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MONOTONICITY AND COMPLETE MONOTONICITY OF TWO

FUNCTIONS DEFINED BY THREE DERIVATIVES OF A

FUNCTION INVOLVING TRIGAMMA FUNCTION

FENG QI, LING-XIONG HAN, AND HONG-PING YIN

Dedicated to people facing and battling COVID-19

Abstract. In the paper, by convolution theorem of the Laplace transforms, a

monotonicity rule for the ratio of two Laplace transforms, Bernstein’s theorem

for completely monotonic functions, and other analytic techniques, the authors
(1) verify decreasing monotonicity of a ratio between three derivatives of a

function involving trigamma function;

(2) find necessary and sufficient conditions for a function defined by three
derivatives of a function involving trigamma function to be completely

monotonic.

These results confirm previous guesses posed by the first author and generalize
corresponding known conclusions.
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1. Introduction

In the literature [1, Section 6.4], the function

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0

and its logarithmic derivative ψ(z) = [ln Γ(z)]′ = Γ′(z)
Γ(z) are called Euler’s gamma

function and digamma function respectively. Further, the functions ψ′(z), ψ′′(z),
ψ′′′(z), and ψ(4)(z) are known as the trigamma, tetragamma, pentagamma, and
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2 F. QI, L.-X. HAN, AND H.-P. YIN

hexagamma functions respectively. All the derivatives ψ(k)(z) for k ≥ 0 are known
as polygamma functions.

Recall from Chapter XIII in [4], Chapter 1 in [11], and Chapter IV in [12] that,
if a function f(t) on an interval I has derivatives of all orders on I and satisfies
inequalities (−1)nf (n)(t) ≥ 0 for t ∈ I and n ∈ {0} ∪ N, then we call f(t) a
completely monotonic function on I.

Let Φ(x) = xψ′(x)−1 = x
[
ψ′(x)− 1

x

]
on (0,∞). In [7, Theorem 4.1] and [9, The-

orem 4], the first author turned out the following necessary and sufficient conditions
and double inequality:

(1) if and only if α ≥ 2, the function Hα(x) = Φ′(x) + αΦ2(x) is completely
monotonic on (0,∞);

(2) if and only if α ≤ 1, the function −Hα(x) is completely monotonic on
(0,∞);

(3) the double inequality −2 < Φ′(x)
Φ2(x) < −1 is valid and sharp in the sense that

the lower and upper bounds −2 and −1 cannot be replaced by any bigger
and smaller ones respectively.

In [7, Theorem 1.1], the first author found the following necessary and sufficient
conditions and limits:

(1) if and only if β ≥ 2, the function Hβ(x) = Φ′(x)
Φβ(x)

is decreasing on (0,∞),

with the limits

lim
x→0+

Hβ(x) =

{
−1, β = 2

0, β > 2
and lim

x→∞
Hβ(x) =

{
−2, β = 2

−∞, β > 2;

(2) if β ≤ 1, the function Hβ(x) is increasing on (0,∞), with the limits

Hβ(x)→

{
−∞, x→ 0+

0, x→∞.

For k ∈ {0} ∪ N and λk, µk ∈ R, let

Jk,λk(x) = Φ(2k+1)(x) + λk
[
Φ(k)(x)

]2
and Jk,µk(x) =

Φ(2k+1)(x)[
(−1)kΦ(k)(x)

]µk
on (0,∞). In [5, Theorems 3.1 and 4.1], the first author presented the following
necessary and sufficient conditions, limits, and double inequality:

(1) if and only if λk ≥ (2k+2)!
k!(k+1)! , the function Jk,λk(x) is completely monotonic

on (0,∞);

(2) if and only if λk ≤ 1
2

(2k+2)!
k!(k+1)! , the function −Jk,λk(x) is completely mono-

tonic on (0,∞);
(3) if and only if µk ≥ 2, the function Jk,µk(x) is decreasing on (0,∞), with

the limits

lim
x→0+

Jk,µk(x) =

−
1

2

(2k + 2)!

k!(k + 1)!
, µk = 2

0, µk > 2

and

lim
x→∞

Jk,µk(x) =

−
(2k + 2)!

k!(k + 1)!
, µk = 2

−∞, µk > 2;



MONOTONICITY OF A RATIO BETWEEN DERIVATIVES 3

(4) if µk ≤ 1, the function Jk,µk(x) is increasing on (0,∞), with the limits

Jk,µk(x)→

{
−∞, x→ 0+

0, x→∞;

(5) the double inequality

− (2k + 2)!

k!(k + 1)!
<

Φ(2k+1)(x)[
Φ(k)(x)

]2 < −1

2

(2k + 2)!

k!(k + 1)!

is valid on (0,∞) and sharp in the sense that the lower and upper bounds
cannot be replaced by any larger and smaller numbers respectively.

For k ≥ m ≥ 0, let

Jk,m(x) =
Φ(2k+2)(x)

Φ(k−m)(x)Φ(k+m+1)(x)

on (0,∞). In [5, Remark 5.3], the first author guessed that the function Jk,m(x)
for k ≥ m ≥ 0 should be decreasing on (0,∞) and that the double inequality

− 2(2k + 2)!

k!(k + 1)!
< Jk,0(x) < − (2k + 2)!

k!(k + 1)!
(1.1)

for k ≥ 0 should be valid on (0,∞) and sharp in the sense that the lower and upper
bounds cannot be replaced by any larger and smaller numbers respectively.

For m,n ∈ {0} ∪ N and ωm,n ∈ R, let

Ym,n(x) =
Φ(m+n+1)(x)

Φ(m)(x)Φ(n)(x)
(1.2)

and
Ym,n;ωm,n(x) = Φ(m+n+1)(x) + ωm,nΦ(m)(x)Φ(n)(x). (1.3)

It is clear that

Ym,n(x) = Yn,m(x), Ym,n;ωm,n(x) = Yn,m;ωn,m(x),

Yk−m,k+m+1(x) = Jk,m(x), Yk,k;ωk,k(x) = Jωk,k(x), Y0,0;ω0,0
(x) = Hω0,0

(x).

In this paper, we will prove decreasing monotonicity of the function Ym,n(x) and
find necessary and sufficient conditions on ωm,n for ±(−1)m+n+1Ym,n;ωm,n(x) to
be completely monotonic on (0,∞). These results confirm the above guesses and
generalize corresponding ones in [5, 7, 9] mentioned above.

2. Lemmas

The following lemmas are necessary in this paper.

Lemma 2.1 (Convolution theorem for the Laplace transforms [12, pp. 91–92]). Let
fk(t) for k = 1, 2 be piecewise continuous in arbitrary finite intervals included in
(0,∞). If there exist some constants Mk > 0 and ck ≥ 0 such that |fk(t)| ≤Mke

ckt

for k = 1, 2, then∫ ∞
0

[ ∫ t

0

f1(u)f2(t− u)du

]
e−stdt =

∫ ∞
0

f1(u)e−sudu

∫ ∞
0

f2(v)e−svdv.

Lemma 2.2 ([13, Lemma 4]). Let the functions A(t) and B(t) 6= 0 be defined on
(0,∞) such that their Laplace transforms

∫∞
0
A(t)e−xtdt and

∫∞
0
B(t)e−xtdt exist.

If the ratio A(t)
B(t) is increasing, then the ratio

∫∞
0
A(t)e−xtdt∫∞

0
B(t)e−xtdt

is decreasing on (0,∞).
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Lemma 2.3. Let x, y ∈ R such that 0 < 2x < y.

(1) When y > 2x > 2
(
2 + 1

ln 2

)
= 6.885390 . . . , the function

F (x, y) = 2

(
1

x
− 1

y − x

)
+

1

2

(
2y−x

y − x
− 2x

x

)
− 2y−x − 2x

(y − x)x

is positive.
(2) For k,m ∈ N such that 6 ≤ 2m < k, the sequence F (m, k) is positive.

Proof. The function F (x, y) can be rearranged as

F (x, y) =
2(y − 2x) + 2x−1

[
2− y + x+ (x− 2)2y−2x

]
x(y − x)

.

Therefore, it suffices to prove 2− y + x+ (x− 2)2y−2x > 0, that is,

2y−2x >
y − x− 2

x− 2
. (2.1)

Replacing y − 2x by t in (2.1) leads to

2t >
t+ x− 2

x− 2
= 1 +

t

x− 2
(2.2)

for t > 0 and x > 2. The inequality (2.2) can be reformulated as x > 2 + t
2t−1 .

Since the function t
2t−1 is decreasing from (0,∞) onto

(
0, 1

ln 2

)
, it is sufficient for

x > 2 + 1
ln 2 = 3.442695 . . . .

Repeating those arguments before the inequality (2.1) hints us that, for proving
F (m, k) > 0, it is sufficient to show

2k−2m >
k −m− 2

m− 2
= 1 +

k − 2m

m− 2

which can be rewritten as
k − 2m

2k−2m − 1
< m− 2 (2.3)

Since t
2t−1 is decreasing in t ∈ (0,∞) and k − 2m ≥ 1, the largest value of the

left hand side in the inequality (2.3) is 1
21−1 = 1 which means that the strict

inequality (2.3) is valid for all m ≥ 4. As a result, the sequence F (m, k) is positive
for all m ≥ 4.

When m = 3, the sequence F (3, k) is

F (3, k) =
2k − 32k + 128

48(k − 3)
=

25
[
2k−5 − (k − 4)

]
48(k − 3)

which is positive for all k > 2 · 3 = 6. The proof of Lemma 2.3 is complete. �

Lemma 2.4. Let

h(t) =


et(et − 1− t)

(et − 1)2
, t 6= 0

1

2
, t = 0

on (−∞,∞). Then, for any fixed s ∈ (0, 1), the ratio h(st)
hs(t) is increasing in t from

(0,∞) onto
(

1
21−s , 1

)
.
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Proof. It is easy to see that

lim
t→0

h(st)

hs(t)
=

limt→0 h(st)

limt→0 hs(t)
=

1
2
1
2s

=
1

21−s

and

lim
t→∞

Hs(t) =
limt→∞ h(st)

limt→0 hs(t)
=

1

1s
= 1.

Direct differentiating and expanding to power series give

d

dt

[
h(st)

hs(t)

]
= −

se(1+s)t

(t− 2)e(1+2s)t + (t+ 2)e2st + (2− st)e(2+s)t

+4(s− 1)te(1+s)t − (2st2 + 3st+ 2)est

−(st+ 2)e2t +
(
2st2 + 3t+ 2

)
et + (s− 1)t


(et − 1)3(est − 1)3hs+1(t)

=

se(1+s)t
∞∑
k=7


(3k + 2)sk + 2(2s+ 1)k + ks(s+ 2)k−1

+2k2sk−1 + 4k(s+ 1)k−1

+2k
(
1 + 2k−2

)
s+ 2k+1

−
[
2k+1sk + 2(s+ 2)k

+4ks(s+ 1)k−1 + 2k
(
1 + 2k−2

)
sk−1

+k(2s+ 1)k−1 + 2k2s+ 3k + 2
]


tk

k!

(et − 1)3(est − 1)3hs+1(t)

=

se(1+s)t
∞∑
k=7


k−1∑
m=1

[
k2k−m

(
k−1
m−1

)
+ 4k

(
k−1
m

)
+ 2m+1

(
k
m

)]
sm

+2k
(
1− k + 2k−2

)(
s− sk−1

)
−

k−1∑
m=1

[
k2m

(
k−1
m

)
+ 4k

(
k−1
m−1

)
+ 2k−m+1

(
k
m

)]
sm

 tk

k!

(et − 1)3(est − 1)3hs+1(t)

=

se(1+s)t
∞∑
k=7

 k−1∑
m=1

[
k2k−m

(
k−1
m−1

)
+ 4k

(
k−1
m

)
+ 2m+1

(
k
m

)](
sm − sk−m

)
+2k

(
1− k + 2k−2

)(
s− sk−1

)
 tk

k!

(et − 1)3(est − 1)3hs+1(t)

=

se(1+s)t
∞∑
k=7


∑

3≤m< k
2

[
k2k−m

(
k−1
m−1

)
− k2m

(
k−1

k−m−1

)
+4k

(
k−1
m

)
− 4k

(
k−1
k−m

)
+2m+1

(
k
m

)
− 2k−m+1

(
k

k−m
)](

sm − sk−m
)
 tk

k!

(et − 1)3(est − 1)3hs+1(t)

=

se(1+s)t
∞∑
k=7

 2
∑

3≤m< k
2

k!
(m−1)!(k−m−1)!

[
2
(

1
m −

1
k−m

)
+ 1

2

(
2k−m

k−m −
2m

m

)
− 2k−m−2m

(k−m)m

](
sm − sk−m

)
 tk

k!

(et − 1)3(est − 1)3hs+1(t)

=

s4e(1+s)t

 1−s
36 t

7 + 1−s2
45 t8 + 22(1−s3)+15(s−s2)

2160 t9

+ 52(1−s4)+63(s−s3)
15120 t10

+ 285(1−s5)+470(s−s4)+238(s2−s3)
302400 t11 + · · ·


(et − 1)3(est − 1)3hs+1(t)

.
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Utilizing Lemma 2.3 reveals that the derivative d
dt

[h(st)
hs(t)

]
is positive for s ∈ (0, 1)

and t > 0. Consequently, for s ∈ (0, 1), the ratio h(st)
hs(t) is increasing in t > 0. The

proof of Lemma 2.4 is complete. �

Lemma 2.5 ([5, Lemma 2.2]). For k ≥ 0, the function (−1)kΦ(k)(x) is completely
monotonic on (0,∞), with the limits

(−1)kxk+1Φ(k)(x)→


k!, x→ 0+;

k!

2
, x→∞.

(2.4)

Lemma 2.6 (Bernstein’s theorem [12, p. 161, Theorem 12b]). A function f(x) is
completely monotonic on (0,∞) if and only if

f(x) =

∫ ∞
0

e−xtdσ(t), x ∈ (0,∞), (2.5)

where σ(s) is non-decreasing and the integral in (2.5) converges for x ∈ (0,∞).

3. Decreasing monotonicity

In this section, we prove that the function Ym,n(x) defined in (1.2) is decreasing.

Theorem 3.1. For m,n ∈ {0}∪N, the function Ym,n(x) defined in (1.2) is decreas-

ing in x from (0,∞) onto the interval
(
− 2(m+n+1)!

m!n! ,− (m+n+1)!
m!n!

)
. Consequently, for

m,n ∈ {0} ∪ N, the double inequality

− 2(m+ n+ 1)!

m!n!
< Ym,n(x) < − (m+ n+ 1)!

m!n!
(3.1)

is valid on (0,∞) and sharp in the sense that the lower and upper bounds cannot
be replaced by any larger and smaller numbers respectively.

Proof. In the proof of [9, Theorem 4], the first author established that

Φ(x) =

∫ ∞
0

h(t)e−xtdt. (3.2)

Then the ratio Ym,n(x) can be rewritten as

Ym,n(x) = −
∫∞

0
tm+n+1h(t)e−xtdt∫∞

0
tmh(t)e−xtdt

∫∞
0
tnh(t)e−xtdt

= −
∫∞

0
tm+n+1h(t)e−xtdt∫∞

0

[∫ t
0
um(t− u)nh(u)h(t− u)du

]
e−xtdt

,

where we used Lemma 2.1. Basing on Lemma 2.2, in order to prove decreasing
monotonicity of Ym,n(x), it suffices to show that the ratio

Ym,n(t) =
tm+n+1h(t)∫ t

0
um(t− u)nh(u)h(t− u)du

(3.3)

is decreasing in t ∈ (0,∞). By changing the variable u = 1+v
2 t, the denominator of

Ym,n(t) becomes(
t

2

)m+n+1 ∫ 1

−1

(1 + v)m(1− v)nh

(
1 + v

2
t

)
h

(
1− v

2
t

)
dv.
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Accordingly, we obtain

1

Ym,n(t)
=

∫ 1

−1
(1 + v)m(1− v)nh

(
1+v

2 t
)
h
(

1−v
2 t
)
dv

2m+n+1h(t)

=
1

2m+n+1

∫ 1

−1

(1 + v)m(1− v)n
h
(

1+v
2 t
)
h
(

1−v
2 t
)

h(t)
dv

=
1

2m+n+1

∫ 1

−1

(1 + v)m(1− v)n
h(st)

hs(t)

h((1− s)t)
h1−s(t)

dv,

(3.4)

where s = 1+v
2 ∈ (0, 1). From Lemma 2.4, we find that the function h(st)

hs(t)
h((1−s)t)
h1−s(t)

is increasing in t ∈ (0,∞) for any fixed s ∈ (0, 1). Hence, the function Ym,n(t)
is decreasing on (0,∞). Therefore, the function Ym,n(x) for m,n ∈ {0} ∪ N is
decreasing on (0,∞).

Making use of the limits in (2.4) in Lemma 2.5 yields

Ym,n(x) = − (−1)m+n+1xm+n+2Φ(m+n+1)(x)

[(−1)mxm+1Φ(m)(x)][(−1)nxk+m+2Φ(n)(x)]

→


− (m+ n+ 1)!

m!n!
, x→ 0+;

−2(m+ n+ 1)!

m!n!
, x→∞.

The proof of Theorem 3.1 is complete. �

4. Necessary and sufficient conditions of complete monotonicity

In this section, we discover necessary and sufficient conditions on ωm,n for the
function ±(−1)m+n+1Ym,n;ωm,n(x) defined in (1.3) to be completely monotonic.

Theorem 4.1. For m,n ∈ {0} ∪ N and ωm,n ∈ R,

(1) if and only if ωm,n ≤ (m+n+1)!
m!n! , the function (−1)m+n+1Ym,n;ωm,n(x) is

completely monotonic on (0,∞);

(2) if and only if ωm,n ≥ 2(m+n+1)!
m!n! , the function (−1)m+nYm,n;ωm,n(x) is com-

pletely monotonic on (0,∞);
(3) the double inequality (3.1) is valid on (0,∞) and sharp in the sense that

the lower and upper bounds cannot be replaced by any larger and smaller
numbers respectively.

Proof. As did in the proof of Theorem 3.1, by virtue of the integral representa-
tion (3.2) and Lemma 2.1, we acquire

(−1)m+n+1Ym,n;ωm,n(x) =

[∫ ∞
0

tm+n+1h(t)e−xtdt

− ωm,n
∫ ∞

0

tmh(t)e−xtdt

∫ ∞
0

tnh(t)e−xtdt

]
=

∫ ∞
0

[
tm+n+1h(t)− ωm,n

∫ t

0

um(t− u)nh(u)h(t− u)du

]
e−xtdt

=

∫ ∞
0

[
1− ωm,n

Ym,n(t)

]
tm+n+1h(t)e−xtdt,
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where Ym,n(t) is defined by (3.3) and it has been proved in the proof of The-
orem 3.1 to be decreasing on (0,∞). From Lemma 2.4, we conclude that the

function h(st)
hs(t)

h((1−s)t)
h1−s(t) is increasing in t from (0,∞) onto

(
1
2 , 1
)
. Accordingly, by

virtue of (3.4), we arrive at the sharp inequalities

1

2m+n+2

∫ 1

−1

(1 + v)m(1− v)ndv <
1

Ym,n(t)
<

1

2m+n+1

∫ 1

−1

(1 + v)m(1− v)ndv.

Since ∫ 1

−1

(1 + v)m(1− v)ndv =

∫ 1

0

[
(1 + v)m(1− v)n + (1− v)m(1 + v)n

]
dv

= 2m+n+1B(m+ 1, n+ 1)

= 2m+n+1 m!n!

(m+ n+ 1)!
,

where we used the formula∫ 1

0

[
(1 + x)µ−1(1− x)ν−1 + (1 + x)ν−1(1− x)µ−1

]
dx = 2µ+ν−1B(µ, ν)

= 2µ+ν−1 Γ(µ)Γ(ν)

Γ(µ+ ν)

for <(µ),<(ν) > 0 in [3, p. 321, 3.214], the double inequality

1

2

m!n!

(m+ n+ 1)!
<

1

Ym,n(t)
<

m!n!

(m+ n+ 1)!

is valid and sharp on (0,∞). Consequently, by virtue of Lemma 2.6, if and only

if ωm,n ≤ (m+n+1)!
m!n! , the function (−1)m+n+1Ym,n;ωm,n(x) is completely monotonic

on (0,∞); if and only if ωm,n ≥ 2(m+n+1)!
m!n! , the function (−1)m+nYm,n;ωm,n(x) is

completely monotonic on (0,∞).
The double inequality (3.1) follows from complete monotonicity of the functions

±(−1)m+n+1Ym,n;ωm,n(x). The proof of the sharpness of the double inequality (3.1)
is the same as did in the proof of Theorem 3.1. The proof of Theorem 4.1 is
complete. �

5. Remarks

In this section, we list several remarks related to our main results and their
proofs in this paper.

Remark 5.1. Lemma 2.4 in this paper generalizes a conclusion in [7, Lemma 2.3]:

the function h(2t)
h2(t) is decreasing from (0,∞) onto (1, 2).

Remark 5.2. The function F (x, y) discussed in Lemma 2.3 can be reformulated as

F (x, y) =

(
1

x
− 1

y − x

)[
2− 1

2

2y−x

y−x −
2x

x
1

y−x −
1
x

− 2y−x − 2x

(y − x)− x

]
in which the functions

2y−x

y−x −
2x

x
1

y−x −
1
x

and
2y−x − 2x

(y − x)− x
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can be regarded as special means [2, 10].
Let x, y ∈ R such that 0 < x < y

2 . Motivated by Lemma 2.3, we guess that,

(1) when 2 < x < y
2 , the function F (x, y) is positive;

(2) when y > 4 and 0 < x < 2, the function F (x, y) is negative.

Furthermore, one can discuss positivity and negativity of the function F (x, y) for
all x, y satisfying 0 < x < y

2 .

Remark 5.3. When taking m = k and n = k + 1, the double inequality (3.1) in
Theorem 3.1 becomes the double inequality (1.1) guessed by the first author in [5,
Remark 5.3].

Remark 5.4. For m,n ∈ {0} ∪ N, direct differentiation gives

Y ′m,n(x) =
Φ(m+n+2)(x)

[
Φ(m)(x)Φ(n)(x)

]
− Φ(m+n+1)(x)

[
Φ(m)(x)Φ(n)(x)

]′
[Φ(m)(x)Φ(n)(x)]2

on (0,∞). The decreasing monotonicity of Ym,n(x) in Theorem 3.1 implies that,
for m,n ∈ {0} ∪ N, the inequality

Φ(m+n+1)(x)
[
Φ(m)(x)Φ(n)(x)

]′
> Φ(m+n+2)(x)

[
Φ(m)(x)Φ(n)(x)

]
,

equivalently, [
Φ(m)(x)Φ(n)(x)

]′
Φ(m)(x)Φ(n)(x)

<
Φ(m+n+2)(x)

Φ(m+n+1)(x)
,

is valid on (0,∞).
We guess that, for m,n ∈ {0} ∪ N, the function

Φ(m+n+1)(x)
[
Φ(m)(x)Φ(n)(x)

]′ − Φ(m+n+2)(x)
[
Φ(m)(x)Φ(n)(x)

]
is completely monotonic in x ∈ (0,∞).

One can also consider necessary and sufficient conditions on Λm,n ∈ R for m,n ∈
{0} ∪ N such that the function

Φ(m+n+1)(x)
[
Φ(m)(x)Φ(n)(x)

]′ − Λm,nΦ(m+n+2)(x)
[
Φ(m)(x)Φ(n)(x)

]
and its negativity are respectively completely monotonic on (0,∞).

Remark 5.5. This paper is the sixth one in a series of articles including [5, 6, 7, 8, 9].
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