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Abstract: We developed an automated Random Telegraph Signal detection and characterization method, as well 7 

as a blinking noise and slow drift separation method adapted to focal plane arrays.  Utilizing these methods, a 8 

study of the evolution of the number of RTS pixels and the amplitudes of the blinking signal as a function of the 9 

reverse bias voltage and temperature is conducted. It is shown that physical characteristics of RTS follow 10 

Arrhenius laws and increase with bias. Finally, the origin of the increase of the amplitude as a function of the 11 

reverse bias is discussed.  12 
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INTRODUCTION 14 

Temporal noise is one of the main challenges in the quest for high operability and stability of image 15 

quality over time in infrared focal plane arrays (IR FPA). This type of noise cannot be corrected by a classical 16 

non-uniformity correction, as parasitic extra-noise signal may vary in time. Among the sources of temporal 17 

noise, low-frequency noises, or 1/f
α
 noises, with f being the frequency and α a coefficient between 1 and 2, are 18 

part of the main sources of noise restraining the high operating temperature trend in cooled infrared sensors. 19 

Random Telegraph Signal (RTS) is one of them. It exhibits significant current variations with seemingly random 20 

occurrences in the temporal dimension. It can affect small scale image quality when the jump amplitude exceeds 21 

the residual fixed pattern noise and the very longterm stability through its impact on gain/offset correction tables. 22 

Therefore, understanding the physics behind this phenomenon is critical to improve cooled sensors’ image 23 

temporal stability.  24 

Also called “blinking pixel” in the frame of FPAs, RTS pixel exhibits a multi-stable signal, i.e. a signal 25 

fluctuating between multiple stable states. Figure 1 shows a bi-stable RTS signal recorded on our FPA. It 26 
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presents two stable states, separated by a jump characterized by its amplitude A, and with instant lifetimes τup 27 

and τdown. Mean values of lifetimes <τup>and <τdown> are commonly used to characterize the blinking frequency. 28 

In the case of a bi-stable RTS, the relation between the blinking lifetimes and the blinking frequency is as 29 

described in Equation (1):  30 

𝑓𝑐 =  
1

<𝜏𝑢𝑝>
+

1

<𝜏𝑑𝑜𝑤𝑛>
 (1) 

 RTS has been detected in many types of systems, such as nanowires [1], silicon transistors [2] and 31 

photodectors [3], and IR FPA, such as T2SL [4], InGaAs [5] or HgCdTe [6, 7] detectors. It would be too 32 

simplistic to assume that each RTS behavior in each system is a consequence of the same physical phenomenon. 33 

Thus, this article is solely discussing of the RTS behavior in HgCdTe detectors. Prior results have been 34 

established [6] on this material, proving that the RTS amplitude and lifetimes demonstrated a Boltzmann 35 

behavior, which means it is activated by temperature with an activation energy Ea. The objective of our study is 36 

to further this study with varying bias voltage, in order to highlight a field effect.  37 

In the first part of this paper, the algorithm of detection and characterization of the RTS pixels is 38 

presented. It is based on a changepoint detection method, a corner frequency method and a histogram fit method. 39 

The second part is focused on the detection problems raised by the superposition of RTS and other low 40 

frequency noises, and the algorithm developed to tackle this issue. Finally, in the third part of the paper, the 41 

experimental setup and results on activation energy versus bias on a Mid-Wave Infrared (MWIR) detector are 42 

presented.     43 

RTS DETECTION AND CHARACTERIZATION ALGORITHM 44 

 The principle of the Algorithm for Advanced RTS Detection (AARD) is presented in figure 2. There are 45 

three paths: the changepoint path, also called the “Pruned Exact Linear Time” (PELT) path, the frequency or 46 

LFNS one, and the histogram fit one. The changepoint path is based on a changepoint detection called PELT 47 

method [8]. It defines a cost function based on the variance of the signal and a threshold for the search in the 48 

mean changes. This threshold Cr is designed as follows:  49 

Cr=max (𝑘. 𝑀𝐴𝐷(𝑋), max(𝑋)−min(𝑋)

2𝑘
) 

 

(2) 

with k being the effective tunable threshold, typically varying between 1 and 3, and MAD being the Median 50 

Absolute Deviation of the signal X. Having a comparison between two criteria, one on the non-Gaussian 51 
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character of the signal, and one on the maximum amplitude of the noise, makes it possible to detect pixels 52 

showing a high number of jumps with low amplitudes, as well as pixels showing a low number of jumps with 53 

high amplitudes. Then, a State Reduction (SR) algorithm is applied to the extracted signal to compute the final 54 

RTS contribution to the raw temporal signal. As shown in [9], the estimated RTS signal is representative of the 55 

blinking noise, even with multiple stable states and low RTS-to-white-noise ratio. In the following, the 56 

PELT+SR algorithm will be referred simply as PELT. 57 

 In parallel, the LFNS and the histogram methods are used to verify the RTS nature and behavior of the 58 

pixel. The LFNS method relies on a fit of the power spectral density (PSD) multiplied by the frequency, in order 59 

to flatten the 1/f noise and highlight the 1/f² noise. It has been shown that the bi-stable RTS noise had a 60 

Lorentzian frequency signature [10]. In the LFNS plot, the 1/f noise is represented by a constant and the 1/f² or 61 

Lorentzian noise shows a peak function which is described by a “Lorentzian times frequency” function as in 62 

Equation (3): 63 

𝑓. 𝑃𝑆𝐷 = 𝛥𝐼² < 𝜏𝑢𝑝 >2< 𝜏𝑑𝑜𝑤𝑛 >2 𝑓𝑐
2𝑓

1+(2𝜋
𝑓

𝑓𝑐
)²
 (3) 

With ΔI the amplitude of the jump, and fc the corner frequency of the Lorentzian. This corner frequency is 64 

extracted, and in the case of bi-stable RTS, this corner frequency is the blinking frequency defined in (1). This 65 

study, however, does not focus on frequency characterization, hence this method will only be used in future 66 

studies. Finally, the histogram method is based on the histogram plot of the signal, which shows multiple 67 

Gaussian distributions if the pixels show RTS with white noise. Fitting these distributions and estimating the 68 

difference between consecutive maxima of the fit enable the calculation of the RTS amplitude and the 69 

establishment of a “well defined two-level RTS pixels” list, which are the objects of study in the next part of the 70 

work. These pixels are characterized by well separated Gaussian distributions, which entail jump amplitudes 71 

higher than two times the estimated white noise, and the presence of a minimum between consecutive local 72 

maxima of the histogram.  73 

SENSITIVITY OF THE ALGORITHM TO SLOW DRIFT 74 

By using the three methods presented in the previous section, it is possible to detect random telegraph 75 

pixels, to estimate and verify their jump amplitude, lifetimes and frequencies, and to extract a list of well-defined 76 

two-level pixels. However, despite having low error in the case of pure RTS + white noise, one of the drawbacks 77 

of this technique is that it may be sensitive to slow drift, which has a frequency behavior of 1/f
α
, with 1<α<2. In 78 
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practice, this drift can be the cause of false detections or high error RTS estimations. An illustration of the effect 79 

of the drift on the signal, on the RTS signal estimated with PELT and on its associated histogram is given in 80 

Figure 3. We can clearly see an increase of the error in the estimated level number of the RTS signal.  81 

In order to quantify this error, we used a Monte Carlo method to generate different 2 levels RTS signals. 82 

Input parameters are mean lifetimes <τup> and <τdown> (described by an exponential distribution as reported in 83 

[11]), jump amplitude ARTS, drift amplitude ADRIFT (we assumed a linear behavior for the present study) and a 84 

white temporal noise. After applying PELT method to these signals, we classify our results as follows: a non-85 

detection (ND) is a failure of the algorithm to detect a pixel which is RTS. A false detection (FD) is a detection 86 

of a pixel which is not RTS but is detected as such by the algorithm. Finally, a correct detection (CD) is a 87 

detection of an RTS pixel as such, and a correct non detection (CND), a detection of a non RTS pixel as such. In 88 

this study, fixed input parameters are: the length of the sample, which is 10
4 

frames, the white noise considered 89 

equal to 10 digits rms (similar to the detector studied in a subsequent section) and the mean lifetimes which are 90 

100 frames. We simulated 10 jump amplitudes ranging from 0 to 200 digits and 6 drift peak-to-peak amplitudes 91 

ranging from 0 to 100 digits.   For each (ARTS, ADRIFT) condition, we generated 10 distinct RTS signals leading to 92 

a total of 600 simulated pixels. First, a preliminary study has been conducted, where the k factor in the Cr 93 

criterion is ranging from 0.5 to 3.  For pixels without drift, a low k leads to 0% ND and 0% FD and in these 94 

cases, PELT is a very robust method. However, when increasing drift, low k brings higher ND and FD 95 

percentages than high k, hence this factor needs to be optimized. 96 

We obtained a qualitative color map of the average output of the PELT algorithm as a function of the 97 

jump amplitude and drift amplitude, as shown in figure 4a). The color and hashes of each cell correspond to the 98 

more probable state (ND, FD, CD or CND) of the 10 distinct RTS signals obtained with the same (ARTS, ADRIFT) 99 

condition. On the 600 simulated pixels, we finally obtain 50% FD and 8.9% ND. However, some correct RTS 100 

detections are due to the drift and not to the detection of a transition between up and down levels. The 101 

corresponding pixels are shown in green cells marked by crosses. They represent 22% of the distribution and 102 

present an ARTS/ADRIFT ratio lower than 1. This is consistent with results obtained with the Gaussian method, 103 

where 75% of the simulated pixels are detected as “well defined two-level RTS”. In addition, 23% of the RTS 104 

pixels (marked by circles) show strong errors between the estimated RTS signal and the raw data. In these cases, 105 

high drift systematically increases the estimation errors on the number of levels and/or the jump amplitudes 106 

and/or the lifetimes, thus increasing the characterization output error.   107 



5 
 

In order to reduce the PELT method output error, the Drift And RTS Characterization, Separation by 108 

Overall, Unique Level Selection (DARCSOULS) algorithm has been developed to discriminate the blinking 109 

signal from the slow drift. The principle of the algorithm is presented in figure 5. It is based on the hypothesis 110 

that the amplitude of the drift is negligible over the course of a few RTS jumps. PELT is applied locally on small 111 

pieces of the signal. Then the overall number of levels is estimated with the median value of the local number of 112 

levels, which allows the compensation of the RTS signal. The drift is calculated by applying a low-pass filter to 113 

the remaining signal. Finally, the extracted RTS signal is obtained by subtracting the calculated drift from the 114 

raw signal and applying PELT on the overall extracted signal.  115 

An optimization between the computation time, the number of slices according to the mean lifetimes 116 

has been conducted. Continuing the previous study, a color map of the average output of the 117 

PELT+DARCSOULS algorithms is shown in figure 4b. We consider the group {P0} of N0 pixels that were 118 

incorrectly characterized after applying the PELT method and the group {P1} of N1 pixels from {P0} which are 119 

correctly characterized after applying DARCSOULS algorithm. The recovery rate is: RR=N1/N0. In this study, it 120 

is equal to 62%. The remaining 38% are: pixels with too low jump amplitude-to-white noise ratio, thus creating 121 

non detections (19%), or pixels with too low jump amplitude-to-drift amplitude ratio, thus preventing the correct 122 

separation of drift and RTS and increasing the characterization output error (19%). For the Gaussian method, the 123 

detection rate of “well behaved two level RTS pixels” after applying DARCSOULS is increased to 81% (6% 124 

increase).  125 

In most of cases, applying AARD and DARCSOULS is enough to extract low error RTS amplitudes 126 

lifetimes and frequencies. In conclusion, these algorithms have enabled an automatic detection and 127 

characterization of the blinking pixels for the experimental study of the influence of the bias voltage on RTS 128 

signals.     129 

INFLUENCE OF THE BIAS VOLTAGE ON THE RTS PIXELS NUMBER AND 130 

ACTIVATION ENERGY OF THE AMPLITUDE 131 

The experimental FPA consists in a MWIR 15µm pitch n-on-p HgCdTe detector. Its cut-off wavelength 132 

at 80K is λc=5.3µm. The detector is placed inside a continuous flow nitrogen cryostat, with an integrated heating 133 

system, enabling the control of the temperature with a precision of 30mK peak-to-peak. The detector is placed in 134 

front of an extended blackbody at TBB=298K with an optical aperture of f/8. Data cubes of 8000 images are 135 
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acquired with an integration time of 15ms, which also represents the interval between two images, as the detector 136 

is used in Integrate While Reading mode. The detector temperature varies between 110K and 122K, with a 3K 137 

step, and the bias voltage varies between V0 and V0+0.3V, with a 0.06V step and V0 being the nominal reverse 138 

bias value. For this study, both types of protocol were explored: fixed reverse bias with varying temperature, and 139 

fixed temperature with varying reverse bias. As a summary, each experiment consists of 30 measurements, with 140 

a total observation time of 72 minutes, corresponding to 2.9 10
5
 images to process.  141 

First, the data cubes are processed through the AARD algorithm that allows the estimation of the 142 

number of RTS pixels of the FPA. In figure 6, the evolution of the number of RTS pixels in the detector as a 143 

function of the temperature and bias voltage is presented. In figure 6a), it is shown as a function of the bias 144 

voltage with different temperatures, and in figure 6b), it is shown as a function of the temperature with different 145 

bias voltage. In the former, it is clear that the increase in bias voltage increases the number of RTS pixels, but a 146 

fitting physical model has yet to be determined. It is yet clear that the rate of increase in function of the bias 147 

decreases with increasing temperature. A saturation effect may be considered. In figure 6b), it is possible to fit 148 

the different curves with an Arrhenius law, defined as follows: 149 

𝑋 = 𝑋0𝑒
−

𝐸𝑎
𝑘𝐵𝑇 (4) 

With 𝑋  a physical quantity (X=N in the case of the number of RTS and X=A in the case of the 150 

amplitude),  𝑋0 a factor homogenous to X (which can depend on Vbias), 𝐸𝑎 an activation energy, kB the 151 

Boltzmann constant, and T the temperature of the detector. The fit shows that the number of RTS follows a 152 

Boltzmann law whichever the bias voltage is. The extracted activation energy is decreasing with increasing bias 153 

voltage; however, this is not directly interpretable, as the number of RTS detected is strongly dependent on 154 

different parameters, such as detection thresholds and RTS state definitions.  155 

In a second study, the acquired data cubes are processed through the AARD and DARCSOULS 156 

algorithm in order to extract the evolution of the amplitude with the temperature and the bias voltage. Pixels that 157 

show too low amplitude to white noise ratio, display incorrigible drift or are simply false detections are manually 158 

removed, as the amplitudes cannot be estimated correctly in these cases.  As an example, for two pixels, the 159 

amplitude as a function of the inverse of temperature is presented in figure 7 for different bias voltage. It shows 160 

that the amplitude increases with the bias voltage. In addition, whatever the voltage, the RTS amplitude follows 161 

an Arrhenius law, from which an activation energy can be extracted. These results are coherent with previous 162 

works [6]. 163 
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The plot of the evolution of the Arrhenius activation energy as a function of bias voltage, for all the 164 

RTS pixels detected and studied is shown in figure 8. As shown on the graph, each pixel behaves differently and 165 

it would not be appropriate to study the RTS amplitude on the whole group of pixels. Two behaviors have been 166 

observed: pixels with decreasing activation energy as a function of bias, and pixels with constant activation 167 

energy as a function of bias. While keeping in mind that the amplitude increases with bias voltage for most of the 168 

pixels studied and the Arrhenius law defined in Equation (4), we can deduce that the pre-exponential factor of 169 

amplitude A0 is also a contributor of the evolution of the amplitude. A0 is a function of the reverse bias. The 170 

evolution of the amplitude as a function of bias is a non-trivial combination of the evolution of the factor A0 and 171 

the evolution of the activation energy Ea contributions. We can hypothesize that high variations of the activation 172 

energy are due to the thermodynamic barrier associated with the jump being reduced along the increase in 173 

applied bias. It has already been shown that RTS was related to defects in the material [12]. A Poole-Frenkel 174 

[13] model could be considered, in which a dissymmetry of the band diagram around the defect implied in the 175 

process appears while applying a voltage to the system, thus lowering the barrier. In the case of low variation of 176 

activation energy, the results could go in favor of the Kinch model [14], with an enhancement of tunneling by the 177 

increase of the reverse bias. Also, according to this model, this could be due to the extension of the depletion 178 

region, caused by the reverse bias increase, in other words an extension of the cross-section that the diode 179 

depletion region presents to defects at the origin of RTS. 180 

 181 

CONCLUSION 182 

An RTS detection and characterization algorithm as well as a RTS and slow drift separation algorithm 183 

have been presented. They have then been used to characterize the evolution of the number of blinking pixels 184 

and blinking amplitudes as a function of temperature and bias voltage. It has been confirmed that the blinking 185 

process is characterized by an activation energy whichever bias voltage is applied, for the number of RTS pixels 186 

and the amplitudes of blinking. The RTS number and the amplitude increase with the bias voltage. The 187 

amplitude activation energy either decreases or stays constant with increasing reverse bias voltage. Physical 188 

models for either the evolution of the number of RTS with bias or the evolution of the amplitude with bias have 189 

yet to be developed. This study will be extended the blinking lifetimes and frequencies with PELT and LFNS 190 

methods in order to obtain a better understanding of the physics behind the RTS phenomenon in HgCdTe and 191 

bias effects.  192 
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FIGURES CAPTIONS 220 

Figure 1: Typical behavior of a bi-stable RTS pixel. The straight line represents the signal. Dashed lines 221 

represent the levels mean value. 222 

Figure 2: Schematic principle of the Algorithm for Advanced RTS Detection, with the PELT algorithm, State 223 

Reduction(SR) algorithm, LFNS method and Gaussian method.  224 

Figure 3: Effect of the drift on the signal (left) and on the associated histograms (right) 225 

Figure 4: Qualitative color map of the output of a) the PELT algorithm, b) the PELT+DARCSOULS algorithms. 226 

A green cell corresponds to a major CD output; a red, vertically hashed one to a ND output; a blue, diagonally 227 

hashed one to a CND output and an orange, horizontally hashed one to a FD output. Crossed cells represent 228 

pixels detected due to the drift. Circles represent a strong error in the estimation of the RTS parameters.  229 

Figure 5: a) Schematic principle of the RTS – drift separation algorithm b) Upper blue curve: RTS + drift 230 

simulated signal. In red: local PELT estimation. Lower blue curve: signal with RTS compensation, equivalent to 231 

slow drift with white noise. Green straight line: low pass filter of the lower blue curve, which is the estimated 232 

slow drift. c) RTS signal extracted from b) by subtracting the low frequency signal from the original signal. In 233 

orange binary signal is the final PELT estimation of the RTS in the pixel.   234 

Figure 6: a) Normalized number of RTS pixels in the FPA as a function of bias voltage for different 235 

temperatures. ΔV is the interval between the true bias and a reference bias V0, such as Vbias = V0+ ΔV. b) 236 

Normalized number of RTS pixels in the FPA as a function of temperature for different bias voltages. Dashed 237 

lines are respective Arrhenius fits for each bias. 238 

Figure 7: RTS amplitude as a function of 1/T and the Arrhenius plots for several bias voltages of two different 239 

pixels of the FPA. 240 
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Figure 8 Evolution of the activation energy for amplitude as a function of the reverse bias voltage for all the 241 

studied RTS pixels for low variation pixels (a)) and high variation pixels (b)). Each curve is a different pixel.   242 
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Figure 1: Guénin et al. 246 
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Figure 2: Guénin et al.  248 
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Figure 4: Guénin et al.  252 
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