,
analysis of individual vegetation types indicated that
discrimination of crops (46%, p < 0.001), woods (48%,
p < 0.001), and hygrophilic grasslands (64.8%, p <
0.001) depended greatly on the number of acquisition
dates, with the F1 score increasing significantly from
one to two acquisition dates for crops (0.50 ± 0.12 and
0.68 ± 0.07, respectively), woods (0.85 ± 0.15 and 0.91
± 0.03, respectively) and hygrophilic grasslands (0.23
± 0.07 and 0.45 ± 0.07, respectively); however, addi-
tion of a third acquisition date did not increase the
F1 score significantly (Fig. 4). For mesophilic grass-
lands, the number of acquisition dates explained 58%
(p < 0.001) of the variance in model accuracy, with
the F1 score increasing as the number of acquisition
dates increased (0.26 ± 0.11 for 1 date, 0.35 ± 0.13 for
2 dates and 0.61 ± 0.09 for 3 dates) (Fig. 4). To a
lesser extent, the number of acquisition dates also in-
fluenced discrimination of meso-hygrophilic grasslands,
and long-flooded grasslands (27.1–37.2%, p < 0.001)
(Table 4).

4 Discussion

4.1 How similar are the acquisition pa-
rameters of SAR data collected by
different sensors in wetland ecosys-
tems?

We acquired five pairs of RADARSAT-2 and
TerraSAR-X images with time-shifts of 2–11 days be-
cause it had been identified as acceptable (Amani et al.
2019; Mohammadimanesh, Salehi, Mahdianpari, Mo-
tagh, et al. 2018; Simioni et al. 2019). After the corre-
lation analysis, however, we excluded two pairs (time-
steps 2 and 4) that, despite having short time-shifts
(3 and 11 days, respectively), showed large differences
in flooded area and thus in the values of SAR features
(Fig. 2). Without this verification step, all five time-
steps would have been retained, and comparisons of the

frequency and polarization would have been biased by
the large differences in hydrological conditions of the
wetland ecosystems.

Our results confirm that wetland hydrodynamics
vary throughout the year (Betbeder, Sébastien Rap-
inel, Corgne, et al. 2015): high variability occurred in
late winter (time-series 2, r = 0.32) and spring (time-
series 4, r = 0.27), with time-shifts of 3 and 11 days,
respectively, and relative stability (time-series 5, r =
0.70) was observed in summer, with a time-shift of
11 days. Verifying image pairs is thus especially im-
portant during this dynamic late winter/spring period
since it is the most discriminating for wetland vegeta-
tion (Jahncke et al. 2018).
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Figure 4: Variability in accuracy of the random forest model (F1 score) overall and for each wetland vegetation
type as a function of polarization, frequency and number of acquisition dates of SAR datasets. Whiskers
represent the 5th and 95th percentiles.

4.2 Are the most discriminating SAR
features of wetland vegetation the
same regardless of the polarization
or frequency used?

This study highlights the advantage of SE features
over backscattering coefficients or other polarimetric
parameters for discriminating wetland vegetation, re-
gardless of polarization (dual- or quad-pol) or fre-
quency (C- or X-band). This result agrees with pre-
vious studies of this site performed using TerraSAR-
X images (Betbeder, Sébastien Rapinel, Corgne, et
al. 2015; Betbeder, Sébastien Rapinel, Corpetti, et al.
2014). Conversely, Amani et al. (2019) found that SE
was not highly discriminating for boreal wetlands using
RADARSAT-2, ALOS-2 and Sentinel-1 images. This
difference may be due to the type of wetland examined:
in this study, the Couesnon marshes consisted basi-
cally of four types of wet meadows patterned by flood
duration (Table 1), which SE clearly discriminated
(Marechal et al. 2012). In quad-pol mode, SE was the
most discriminating, even when including the parame-
ters derived from polarimetric decompositions (Fig. 3).
To a lesser extent, our results indicate the importance
of Freeman-Durden and Yamagashi decomposition pa-
rameters, especially those related to volume scattering
and, conversely, the low influence of parameters result-
ing from Cloude-Pottier decomposition, which agrees
with some studies (de Almeida Furtado, Silva, and de
Moraes Novo 2016; Mahdianpari, Salehi, Mohammadi-
manesh, Brian Brisco, et al. 2018; Mahdianpari, Salehi,
Mohammadimanesh, and Motagh 2017) but contra-

dicts others (Amani et al. 2019; Mohammadimanesh,
Salehi, Mahdianpari, Motagh, et al. 2018; Morandeira
et al. 2016).

In this study, we selected and tested 25 polarimet-
ric SAR features among those commonly used in the
literature for the study of wetlands (Adeli et al. 2020),
although other polarimetric SAR features were occa-
sionally investigated, such as those derived from Ken-
naugh (Mahdianpari, Salehi, Mohammadimanesh, and
Brian Brisco 2017), Pauli (B. Brisco et al. 2011), Touzi
(Amani et al. 2019; Franklin and Ahmed 2017; Mil-
lard and Richardson 2018) or Van Zyl (Amani et al.
2019; Mahdianpari, Salehi, Mohammadimanesh, Brian
Brisco, et al. 2018) decompositions. While several
studies recently highlighted the contribution of circular
polarization features derived from compact polariza-
tion data (e.g. upcoming RADARSAT Constellation
Mission) to discriminate wetland vegetation (Banks
et al. 2019; Mohammadimanesh, Salehi, Mahdianpari,
Brian Brisco, and Gill 2019), we did not test this spe-
cific feature as the Radarsat-2 and TerraSAR-X data
used were acquired in 2013 in dual or quad polariza-
tion.

Although we highlighted the advantage of SE, the
importance of SAR features for discriminating wetland
vegetation types differs among studies, since their im-
portance depends greatly on the type of vegetation,
reference data, type of model and the configuration
used to acquire SAR data (Mohammadimanesh, Salehi,
Mahdianpari, Brian Brisco, and Motagh 2018).
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Figure 5: Influence of the three acquisition configurations (polarization, frequency, number of acquisition
dates) and their interactions on the accuracy of the random forest model (median and standard deviation of the
F1 score) overall and for each wetland vegetation type. Lines that are nearly parallel indicate weak interactions.
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Given this context, we recommend, as in the present
study,comparing as many SAR features as possible and
then retaining only the most discriminating ones to im-
prove model performance and transferability (Maxwell,
Warner, and Fang 2018). However, variable selection
is a complex process, notably when many correlated
variables such as SAR features are being considered
(Gregorutti, Michel, and Saint-Pierre 2017). Despite
the availability of a wide range of methods to select
the most contributing variables – e.g. backward se-
lection, dimension reduction space, specific internal
metric, correlation analysis – there is no consensus on
which one is the best. In this study, we addressed the
question of the collinearity of the variables using a con-
ditional permutation process (Debeer and Strobl 2020).
However, further researches are still needed to develop
a robust method for variable selection. In this per-
spective, Meyer et al. (2019) recently highlighted the
importance of spatial predictor variable selection to im-
prove machine learning model performance and trans-
ferability. This approach is attractive and deserves to
be deeper investigated.

In this study, we used a variant of the random
forest model, which is one of the most widely used
models for mapping wetlands (Mahdavi, Salehi, et al.
2018). However, recent researches have highlighted the
value of deep learning models to improve feature ex-
traction (Sharifzadeh, Akbarizadeh, and Kavian 2019;
Tirandaz, Akbarizadeh, and Kaabi 2020), change de-
tection (Samadi, Akbarizadeh, and Kaabi 2019), or
wetland mapping (DeLancey et al. 2020; Martins et
al. 2020). Thus, the monitoring of wetland vegetations
using deep learning modeling of SAR images appears
to be a promising perspective.

4.3 Is the influence of frequency, polar-
ization and number of acquisition
dates on model accuracy regardless
of vegetation type?

Our results indicate that polarization does not influ-
ence model accuracy, which does not agree with those
of several studies that highlighted the advantage quad-
pol mode over dual-pol mode for discriminating wet-
land vegetation (Amani et al. 2019; de Almeida Fur-
tado, Silva, and de Moraes Novo 2016; Mahdavi, Salehi
Sr, et al. 2017). This difference can be explained by the
high importance of SE for discriminating vegetation,
which was calculated in both quad-pol and in dual-pol
modes. Nonetheless, the advantage of quad-pol mode
over dual-pol mode has been observed when identi-
fying woods (with a height > 1 m, Table 1), which
are thus characterized well by volume-based polari-
metric parameters (Freeman and Durden 1998; Yam-
aguchi et al. 2005), and identifying long-flooded grass-
lands with double-bounce scattering. Furthermore,
our results show that the dual-pol configuration better
discriminates herbaceous vegetations compared to the
quad-pol configuration, although with a higher stan-

dard deviation (Fig. 5). A possible explanation for
this is that the dual-pol configuration includes two
frequencies (X-band and C-band) exhibiting contrast-
ing responses of herbaceous vegetations (Mahdianpari,
Salehi, Mohammadimanesh, and Motagh 2017; Maleki
et al. 2020; Mohammadimanesh, Salehi, Mahdianpari,
Brian Brisco, and Motagh 2018), whereas the quad-pol
configuration includes only one C-band frequency.

The most appropriate SAR frequency to charac-
terize wetlands varies according to the physiognomy
of the existing vegetation. In accordance with previ-
ous studies (Mahdianpari, Salehi, Mohammadimanesh,
and Motagh 2017; Maleki et al. 2020; Mohammadi-
manesh, Salehi, Mahdianpari, Motagh, et al. 2018),
our results indicate that model accuracy is higher in
the X-band frequency than in the C-band frequency for
herbaceous vegetations, especially when only one date
is available. However, the findings show that C-band
is slightly more relevant than X-band to discriminate
woody vegetations and ponds. In this study, L-band
frequency SAR images, such as ALOS-2 data, were un-
fortunately unavailable during the period investigated,
while several studies have highlighted the added value
of the L-band over the C-band in discriminating woody
vegetation such as swamps (Amani et al. 2019; Mahdi-
anpari, Salehi, Mohammadimanesh, and Motagh 2017)
or emergent vegetation such as marshes (Simioni et al.
2019). In summary, X-band frequency is the most dis-
criminating for herbaceous vegetation, L-band or al-
ternatively C-band for woody vegetation, and C-band
for ponds. However, it should keep in mind that fre-
quency and its interactions with the number of acqui-
sition dates explain only for less than one-third of the
variance in model accuracy (Table 4).

Indeed, our study confirms that classification accu-
racy increases as the number of acquisition dates in-
creases (Banks et al. 2019; Mahdianpari, Salehi, Mo-
hammadimanesh, Brian Brisco, et al. 2018; Schus-
ter et al. 2015). The number of acquisition dates
needed to achieve acceptable accuracy (F1 score >
0.8) ranges from one for woods and ponds, to two for
long-flooded grasslands, to more than three for certain
grassland vegetation types or crops (data not shown).
Indeed, accurately discriminating the four grassland
types requires characterizing flood duration using at
least five acquisition dates (Betbeder, Sébastien Rap-
inel, Corgne, et al. 2015). More generally, our results
emphasize that the number of acquisition dates ex-
plains more than half of the variance in the discrim-
ination accuracy of wetland vegetation. Our results
also validate the hypothesis of Schuster et al. (2015)
that temporal resolution is more important than sen-
sor characteristics. Nevertheless, a slight decrease in
the F1 score was observed when the third acquisition
was added for woods in X-band and ponds in C-band
frequency (Fig. 5). This may be explained by the
fact that the third acquisition date is the least im-
portant variable and therefore the one that introduces
noise and complexity to the conditional RF model,
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decreasing the accuracy for some vegetation classes
(Maxwell, Warner, and Fang 2018). In addition, a
decrease in model accuracy was also reported in X-
band between 1 and 2 acquisition dates for mesophilic,
meso-hygrophilic and long-flooded grasslands. In fact,
whereas time-step 5, which was acquired during the
dry season, was the second most important variable
for all the vegetation classes in X-band frequency, it
did not discriminate between grassland classes, since
these classes share the same phenological and hydro-
logical characteristics at this period of the year. The
relationships between vegetation condition, SAR signal
response and modelling processes are complex and re-
quire future interdisciplinary research between ecology,
remote sensing and modelling sciences.

5 Conclusion

Five pairs of RADARSAT-2 and TerraSAR-X images
and ANOVA were used to investigate the relative influ-
ence of polarization, frequency and number of acquisi-
tion dates on the accuracy of a conditional RF model
used to discriminate seven vegetation types in riverine
marshes. Our results suggest that (i) the strong hydro-
logical dynamics of wetlands require verifying the simi-
larity of SAR image pairs before comparing acquisition
configurations, (ii) SE is the most discriminating SAR
feature regardless of polarization mode (dual-/quad-
pol) or frequency (X-/C-band) and (iii) the number of
acquisition dates explains more than half of the vari-
ance in model accuracy. In other words, this study
indicates that wetland vegetation types could be dis-
criminated sufficiently well using SAR images and SE
generated over a dense SAR time-series, regardless of
the frequency or polarization.
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