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Simulation of finishing operations based on an implicit representation of surfaces

Introduction

The surface integrity and in particular the surface roughness is an important factor for the performances in service of mechanical parts [START_REF] Hashimoto | Abrasive fine-finishing technology[END_REF]. The functional surface of parts must comply with expected requirements whether in mold and dies industry, for medical applications or for aerodynamic functions. Grinding operations are commonly used to improve the surface finish and appearance after machining [START_REF] Wegener | Recent developments in grinding machines[END_REF]. In manufacturing industry, the design of the process involves several parameters in the successive operations from machining to abrasive finishing in order to achieve expected surface roughness. Contrary to machining, which mainly induces cutting, the finishing process of manufactured parts with abrasion also includes ploughing and repelling matter. These mechanisms have been described by [START_REF] Klocke | Analysis of defect mechanisms in polishing of tool steels[END_REF] and can be classified into four main schemes. The variety in the type of defects associated with the early tool wear challenge the automation and monitoring [START_REF] Cheng | Deep convolutional neural network-based in-process tool condition monitoring in abrasive belt grinding[END_REF] of the process. For this reason, these operations are still done manually. In this context, the prediction of geometry is often limited. An effective and relevant simulation framework for abrasion would improve production quality.

In industry, CAM software is mainly used to check the manufacturing program before machining in order to avoid unwanted collisions. The order of magnitude for surface simulation is not compatible with local marks visualization because the volume discretization is tuned to simulate a complete machining operation within minutes. The visualization of micrometric marks induced by the realistic tool geometry is possible in laboratory demonstration code [START_REF] Lavernhe | Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool[END_REF]. The cutting action is mod-eled as a Boolean operation, which allows moderate simulation times and relevant surface topographies. The implemented algorithms for calculating the machined surface are based on a discretization in voxels [START_REF] Ratchev | Material removal simulation of peripheral milling of thin wall low-rigidity structures using FEA[END_REF], Z-buffer [START_REF] Jachym | Effective NC machining simulation with OptiX ray tracing engine[END_REF] or dexels [START_REF] Zhang | Design and development of an in situ machining simulation system using augmented reality technology[END_REF] to digitally perform the intersections between the tool and the part. The performance of these methods has been demonstrated using parallel implementation on graphics processors [START_REF] Abecassis | Performance evaluation of CUDA programming for 5-axis machining multi-scale simulation[END_REF]. However, the simple boolean intersection assumption is not directly applicable for abrasion simulation because of the different types of defect previously listed.

In the literature, ploughing and repelling have been taken into account with analytical models [START_REF] Zhu | Theoretical and experimental investigation of material removal mechanism in compliant shape adaptive grinding process[END_REF] or with complete material behavior modeling. Continuum mechanics simulations allow obtaining relevant output effort and surface topography as well as insight of material integrity below the surface [START_REF] Leroch | Smooth particle hydrodynamics simulation of damage induced by a spherical indenter scratching a viscoplastic material[END_REF][START_REF] Kermouche | On the residual stress field induced by a scratching round abrasive grain[END_REF]. These results have been obtained for single grain indentation or scratching. Nevertheless, the computing resources required for a single grain interaction are so high that it is not possible yet to simulate a complete abrasion operation with mechanical methods. A significant number of articles assume the topography in grinding as the cinematic mapping of the grinding wheel on the surface [START_REF] Jiang | 2d/3d ground surface topography modeling considering dressing and wear effects in grinding process[END_REF][START_REF] Ding | Grinding performance of textured monolayer CBN wheels: Undeformed chip thickness nonuniformity modeling and ground surface topography prediction[END_REF][START_REF] Aurich | Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains[END_REF].

A new method based on an implicit representation of surfaces [START_REF] Euzenat | Implicit modeling of abrasion process based on potential field[END_REF] is developed in order to deal with more complex interactions encountered during abrasion. The simulations have been performed for the elementary polishing of a perfect plane. Results have been found promising for abrasive topography generation, however industrial applications are still limited due to the impossibility to simulate a complete manufacturing process from machining to finishing. In this article, a novel model has been developed in order to take into account scallops generated by the milling strategy. The model is focused on simulating the overall process at a macroscopic scale.

The article is structured as follows, in section 2 a review of the literature regarding abrasion modeling and simulation techniques is presented and the core of the implicit model is presented. The contributions made to the model are presented in the section 4. Section 5 is focused on the simulation of grain paths. Finally different test cases and results are presented and discussed in 6.

State of the art

Abrasion is the process of wearing the surfaces in contact. In the manufacturing industry, the abrasion process is mastered and occurs with the actions of sharp particles which induce the removal of matter. These actions remain arbitrary in most cases. Models of the interactions from a local to a global order of magnitude have been developed [START_REF] Brinksmeier | Advances in modeling and simulation of grinding processes[END_REF]. An analysis of the defect mechanisms during polishing has been proposed by [START_REF] Klocke | Analysis of defect mechanisms in polishing of tool steels[END_REF].

Microfatigue Microcracking Microploughing Microcutting

Figure 1: Abrasion defect mechanisms [START_REF] Klocke | Analysis of defect mechanisms in polishing of tool steels[END_REF]18] The four types of possible interactions are pictured in (Fig. 1). Microploughing is the result of the repelling of the material on either side of the groove created by the abrasive grain. Microploughing only generates plastic deformations in the specimen, so there is theoretically no material removed. Microfatigue occurs if other grains reach the same area resulting in material failure. The microcutting is obtained in the same way as for milling by forming a chip and cutting the material. Finally, microcracking results from the stresses that are introduced into the material after repeated passage of particles. This phenomenon is observed on fragile materials while microcutting and microploughing occur during the abrasion of ductile materials. These four types of abrasion scheme happen depending on the geometry of the grain and the parameters of the interactions such as speed, penetration and contact pressure.

From an empirical point of view, several models exist. They allow predicting the evolution of the surface height as a function of time according to experimental process observations. One of the most common ones to determine the removal rate is the Preston model [START_REF] Preston | The theory and design of plate glass polishing machine[END_REF] (Eq. 1).

dz dt = K p .P.V (1) 
In (Eq. 1), the contact pressure P and the relative velocity V are taken into account in order to compute the wear rate of the specimen during the process. The Preston coefficient K p is experimentally determined in order to model the efficiency of the process against its parameters. This model has been derived into more elaborate laws in order to improve the prediction relevance.

dz dt = K p .P α .V β (2) 
Klocke [START_REF] Klocke | Analysis of defect mechanisms in polishing of tool steels[END_REF] has developed a general-purpose model for abrasion with two additional degrees of freedom in the equation (Eq. 2). This model offers a wider range of possibilities while modeling various tool-workpiece sets. Whatever are the forms of the equations, the laws identified above are mainly used as a description of the interactions but are not yet implemented in simulations on their own. Apart from the process driven approach, wear rate estimation can also be made from consideration of the local behavior of the grain interactions. When both cutting and repelling are combined, the profile of the groove is similar to the one presented on (Fig. 2). The fraction of cutting area f ab geometrically defined by (Eq. 3) and is related to material parameters by (Eq. 4). φ s is the effective deformation whereas φ lim is the maximum deformation reachable by the material before microfatigue. The integration of the cutting area factor along the path of a particle is possible to obtain the wear rate during the process. 

f ab = A v -(A 1 + A 2 ) A v (3) 
f ab = 1 -       φ lim φ s       2/β (4) 
Study of indentation and scratching using a complete mechanical model of the specimen has been done in the literature [START_REF] Kermouche | On the residual stress field induced by a scratching round abrasive grain[END_REF][START_REF] Leroch | Smooth particle hydrodynamics simulation of damage induced by a spherical indenter scratching a viscoplastic material[END_REF]. The resolution of the set of equations requires the use of numerical methods either based on a mesh or particles. These numerical implementations are known respectively as finite element method or smooth particle hydrodynamics. While providing valuable information concerning the strain and stress in the specimen, these algorithms imply high computational expenses, thus long simulation time. In this context, using mechanically based algorithms to simulate a complete abrasion process operation is out of reach given reasonable computing resources. Contrary to simulations based on mechanical methods which take into account microscopic interactions between the grains and the workpiece, the proposed model allows simulating surface topography at macroscopic scale.

Implicit abrasion approach

As stated in the literature review, boolean operations for abrasion simulation may not be sufficient in modeling all the phenomena encountered during abrasion. The microploughing which tends to repel matter aside the groove induced by the path of sharp particles requires additional modeling capabilities in the candidate model. The main idea behind the implicit model for abrasion simulation is to induce deformations of the surface by modifying the associated distance field instead of explicitly moving points on the surface. In the literature, implicit formulations have been used mainly in computer graphics to obtain deformations of objects or intuitively model surfaces [START_REF] Barthe | Twodimensional potential fields for advanced implicit modeling operators[END_REF]. Implicit surfaces can be combined with classic CSG operations or with smooth composition operators that allow complex shapes to be obtained from simple primitives [START_REF] Bloomenthal | Interactive techniques for implicit modeling[END_REF]. The explicit simulation of material coordinates for abrasion can be made by using mechanical methods but is not possible for the complete process simulation. Thus the proposed implicit model [START_REF] Euzenat | Implicit modeling of abrasion process based on potential field[END_REF] can be interposed between Boolean methods and methods based on continuum mechanics. The fundamental principles of the method are given below.

An implicit surface Γ is defined as the zeros of a scalar field function F t . The set of points X which verify this equation belongs to the surface (Eq. 5) [START_REF]Introduction to Implicit Surfaces[END_REF].

Γ(t) = { X | F t (X) = 0 } (5) 
In the abrasion process, the free surface of the mechanical part evolves under the action of abrasive particles. This evolution has been modeled by means of the deformation of the scalar field F t rather than explicitly interacting with the surface. This implicit model takes into account the fact that the abrasion topography is the result of an equilibrium between particle removal actions and the specimen strength. Considering that a scalar penalty field W i is attached to each abrasive particle, the removal action consists in subtracting this field to the specimen. (Eq. 6) defines this temporal evolution scheme where F t is the image of the surface according to time. In this context, a basic integration leads to (Eq. 7) which defines the evolution of F t from initial to final time. This principle is illustrated in (Fig. 3).

It has been chosen to use a positive sign of the field inside the specimen and a negative sign on the outside.

F t (X) = F t-1 (X) -W i (X) (6) F t (X) = F t 0 (X) - i W i (X) (7) 
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Figure 3: Principle of abrasive simulation based on implicit surfaces [START_REF] Euzenat | Implicit modeling of abrasion process based on potential field[END_REF] This scheme of surface deformation is not causal and can be implemented efficiently on parallel computational architectures. The initial scalar field F t 0 is responsible for the specimen behavior while the set {W i | i ∈ [1; n]} accounts for each abrasive particle effect on the surface.

The scalar potential W i associated with each particle allows modeling the abrasive action on the specimen. The penalty field W i is the composition of two functions K • D (Eq. 8).

                                           K : R -→ R l -→ K(l) D : R 3 -→ R X -→ D(X) W i : R 3 -→ R X -→ K(D(X)) (8) 
Function K is the kernel of the abrasive grain and defines its removal influence against distance to its center l. A definition of the kernel has been proposed in [START_REF] Euzenat | Implicit modeling of abrasion process based on potential field[END_REF] and follows the general rules below:

1. The action is limited within a defined range which means its potential must be zero far from its center. 2. The maximum influence is encountered close to the center of the particle. 3. Each particle has a characteristic influence radius defined by its own size. 4. The influence on the machined surface decreases with the distance.

A generic form for the particle kernel function is given in (Eq. 9) and (Fig. 4) presents these four characteristic points which lead to the general shape of an abrasive kernel given the constraints of abrasion. Three parameters (α k , µ k , σ k ) are used to define K. The intensity of the potential is given by coefficient α k . σ k represents the abrasive particle radius and the position of the kernel is modified with the definition of a non-zero value for µ k .

Given the sign convention for the specimen field, the positive part of the kernel function, close to its center, removes matter from the specimen. The negative part of the curve, between point 1 and 3, allows to repel matter on the sides of the abrasive grain in order to emulate the microploughing action. Further details and elementary examples can be found in [START_REF] Euzenat | Implicit modeling of abrasion process based on potential field[END_REF]. The function D gives the distance between the particle center point P i and the considered point in 3D space X. The most simple geometrical shape for each grain is the sphere. Thus, the passage of a grain is simulated in a single operation by using the distance to a line passing by point P i and directed by its unit vector U i (Eq. 10).

K(l) =            2 k=1 α k exp       - (l -µ k ) 2 σ 2 k       l ≤ h 0 l > h (9) -1 0 1 2 3 l [mm] 0.0 0.5 1.0 K 2 1 4 3 h
D(X) = ( X -P i ) ∧ U i (10) 

Implementation

Given a scalar field, it is not possible to find an analytical solution to the implicit equation (Eq. 5). The resolution is done by the mean of the discretization of the volume containing the scalar field from which the surface is extracted. In the literature, the most common technique is to define the scene as a rectangular bounding box divided into voxels. Each of the vertex thus defined is associated with a field value. Within this discretization, the iso-surface extraction can be done with the marching cube algorithm [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF]. The simulation of a particular test case requires to initialize the scalar field with values from the milling simulation presented in section 4.1. For each point of the grid, the new value is updated according to equation (Eq. 6). It should be noted that each vertex field value is independent from others. Moreover, the overall result defined by (Eq. 7) is not related to the order of the time step. These two affirmations allow implementing the simulation of the algorithm 1 into GPU architecture to benefit from massive parallelism.

The main drawback of this method is the volumetric discretization required. The number of vertices is inversely proportional to the cube of the spatial step. As a result, a small increase of the output resolution can lead to long computational time and great memory requirements. Simulation performances for test cases are given in section 6.

Algorithm 1: Pseudo-code for simulation for each abrasive particle P i do compute distance D between P i and X evaluate K according to D subtract W i from F t (X) end extract surface from scalar field F t

Complete process modeling

Machining simulation of surface

Machining has been simulated with the assumption of boolean operations between the tool and the workpiece in the literature [START_REF] Zhang | A new algorithm for the numerical simulation of machined surface topography in multiaxis ball-end milling[END_REF]. The relevance of this hypothesis provides simulations that are very realistic, because in reality, the material removal due to cutting during machining generates precise surfaces. In order for the proposed approach to be compatible with the abrasion model developed, the implicit surface formalism has been chosen to simulate machined surface topography.

The definition of a given scalar field leads to a unique isosurface at the prescribed iso-value. However, it is not possible to find a unique field corresponding to a given surface. The simplest way to circumvent this problem is to use the signed distance function. While the field may be straightforward to find for simple objects, composition operators are used to combine them together into more complex shapes. Since the distance field is positive inside the parts, the three basic boolean operators between fields F D 1 and F D 2 are defined in table 1. The first step of the simulation of a machining operation consists in defining an initial distance field F D 0 which describes the initial raw surface of the part. In the presented study, the specimen before milling is considered as a perfect plane which results in the definition given in (Eq. 11). The scalar field T i associated with the tool is generally easy to determine since the shape is simple (cylinder, sphere, torus). The tool field can otherwise be obtained from composition of more simple fields. During the machining simulations the instances of the milling tool for each time step (T i ) are subtracted with the difference operator from the raw surface F D 0 in order to obtain the finish surface (Eq. 12). The operation is defined recursively from one step to another. The sequence of tool positions has no importance, thus the implementation of this algorithm can be efficiently done with parallel programming techniques. The resulting field of the machined surface is given by equation (Eq. 13). An example of machining simulation is pictured in (Fig. 5). The simulation has been done in 2D for this simple example in order to show the resulting scalar field. The original surface is a straight line whose height is zero. The machined surface is obtained after two tool paths of a ball-end mill which generate a single scallop. The iso-level curves represent the distance field after the machining simulation and the specimen surface corresponds to the zero level curve plotted in red. This field that represents the milled topography is the input for the abrasion simulation presented later.

Boolean operation operator Intersection

F D = min(F D 1 , F D 2 ) Difference F D = min(F D 1 , -F D 2 ) Union F D = max(F D 1 , F D 2 )
F D 0 = -z (11) 
F D n = min(F D n-1 , -T n ) ( 12 
)
F D n = min(F D 0 , {-T i | i ∈ [1, n]}) (13) 

From distance field to initial surface potential

The simulation of (Eq. 7) requires to define an initial potential field F t 0 . Natural choice is the distance field F D n from the previous step of simulation. However, a modification of the field offers the opportunity to model the process behavior. In order to illustrate the key parameters playing a role in the field definition, a simple unidirectional case is considered.

In (Fig. 6), the surface of the specimen is represented as a point and the field values are plotted in abscissa. This figure corresponds to the magnifying of a small area around the specimen surface represented in (Fig. 7). At this scale, an elementary abrasive action dF is considered constant regardless of the position. As a consequence, the effect on the surface displacement dz depends on the gradient k of the field and is characterized by equation (Eq. 14). 

∂F t ∂z (z) = - 1 k (14) 
The coefficient k is related to the specimen field by equation (Eq. 15). This equation is an analogy to the Preston model, thus the gradient of the field has an influence on the material removal rate in the implicit framework. Thus, the influence of pressure on the abrasion rate (Eq. 1), can be modeled by means of the setting parameter k.

k = 1 ∇F t ( 15 
)
During the simulation, the slope gradient increases as the specimen undergo the summation of the penalty field from the abrasive. This phenomenon encountered is highlighted with (Fig. 7). In this example, the abrasive field is subtracted from the initial scalar field which moves the surface position. Due to the fact that the abrasive field is not constant, the slope gradient of the specimen scalar field after abrasive action is increased, which in turn reduces the removal rate of the process (Eq. 16). This behavior is a drawback when it comes to applying the implicit abrasion model to a real surface obtained from machining. In (Fig. 8), a raw machined surface with peaks and valleys is considered. This surface is embedded in a grid where field values are stored during the simulation run. Two points X 1 and X 2 are considered. The difference between these two points is their distances from the initial surface, X 1 is under a valley and X 2 is under a peak. The resulting field values for the two points are not the same but initial gradients are equal (Eq. 17).

∇F t > ∇F t-1 (16) 
               F t 0 (X 1 ) < F t 0 (X 2 ) ∇F t 0 (X 1 ) = ∇F t 0 (X 2 ) = 1/k (17)
Provided that after polishing, the surface has reached X 1 and X 2 due to a certain number of grain passages n 1 and n 2 , the resulting field value is zero for both points (Eq. 18).

               F t (X 1 ) = F t 0 (X 1 ) - n 1 i=0 W i (X 1 ) = 0 F t (X 2 ) = F t 0 (X 2 ) - n 2 i=0 W i (X 2 ) = 0 (18)
The combination of (Eq. 17) and (Eq. 18) leads to a number of involved path n 1 < n 2 because the initial potential in X 2 is higher than in X 1 . Thus the resulting gradient is not the same (Eq. [START_REF] Preston | The theory and design of plate glass polishing machine[END_REF].

∇F t (X 1 ) < ∇F t (X 2 ) ( 19 
)
This difference is not suitable because the gradient influences the removal rate of the simulated process, whereas the experimental removal rate is the same everywhere in the specimen once the machining scallops have been removed. This behavior results from the initial potential values inside the specimen which are not the same. For the model to be coherent toward the real process physics, the initial potential value must be constant over a certain distance from the specimen surface.

Given the previous analysis, two parameters have been proposed in order to define the transition from a distance field F D n resulting from the machining simulation to the initial scalar field F t 0 dedicated to abrasion simulation. F t 0 is defined as a function of F D n whose parameters are the inverse of the gradient k and a threshold β as stated in (Eq. 20). The parameter k accounts for the material removal rate and β is a distance threshold from which the field is constant. (Fig. 9) shows the result for the 2D milling example.

F t 0 (X) = F t 0 (F D n ) =                1 k F D n F D n ≤ β 1 k β F D n > β (20) 

Simulation of grain path

The presented model in section 2 defines the core behavior of the interaction between an abrasive particle and the specimen. For a simulation to be performed, the grain path as well as the grain size are required inputs. In this section, the proposed method is presented and results are analyzed.

Grain path generation

For the simulation of the abrasion, the generation of abrasive particle path is mandatory. The relative motion between the abrasive tool and the workpiece is responsible for the material removal. Since the abrasive particle shapes and their motion are not regular, the exact geometry and path followed by each grain is not possible to determine but can be reasonably approximated locally.

For the simulation, the grain paths have been modeled by an evenly distributed set of lines over the interest area. Even if the test surface is not a perfect plane due to the scallop induced by the machining, its mean orientation remains horizontal and every generated path lines are also horizontal. The lines are defined by a point P i and directed by a unit vector U i whose definitions are given in equations (Eq. 21) and (Eq. [START_REF] Bloomenthal | Interactive techniques for implicit modeling[END_REF].

P i = [ r i .cos(θ i ), r i .sin(θ i ), z i ] (21) 
U i = [ -sin(θ i ), cos(θ i ), 0] (22) 
Let ∆ be the width of the interest square area, r i and θ i are two random uniform variables whose ranges are respectively [-∆/ √ 2, ∆/ √ 2] and [0, π]. This parametrization allows to generate a set of lines (Eq. 25) as pictured in (Fig. 10). The definition of grain paths requires to compute the number of paths against time given a certain abrasive paper characteristics defined by the (ISO 6344) standard.

Path lines

U i P i r i θ i
n g = V.J g .∆.(t -t 0 ) (23) 
In (Eq. 23) the number of grain paths n g is defined given process parameters. V is the relative velocity between the abrasive and the workpiece, J g is the density of grains per surface unit. The number of grain paths is given by a time integration of the flux through the edge ∆. To simplify the simulation framework, it is possible to group the paths by sets of lines in the same plane, at a constant height from the average surface of the part (Eq. 24). This hypothesis is justified by the fact that the average height of the surface is significantly modified only after a certain number of grain passages. The third component of the unit vector U i is set to zero for every line since the surface is assumed to be contained in a horizontal plane and the relative height of the lines z k is constant for one set of lines L k (Eq. [START_REF] Zhang | A new algorithm for the numerical simulation of machined surface topography in multiaxis ball-end milling[END_REF]. This leads to a total number of grains n g = m.n k .

M = {L k | k ∈ [1; m]} (24) 
L k = { P i , U i | i ∈ [1; n k ], z i = z k } (25)
During the abrasion simulation, the value of the specimen field F t is the results of all the previous grain passages before time t. The relative position of the grains from the surface leads to a certain interpenetration distance h. In order to avoid extracting the surface from the specimen scalar field at each time step, h is defined according to the overlapping volume Ω and the specimen surface S (Fig. 11) (Eq. [START_REF] Pessoles | Automatic polishing process of plastic injection molds on a 5-axis milling center[END_REF].

Ω = S .h (26) 
The overlapping volume is computed with F t and W z , which is a scalar field constructed from the mean value µ g of the grain size distribution (Eq. 28). Thus, the overlapping volume Ω is the set of points where both fields are positive (Eq. 27). From a numerical point of view, the determination of this volume is straightforward because the implicit formalism allows evaluating each field sign on the spatial grid defined previously. The summation over all the points is done with a parallel reduction algorithm in order to compute the volume efficiently. 

z k µ g 2 Specimen Sign(W z ) Sign(F t ) Ω h
Ω = { X | F t (X) > 0 and W z (X) > 0 } (27) W z (X) = W z (z)              1 |z -z k | ≤ µ g 2 -1 |z -z k | > µ g 2 ( 28 
)
The value of z k is found by choosing a target value for h and by using an optimization algorithm.

Grain size distribution

The last step of the grain modeling is the definition of the size of the grains. Abrasive tools are mostly made of grains of calibrated size, coated together to a flexible substrate. The most commonly used material that composed abrasive grains is silicon carbide due to high Young's modulus and melting temperature. The abrasive paper characteristics are defined by the ISO 6344 standard. Grain diameter is a random variable which follows a probability distribution whose characteristic points are given in tables 2 and 3. For each point of the distribution d si defined in these tables, the theoretical cumulative fraction Φ std that the distribution follows is given in equation (Eq. 29).

Abrasive d s0

[µm] 

d s7 [µm] d s42 [µm] d s86 [µm]
Φ std (d si ) = 1 - i 100 ( 29 
)
For the generation of a set of grains which is representative of the standard definition, the grain size is assumed to follow a normal distribution. As a consequence, the probability density chosen is the Gaussian function. The probability p g to find a grain whose size is d g is given by equation (Eq. 30). For each type of abrasive considered, the mean value µ g of the distribution and the standard deviation σ g must be found in order to numerically generate the corresponding random variable for the simulations. The missing values of µ g and σ g have been found by fitting the cumulative distribution function Φ g (Eq. 31) to the characteristic points of grain size distribution defined in the standard by minimizing the error function e (Eq. 32). Note that the standard deviation of the distribution is equal to the value of d s50 for P240 and P600 abrasive without requiring to a constraint optimization. The results of the optimization is given in table 4 and the cumulative distribution function is plotted in (Fig. 12). Based on the height z k and provided that not all particles have same diameter d g , three position schemes have been considered (Fig. 13). Either the center of each particle is aligned or shifted toward bottom or top. For the test cases considered in this article, the second configuration has been chosen otherwise the grooves generated by the largest particles are too prevalent.

p g (d g ) = 1 √ 2π σ g e - 1 2 g -µ g ) 2 σ 2 g ( 30 
) Φ g (d g ) = 1 2        1 + er f        d g -µ g √ 2 σ g               (31) e (µ g , σ g ) = i Φ std (d si ) -Φ g (d si ) 2 (32) 
z k µ g d g

Centered

Tangent to bottom Tangent to top The experimental validation of the proposed method is carried out on a test case including a finishing milling phase followed by an automatic polishing phase performed on a Mikron UCP710 machining center as described in [START_REF] Pessoles | Automatic polishing process of plastic injection molds on a 5-axis milling center[END_REF] (Fig. 14 -right). The application targeted is the production of plastic injection molds and the material is a X38CrMoV5 steel with the hardness of 53 HRC. Milling is carried out with a hemispherical tool of 10mm diameter which is a solid carbide end mill for profiling from Sandvik Coromant.

In this example, the milling strategy includes parallel paths and a relatively small feed per tooth which leads to a surface with parallel scallops. The distance between passes is 1 mm. Topography resulting from the implicit simulation of the milling operation is presented in figure 15. The implicit framework applied for the milling simulation behaves as expected and produces surface topography which corresponds to the experimental measurement. The tools used for polishing are abrasive disks whose diameter is 18 mm. The abrasive grains are composed of silicon carbide. The disks are pasted on a flexible elastomer support. The deformation of the elastomer allows the abrasive tool to conform to the surface and the force is adjusted by changing the relative distance between the tool and the workpiece. The spindle speed for abrasive tools is set to 2000 rpm. The polishing operations are carried out with a tilt angle of the tool in the feed direction equal to 10 • and an imposed dispacement of 1mm, leading to a polishing force of 10N [START_REF] Pessoles | Automatic polishing process of plastic injection molds on a 5-axis milling center[END_REF]. Thus, only a portion of the disk in its peripheral area is in contact with the part [START_REF] Guiot | Modeling of a polishing tool to simulate material removal[END_REF] which leads to a cutting speed of 110 m/min. The polishing operation is a succession of three different grades (grade 120, 240 and 600) and the abrasion process has been separated into four steps : grade 120 along X-axis ; grade 120 along Yaxis ; grade 240 ; grade 600. The measurement of the surface topography is done in situ after each stage of the abrasive process without removing the workpiece [START_REF] Quinsat | In situ non-contact measurements of surface roughness[END_REF]. The sensor used to measure the surface topography is an optical device from STIL [START_REF]Fundamental Principles of Engineering Nanometrology[END_REF]. Its technology is based on a confocal chromatic sensor. The incident white light is dispersed along the Z-axis. The focused wavelength of the reflected beam is determined in order to obtain the position of the surface in the measuring field with high resolution. The measurement is made every 0.01 mm on a surface of 1 mm by 4 mm.

Case

Test The simulation is computed in a local area of the part with the grid characteristics presented in table 5. This space discretization is required to perform the surface extraction (Fig. 16) with the marching cube algorithm [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF]. The overall dimensions of the working area are given as well as the size of the discretization steps in each direction. The simulations have been carried out with the following hardware configurations:

• Xeon CPU: Intel Xeon Processor E5-1620V3, 3.5 Ghz, 31 Gflops DP, 4 cores, 8 threads

• GeForce GTX Titan Z (one GK110 GPU): 705 MHz, 2 × 6GB (GDDR5), 2880 CUDA cores.

The complete modeled abrasion process is presented in table 7. In these simulations, β must be smaller than the height of the marks left by machining but sufficiently high to be able to correctly simulate the passage of the grains. A value of 3 µm for β and 1 for k has been used in all the test cases. This configuration leads to the simulation times presented in table The parameters for the different steps are determined regarding the paper size and measured topography. The first two steps with paper P120 (Fig. 17) have the same parameters and match the experimental profile. The first step is used in order to identify the process parameters (n g and h) by an optimization between simulation and experimental results. The second step is simulated with the same set of parameters because these two steps are realized with the same paper and the same process characteristics. This shows the ability of the proposed model to adapt to any initial topography for a tool workpiece pair. Besides, the effect of initial topography on the abrasion rate is coherent with experimental measurement. When the bearing area of the specimen increases, the abrasion rate obtained in the simulation decreases as expected from the measurements (Fig. 18). In this figure, the thin-line data correspond to experimental measurements and the simulations are displayed with thick lines. The last two steps with paper P240 and P600 completely remove milling scallops in the experiment as well as in the simulation. Once the bottom of the scallops has been reached by the abrasive paper, the abrasion rate is constant over the surface of the specimen regardless of the initial surface topography. As presented in section 4.2, this has been made possible in the model with the limitation of the potential field by threshold β. Table 8 presents the associated surface roughness parameters S a . It can be observed that the simulated results are coherent with the measurement. Roughness of milled surface is higher in the simulation because the simulated surface has sharp edges contrary to the experimental one. The last step is smoother than the experimental topography because the simulation tends to generate smooth surfaces while the experimental surfaces show peeling phenonema that become significant once the machining marks are removed. 

Case 2: manual polishing

The second example concerns a manufacturing process integrating a finishing milling phase followed by manual polishing operations conducted by a skilled operator (Fig. 14left). The targeted application is the production of molds for blowing plastic bottles and the material is an aluminium alloy AlZn5Mg3Cu [START_REF] Grandguillaume | Mold manufacturing optimization: A global approach of milling and polishing processes[END_REF]. During the milling, the feed per tooth is not negligible with respect to the feed direction. In this case, the generated pattern can be approximated by a succession of spherical cups for each tooth revolution. Thus the longitudinal interval is the feed per tooth. This pattern depends only on the feed per tooth, the transverse step and the radius of the tool. Topography resulting from the implicit milling simulations is presented in (Fig. 19). One can notice that the resulting topography is very different from case 1, especially in terms of bearing area. Regarding the abrasion process, it consists of two stages with 240 and 400 grade abrasives from the milled state. The simulation is computed with the grid characteristics presented in table 5. For both abrasive grades, a single set of parameters for each step allows obtaining a representative abrasion simulation. The same method for finding the simulation parameters is used than for test case 1. Fig. 20 presents the respective topographies for the P240 and P400 papers. These two additional cases show that the abrasion with different paper sizes can be taken into account. The bottoms of the scallops are not affected in the simulations because the path of the grains is considered to be a straight line independently from the real surface topography. As a consequence the scallops are still slightly visible in the simulations whereas they have been removed experimentally.

Roughness parameters are listed in tables 9 and 10 for both abrasive papers. The same correlation between simulation and experimental data is observed. The roughness in the two last steps is still significanly lower in the simulations. The model tends to generate smooth surfaces whereas the random character of the abrasion may result in additional grooves that are not taken into account. This can be observed visually in the figures 20 and 21. Event if the parameters of the manual polishing process may be hard to evaluate, the simulation framework provides results that are relevant provided the repeatability of the skilled operator.

Conclusion and future works

A novel numerical model to simulate finishing processes has been proposed. This model is based on an implicit representation of surfaces and a proper definition of the potential field associated to each grain path for the simulation of the material removal encountered during abrasion. The implementation of an implicit milling simulation has been integrated into the implicit abrasion framework in order to take into account the scallop induced during milling. The simulation of a complete manufacturing process from milling to finishing has been performed and compared to the experiments. The simulated surfaces are coherent with experimental measurements. The grain size distributions of the abrasive papers have been taken into account in the simulation. The grains are considered as spheres, but it is possible to implement other shapes in the implicit framework. The succession of simulation steps is coherent with the measured ones and the abrasion rate is reduced when the bearing area of the surface increases. The computation time in all the test cases is less than one minute with conventional desktop hardware. The order of magnitude of computation time is already compatible with industrial requirements without major optimization of the implementation.

In the presented model, the generation of the abrasive potential field, which takes into account the grain paths and the local interaction characteristics, is done with geometric considerations. The relation between the effort and the grain path is the next development considered for the proposed model. In order to take into account the pressure as an input for the model, a relation between the pressure and the overlapping volume should be studied. This extension will be integrated in the grain path generation in order to determine the relative height of the grains.

In this study, the specimen areas taken into account are relatively small thus it is justified to assume that the global curvature of the surface is null. The simulation of abrasion in case of complex surfaces seems achievable using conformal mapping between the real surface and a plane and would not require major modifications of the simulation framework. The preliminary results of the model could be used to find the optimum parameters of an overall optimization of the manufacturing process including milling and abrasion finishing.
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 2 Figure2: Drawing of the groove section with repelled matter[START_REF] Gahr | Wear by hard particles[END_REF] 
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 1920 Figure 19: Implicit machining simulation -test case 2
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Table 1 :

 1 Basic composition operators for implicit surfaces

Table 2 :

 2 Grain size distribution for macro-grits coated abrasive

	Abrasive	d s0 [µm] d s3 [µm] d s50 [µm] d s95 [µm]
	P240	110	81.7	58.5	44.5
	P400	81	53.9	35	25.2
	P600	72	43	25.8	18

Table 3 :

 3 Grain size distribution for micro-grits coated abrasive

Table 4 :

 4 Normal distribution parameters

	Abrasive type				µ g [µm] σ g [µm]
	P120					122.3	16.4
	P240					58.5	8.8
	P400					35.0	6.0
	P600					25.8	4.8
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Table 5 :

 5 Simulation grid characteristics

Table 6 :

 6 6. Simulation time

	Case	Simulation time
	Test case 1	41 sec
	Test case 2 -P240	48 sec
	Test case 2 -P400	45 sec

Table 7 :

 7 Simulation parameters -Automatic polishing

	Abrasion step	Abrasive type	n g	h [%d g ]
	Polishing grade 120-x	P120	900	1.8 %
	Polishing grade 120-y	P120	900	1.8 %
	Polishing grade 240	P240	1800	1.8 %
	Polishing grade 600	P600	2400	1.8 %

Table 8 :

 8 Surface roughness analysis S a -[µm]

Table 9 :

 9 Surface roughness analysis for abrasive grade 240 -[µm]

	Abrasion step	Experimental Simulated
	Milling	2.77	2.32
	Grade 400-1	1.77	1.57
	Grade 400-2	0.71	0.81
	Grade 400-3	0.37	0.30
	Grade 400-4	0.37	0.17

Table 10 :

 10 Surface roughness analysis for abrasive grade 400[µm]