

RTS Noise Detection and Voltage Effect on RTS in HgCdTe Focal-Plane Arrays

Maxence Guénin, Sophie Derelle, Marcel Caes, Laurent Rubaldo, Isabelle

Ribet-Mohamed

► To cite this version:

Maxence Guénin, Sophie Derelle, Marcel Caes, Laurent Rubaldo, Isabelle Ribet-Mohamed. RTS Noise Detection and Voltage Effect on RTS in HgCdTe Focal-Plane Arrays. Journal of Electronic Materials, 2020, 49 (11), pp.6963-6970. 10.1007/s11664-020-08271-y . hal-02998334

HAL Id: hal-02998334 https://hal.science/hal-02998334

Submitted on 10 Nov 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 1

10

RTS NOISE DETECTION AND VOLTAGE EFFECT ON RTS IN HgCdTe FOCAL PLANE ARRAY

2	Maxence Guénin ^{1,*} , Sophie Derelle ² , Marcel Caes ² , Laurent Rubaldo ³ , Isabelle Ribet-Mohamed ²
3	¹ Université Paris-Saclay, ONERA, DOTA, F-91123 Palaiseau, France
4	² ONERA/DOTA – Chemin de la Vauve aux Granges, 91120 Palaiseau, France
5	³ LYNRED, Avenue de la Vauve - CS20018, 91127 Palaiseau Cedex, France
6	* <u>maxence.guenin@onera.fr</u> , +33 1 80 38 63 66
7	Abstract: We developed an automated Random Telegraph Signal detection and characterization method, as well
8	as a blinking noise and slow drift separation method adapted to focal plane arrays. Utilizing these methods, a
9	study of the evolution of the number of RTS pixels and the amplitudes of the blinking signal as a function of the

Arrhenius laws and increase with bias. Finally, the origin of the increase of the amplitude as a function of the
reverse bias is discussed.

reverse bias voltage and temperature is conducted. It is shown that physical characteristics of RTS follow

13 Keywords: Random Telegraph Signal, 1/f noise, Reverse Bias, Image Quality, Algorithm

14 INTRODUCTION

15 Temporal noise is one of the main challenges in the quest for high operability and stability of image 16 quality over time in infrared focal plane arrays (IR FPA). This type of noise cannot be corrected by a classical 17 non-uniformity correction, as parasitic extra-noise signal may vary in time. Among the sources of temporal 18 noise, low-frequency noises, or $1/f^{\alpha}$ noises, with f being the frequency and α a coefficient between 1 and 2, are 19 part of the main sources of noise restraining the high operating temperature trend in cooled infrared sensors. 20 Random Telegraph Signal (RTS) is one of them. It exhibits significant current variations with seemingly random 21 occurrences in the temporal dimension. It can affect small scale image quality when the jump amplitude exceeds 22 the residual fixed pattern noise and the very longterm stability through its impact on gain/offset correction tables. 23 Therefore, understanding the physics behind this phenomenon is critical to improve cooled sensors' image 24 temporal stability.

Also called "blinking pixel" in the frame of FPAs, RTS pixel exhibits a multi-stable signal, i.e. a signal
 fluctuating between multiple stable states. Figure 1 shows a bi-stable RTS signal recorded on our FPA. It

1

27 presents two stable states, separated by a jump characterized by its amplitude A, and with instant lifetimes τ_{up} 28 and τ_{down} . Mean values of lifetimes $\langle \tau_{up} \rangle$ and $\langle \tau_{down} \rangle$ are commonly used to characterize the blinking frequency. 29 In the case of a bi-stable RTS, the relation between the blinking lifetimes and the blinking frequency is as 30 described in Equation (1):

$$f_c = \frac{1}{\langle \tau_{up} \rangle} + \frac{1}{\langle \tau_{down} \rangle} \tag{1}$$

RTS has been detected in many types of systems, such as nanowires [1], silicon transistors [2] and photodectors [3], and IR FPA, such as T2SL [4], InGaAs [5] or HgCdTe [6, 7] detectors. It would be too simplistic to assume that each RTS behavior in each system is a consequence of the same physical phenomenon. Thus, this article is solely discussing of the RTS behavior in HgCdTe detectors. Prior results have been established [6] on this material, proving that the RTS amplitude and lifetimes demonstrated a Boltzmann behavior, which means it is activated by temperature with an activation energy E_a. The objective of our study is to further this study with varying bias voltage, in order to highlight a field effect.

In the first part of this paper, the algorithm of detection and characterization of the RTS pixels is presented. It is based on a changepoint detection method, a corner frequency method and a histogram fit method. The second part is focused on the detection problems raised by the superposition of RTS and other low frequency noises, and the algorithm developed to tackle this issue. Finally, in the third part of the paper, the experimental setup and results on activation energy versus bias on a Mid-Wave Infrared (MWIR) detector are presented.

44 **RTS DETECTION AND CHARACTERIZATION ALGORITHM**

The principle of the Algorithm for Advanced RTS Detection (AARD) is presented in figure 2. There are three paths: the changepoint path, also called the "Pruned Exact Linear Time" (PELT) path, the frequency or LFNS one, and the histogram fit one. The changepoint path is based on a changepoint detection called PELT method [8]. It defines a cost function based on the variance of the signal and a threshold for the search in the mean changes. This threshold Cr is designed as follows:

$$Cr=\max(k.MAD(X), \frac{\max(X)-\min(X)}{2k})$$
(2)

with k being the effective tunable threshold, typically varying between 1 and 3, and MAD being the Median
Absolute Deviation of the signal X. Having a comparison between two criteria, one on the non-Gaussian

52 character of the signal, and one on the maximum amplitude of the noise, makes it possible to detect pixels 53 showing a high number of jumps with low amplitudes, as well as pixels showing a low number of jumps with 54 high amplitudes. Then, a State Reduction (SR) algorithm is applied to the extracted signal to compute the final 55 RTS contribution to the raw temporal signal. As shown in [9], the estimated RTS signal is representative of the 56 blinking noise, even with multiple stable states and low RTS-to-white-noise ratio. In the following, the 57 PELT+SR algorithm will be referred simply as PELT.

In parallel, the LFNS and the histogram methods are used to verify the RTS nature and behavior of the pixel. The LFNS method relies on a fit of the power spectral density (PSD) multiplied by the frequency, in order to flatten the 1/f noise and highlight the 1/f² noise. It has been shown that the bi-stable RTS noise had a Lorentzian frequency signature [10]. In the LFNS plot, the 1/f noise is represented by a constant and the 1/f² or Lorentzian noise shows a peak function which is described by a "Lorentzian times frequency" function as in Equation (3):

$$f.PSD = \Delta I^2 < \tau_{up} >^2 < \tau_{down} >^2 \frac{f_c^2 f}{1 + (2\pi \frac{f}{f_c})^2}$$
(3)

64 With ΔI the amplitude of the jump, and f_c the corner frequency of the Lorentzian. This corner frequency is 65 extracted, and in the case of bi-stable RTS, this corner frequency is the blinking frequency defined in (1). This 66 study, however, does not focus on frequency characterization, hence this method will only be used in future 67 studies. Finally, the histogram method is based on the histogram plot of the signal, which shows multiple 68 Gaussian distributions if the pixels show RTS with white noise. Fitting these distributions and estimating the 69 difference between consecutive maxima of the fit enable the calculation of the RTS amplitude and the establishment of a "well defined two-level RTS pixels" list, which are the objects of study in the next part of the 70 71 work. These pixels are characterized by well separated Gaussian distributions, which entail jump amplitudes 72 higher than two times the estimated white noise, and the presence of a minimum between consecutive local 73 maxima of the histogram.

74 SENSITIVITY OF THE ALGORITHM TO SLOW DRIFT

By using the three methods presented in the previous section, it is possible to detect random telegraph pixels, to estimate and verify their jump amplitude, lifetimes and frequencies, and to extract a list of well-defined two-level pixels. However, despite having low error in the case of pure RTS + white noise, one of the drawbacks of this technique is that it may be sensitive to slow drift, which has a frequency behavior of $1/f^{\alpha}$, with $1 < \alpha < 2$. In practice, this drift can be the cause of false detections or high error RTS estimations. An illustration of the effect of the drift on the signal, on the RTS signal estimated with PELT and on its associated histogram is given in Figure 3. We can clearly see an increase of the error in the estimated level number of the RTS signal.

82 In order to quantify this error, we used a Monte Carlo method to generate different 2 levels RTS signals. 83 Input parameters are mean lifetimes $\langle \tau_{up} \rangle$ and $\langle \tau_{down} \rangle$ (described by an exponential distribution as reported in [11]), jump amplitude A_{RTS}, drift amplitude A_{DRIFT} (we assumed a linear behavior for the present study) and a 84 85 white temporal noise. After applying PELT method to these signals, we classify our results as follows: a non-86 detection (ND) is a failure of the algorithm to detect a pixel which is RTS. A false detection (FD) is a detection 87 of a pixel which is not RTS but is detected as such by the algorithm. Finally, a correct detection (CD) is a 88 detection of an RTS pixel as such, and a correct non detection (CND), a detection of a non RTS pixel as such. In 89 this study, fixed input parameters are: the length of the sample, which is 10^4 frames, the white noise considered 90 equal to 10 digits rms (similar to the detector studied in a subsequent section) and the mean lifetimes which are 91 100 frames. We simulated 10 jump amplitudes ranging from 0 to 200 digits and 6 drift peak-to-peak amplitudes 92 ranging from 0 to 100 digits. For each (A_{RTS}, A_{DRIFT}) condition, we generated 10 distinct RTS signals leading to 93 a total of 600 simulated pixels. First, a preliminary study has been conducted, where the k factor in the Cr 94 criterion is ranging from 0.5 to 3. For pixels without drift, a low k leads to 0% ND and 0% FD and in these 95 cases, PELT is a very robust method. However, when increasing drift, low k brings higher ND and FD 96 percentages than high k, hence this factor needs to be optimized.

97 We obtained a qualitative color map of the average output of the PELT algorithm as a function of the 98 jump amplitude and drift amplitude, as shown in figure 4a). The color and hashes of each cell correspond to the 99 more probable state (ND, FD, CD or CND) of the 10 distinct RTS signals obtained with the same (A_{RTS} , A_{DRIFT}) 100 condition. On the 600 simulated pixels, we finally obtain 50% FD and 8.9% ND. However, some correct RTS 101 detections are due to the drift and not to the detection of a transition between up and down levels. The 102 corresponding pixels are shown in green cells marked by crosses. They represent 22% of the distribution and 103 present an ARTS/ADRIFT ratio lower than 1. This is consistent with results obtained with the Gaussian method, 104 where 75% of the simulated pixels are detected as "well defined two-level RTS". In addition, 23% of the RTS 105 pixels (marked by circles) show strong errors between the estimated RTS signal and the raw data. In these cases, 106 high drift systematically increases the estimation errors on the number of levels and/or the jump amplitudes 107 and/or the lifetimes, thus increasing the characterization output error.

108 In order to reduce the PELT method output error, the Drift And RTS Characterization, Separation by 109 Overall, Unique Level Selection (DARCSOULS) algorithm has been developed to discriminate the blinking 110 signal from the slow drift. The principle of the algorithm is presented in figure 5. It is based on the hypothesis 111 that the amplitude of the drift is negligible over the course of a few RTS jumps. PELT is applied locally on small 112 pieces of the signal. Then the overall number of levels is estimated with the median value of the local number of 113 levels, which allows the compensation of the RTS signal. The drift is calculated by applying a low-pass filter to 114 the remaining signal. Finally, the extracted RTS signal is obtained by subtracting the calculated drift from the 115 raw signal and applying PELT on the overall extracted signal.

116 An optimization between the computation time, the number of slices according to the mean lifetimes 117 has been conducted. Continuing the previous study, a color map of the average output of the 118 PELT+DARCSOULS algorithms is shown in figure 4b. We consider the group $\{P_0\}$ of N_0 pixels that were 119 incorrectly characterized after applying the PELT method and the group $\{P_1\}$ of N_1 pixels from $\{P_0\}$ which are 120 correctly characterized after applying DARCSOULS algorithm. The recovery rate is: RR=N₁/N₀. In this study, it 121 is equal to 62%. The remaining 38% are: pixels with too low jump amplitude-to-white noise ratio, thus creating 122 non detections (19%), or pixels with too low jump amplitude-to-drift amplitude ratio, thus preventing the correct 123 separation of drift and RTS and increasing the characterization output error (19%). For the Gaussian method, the 124 detection rate of "well behaved two level RTS pixels" after applying DARCSOULS is increased to 81% (6% 125 increase).

126 In most of cases, applying AARD and DARCSOULS is enough to extract low error RTS amplitudes 127 lifetimes and frequencies. In conclusion, these algorithms have enabled an automatic detection and 128 characterization of the blinking pixels for the experimental study of the influence of the bias voltage on RTS 129 signals.

130 INFLUENCE OF THE BIAS VOLTAGE ON THE RTS PIXELS NUMBER AND 131 ACTIVATION ENERGY OF THE AMPLITUDE

132 The experimental FPA consists in a MWIR 15µm pitch n-on-p HgCdTe detector. Its cut-off wavelength 133 at 80K is λ_c =5.3µm. The detector is placed inside a continuous flow nitrogen cryostat, with an integrated heating 134 system, enabling the control of the temperature with a precision of 30mK peak-to-peak. The detector is placed in 135 front of an extended blackbody at T_{BB}=298K with an optical aperture of f/8. Data cubes of 8000 images are acquired with an integration time of 15ms, which also represents the interval between two images, as the detector is used in Integrate While Reading mode. The detector temperature varies between 110K and 122K, with a 3K step, and the bias voltage varies between V_0 and $V_0+0.3V$, with a 0.06V step and V_0 being the nominal reverse bias value. For this study, both types of protocol were explored: fixed reverse bias with varying temperature, and fixed temperature with varying reverse bias. As a summary, each experiment consists of 30 measurements, with a total observation time of 72 minutes, corresponding to 2.9 10^5 images to process.

142 First, the data cubes are processed through the AARD algorithm that allows the estimation of the 143 number of RTS pixels of the FPA. In figure 6, the evolution of the number of RTS pixels in the detector as a 144 function of the temperature and bias voltage is presented. In figure 6a), it is shown as a function of the bias voltage with different temperatures, and in figure 6b), it is shown as a function of the temperature with different 145 146 bias voltage. In the former, it is clear that the increase in bias voltage increases the number of RTS pixels, but a 147 fitting physical model has yet to be determined. It is yet clear that the rate of increase in function of the bias decreases with increasing temperature. A saturation effect may be considered. In figure 6b), it is possible to fit 148 149 the different curves with an Arrhenius law, defined as follows:

$$X = X_0 e^{-\frac{E_a}{k_B T}} \tag{4}$$

With X a physical quantity (X=N in the case of the number of RTS and X=A in the case of the amplitude), X_0 a factor homogenous to X (which can depend on V_{bias}), E_a an activation energy, k_B the Boltzmann constant, and T the temperature of the detector. The fit shows that the number of RTS follows a Boltzmann law whichever the bias voltage is. The extracted activation energy is decreasing with increasing bias voltage; however, this is not directly interpretable, as the number of RTS detected is strongly dependent on different parameters, such as detection thresholds and RTS state definitions.

156 In a second study, the acquired data cubes are processed through the AARD and DARCSOULS 157 algorithm in order to extract the evolution of the amplitude with the temperature and the bias voltage. Pixels that 158 show too low amplitude to white noise ratio, display incorrigible drift or are simply false detections are manually 159 removed, as the amplitudes cannot be estimated correctly in these cases. As an example, for two pixels, the 160 amplitude as a function of the inverse of temperature is presented in figure 7 for different bias voltage. It shows 161 that the amplitude increases with the bias voltage. In addition, whatever the voltage, the RTS amplitude follows 162 an Arrhenius law, from which an activation energy can be extracted. These results are coherent with previous 163 works [6].

164 The plot of the evolution of the Arrhenius activation energy as a function of bias voltage, for all the 165 RTS pixels detected and studied is shown in figure 8. As shown on the graph, each pixel behaves differently and 166 it would not be appropriate to study the RTS amplitude on the whole group of pixels. Two behaviors have been 167 observed: pixels with decreasing activation energy as a function of bias, and pixels with constant activation 168 energy as a function of bias. While keeping in mind that the amplitude increases with bias voltage for most of the 169 pixels studied and the Arrhenius law defined in Equation (4), we can deduce that the pre-exponential factor of 170 amplitude A_0 is also a contributor of the evolution of the amplitude. A_0 is a function of the reverse bias. The 171 evolution of the amplitude as a function of bias is a non-trivial combination of the evolution of the factor A_0 and 172 the evolution of the activation energy E_a contributions. We can hypothesize that high variations of the activation 173 energy are due to the thermodynamic barrier associated with the jump being reduced along the increase in 174 applied bias. It has already been shown that RTS was related to defects in the material [12]. A Poole-Frenkel 175 [13] model could be considered, in which a dissymmetry of the band diagram around the defect implied in the 176 process appears while applying a voltage to the system, thus lowering the barrier. In the case of low variation of 177 activation energy, the results could go in favor of the Kinch model [14], with an enhancement of tunneling by the 178 increase of the reverse bias. Also, according to this model, this could be due to the extension of the depletion 179 region, caused by the reverse bias increase, in other words an extension of the cross-section that the diode 180 depletion region presents to defects at the origin of RTS.

181

182 CONCLUSION

183 An RTS detection and characterization algorithm as well as a RTS and slow drift separation algorithm 184 have been presented. They have then been used to characterize the evolution of the number of blinking pixels 185 and blinking amplitudes as a function of temperature and bias voltage. It has been confirmed that the blinking 186 process is characterized by an activation energy whichever bias voltage is applied, for the number of RTS pixels 187 and the amplitudes of blinking. The RTS number and the amplitude increase with the bias voltage. The 188 amplitude activation energy either decreases or stays constant with increasing reverse bias voltage. Physical 189 models for either the evolution of the number of RTS with bias or the evolution of the amplitude with bias have 190 yet to be developed. This study will be extended the blinking lifetimes and frequencies with PELT and LFNS 191 methods in order to obtain a better understanding of the physics behind the RTS phenomenon in HgCdTe and 192 bias effects.

193 FUNDINGS

194 This work has been partially supported by ED572 doctoral school of Paris-Saclay University.

195 CONFLICT OF INTEREST

196 The authors declare that they have no conflict of interest.

197 **REFERENCES**

- 198 [1] Y. Kutovyi, I. Zadorozhnyi, N. Naumova, N. Boichuk, and M. Petrychuk in 25th International Conference on
- 199 Noise and Fluctuations (ICNF 2019) (2019).
- 200 [2] S.T. Hsu, Solid State Electron. 14, 487(1971).
- [3] V. Goiffon, G.R. Hopjinson, P. Magnan, F.Bernard, G. Rolland, O. Saint-Pé, IEEE T. Nucl. Sci. 56, 4
 (2009).
- 203 [4] I. Ribet-Mohamed, J. Nghiem, M. Caes, M. Guénin, L. Höglund, E. Costard, J.B. Rodriguez and P. Christol,
- 204 Infrared. Phys. Techn., 96, 145 (2019).
- 205 [5] D. Pogany, G. Guillot, Microelectron Reliab. 39, 341 (1999).
- [6] A. Brunner, L. Rubaldo, V. Destefanis, F. Chabuel, A. Kerlain, D. Bauza and N. Baier, J. Electron. Mater.
 43, 8 (2014).
- 208 [7] R. Kohley, R. Barbier, J.-C. Clémens, L. Conversi, P.-E. Crouzet, A. Ealet, S. Ferriol, W. Gillard, B. Kubik,
- C. Rosset, A. Secroun, B. Serra, P. Strada, Proc. SPIE 10709, High Energy, Optical, and Infrared Detectors for
 Astronomy VIII, 107091G (2018)
- 211 [8] R. Killick, P. Fearnhead and I.A. Eckley, J. Am. Stat. Assoc. 107,500,1590-1598 (2012).
- [9] M. Guénin, S. Derelle, M. Caes, L. Rubaldo and I. Ribet-Mohamed in 25th International Conference on
- 213 Noise and Fluctuations (ICNF 2019) (2019).
- 214 [10] B.K. Jones, IEEE Trans. Electron. 41, 11 (1994).
- [11] Y. Yuzhelevski, M. Yuzhelevski and G. Jung, Rev. Sci. Instrum, 71, 1681 (2000).

- [12] P. Guinedor, A. Brunner, L. Rubaldo, D. Bauza, G. Reimbold and D. Billon-Lanfrey, J. Electron. Mater. 48,
 6113 (2019).
- **218** [13] J. Frenkel, Phys. Rev. 54, 647 (1938).
- 219 [14] M.A. Kinch, C.-F. Wan, H. Schaake, and D. Chandra, Appl. Phys. Lett. 94, 193508 (2009)

220 FIGURES CAPTIONS

- Figure 1: Typical behavior of a bi-stable RTS pixel. The straight line represents the signal. Dashed lines
- represent the levels mean value.
- 223 Figure 2: Schematic principle of the Algorithm for Advanced RTS Detection, with the PELT algorithm, State
- 224 Reduction(SR) algorithm, LFNS method and Gaussian method.
- Figure 3: Effect of the drift on the signal (left) and on the associated histograms (right)
- Figure 4: Qualitative color map of the output of a) the PELT algorithm, b) the PELT+DARCSOULS algorithms.
- A green cell corresponds to a major CD output; a red, vertically hashed one to a ND output; a blue, diagonally
- hashed one to a CND output and an orange, horizontally hashed one to a FD output. Crossed cells represent
- 229 pixels detected due to the drift. Circles represent a strong error in the estimation of the RTS parameters.
- Figure 5: a) Schematic principle of the RTS drift separation algorithm b) Upper blue curve: RTS + drift
- simulated signal. In red: local PELT estimation. Lower blue curve: signal with RTS compensation, equivalent to
- slow drift with white noise. Green straight line: low pass filter of the lower blue curve, which is the estimated
- slow drift. c) RTS signal extracted from b) by subtracting the low frequency signal from the original signal. In
- orange binary signal is the final PELT estimation of the RTS in the pixel.
- 235 Figure 6: a) Normalized number of RTS pixels in the FPA as a function of bias voltage for different
- 236 temperatures. ΔV is the interval between the true bias and a reference bias V₀, such as V_{bias} = V₀+ ΔV . b)
- 237 Normalized number of RTS pixels in the FPA as a function of temperature for different bias voltages. Dashed
- 238 lines are respective Arrhenius fits for each bias.
- Figure 7: RTS amplitude as a function of 1/T and the Arrhenius plots for several bias voltages of two differentpixels of the FPA.

- 241 Figure 8 Evolution of the activation energy for amplitude as a function of the reverse bias voltage for all the
- 242 studied RTS pixels for low variation pixels (a)) and high variation pixels (b)). Each curve is a different pixel.

FIGURES 243

Figure 2: Guénin et al.

Figure 4: Guénin et al.

Figure 8: Guénin et al.