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SUPPLEMENTARY ANALYSIS  763 

Variance of the effective optimum 764 

By definition, the variance in the per-generation effective optimum is 765 

Var[𝜃𝑡𝑜𝑡] = 𝑉𝑎𝑟[∑ 𝑒𝑘𝜃𝑘
𝑛
𝑘=1 ] = 𝜎𝜃

2∑ 𝑒𝑘
2𝑛

𝑘=1 + 2∑ ∑ 𝑐𝑜𝑣[𝑒𝑖𝜃𝑖 , 𝑒𝑗𝜃𝑗]
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 ,   (A1) 766 

where 𝜎𝜃
2 is the stationary variance of the per-episode optimum. Rewriting (A1) using the 767 

properties of the autocorrelation of the environment (eq. 11) leads to 768 

Var[𝜃𝑡𝑜𝑡] = 𝜎𝜃
2(∑ 𝑒𝑘

2𝑛
𝑘=1 + 2∑ ∑ 𝑒𝑖𝑒𝑗𝜌⁡

(𝑗−𝑖)𝛼𝑇 𝑛⁄𝑛
𝑗=𝑖+1 )𝑛−1

𝑖=1  ,      (A2) 769 

with 𝑒𝑖 = 𝜔𝑡𝑜𝑡
2 𝜔𝑖

2⁄ . The first term in the right-hand side of equation (A2) corresponds to the direct 770 

contribution of the variance of the environment. The second term on the right-hand side results 771 

from the autocorrelation of the environment between selection episodes within a generation, 772 

generating additional variation to the effective optimum. With the further assumption that the 773 

strength of selection is the same at all episodes of selection, 𝜔𝑖
2 = 𝜔2,⁡Equation A2 further 774 

simplifies in 775 

Var[𝜃𝑡𝑜𝑡] = 𝜎𝜃
2 (

1

𝑛
+
2

𝑛
∑ ∑ 𝜌𝜃

(𝑗−𝑖)𝛼𝑇 𝑛⁄𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 ) = 𝜎𝜃

2 𝑛−𝑛𝜌⁡
2𝛼𝑇/𝑛⁡+2𝜌⁡

𝛼𝑇/𝑛⁡(𝜌⁡
𝛼𝑇⁡−1)

𝑛2(𝜌⁡𝛼𝑇/𝑛−1)2
  (A3) 776 

The variance of the effective optimum 𝜃𝑡𝑜𝑡 is always lower than the variance of the environment 777 

(set to 1 in figure A1), and decreases with increasing number of selection episodes (fig A1-A). 778 

However, Var[𝜃𝑡𝑜𝑡] does not decrease without bounds, instead reaching a limit value for a large 779 

number of episodes of selection, lim
𝑛→∞

(Var[𝜃𝑡𝑜𝑡]) = 2
𝜓−ln𝜓−1

(ln𝜓)2
, which only depend on the 780 

autocorrelation of the environment over the time window for selection 𝜓 = 𝜌⁡
𝛼𝑇. In addition, for 781 

a given number of selection episodes, the variance of the effective optimum increases with the 782 

autocorrelation of the environment (fig. A1-B).  783 
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 784 

  785 

Figure A1: Variance of the effective optimum as a function of the number of selection episodes (A) and as a function 786 

of the autocorrelation of the environment (B). Crosses represent the results from simulations where the strength of 787 

selection is drawn from a probability distribution as described in fig. 2  caption. Full lines represent the expectation 788 

from eq. A3 and dashed lines represent the limit for a large number of selection episodes. Panel A: from light grey to 789 

dark 𝜌𝜃,𝑇 = 0.2, 0.5 and 0.9 respectively. Panel B: the gray scale represents different number of selection episode per 790 

generation (see within the panel). For both panels, 𝜔̅𝑡𝑜𝑡
2 = 25, 𝜎𝜃

2 = 1, 𝛼 = 1. 791 

Variance of the selection gradient 792 

The variance of 𝛽𝑡𝑜𝑡 is proportional to the variance of the distance of the mean phenotype to the 793 

optimum 794 

Var[𝛽𝑡𝑜𝑡] = (𝑆𝑡𝑜𝑡)
2Var[(𝑧̅ − 𝜃𝑡𝑜𝑡)] = (𝑆𝑡𝑜𝑡)

2E[(𝑧̅ − 𝜃𝑡𝑜𝑡)
2].    (A4) 795 
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By rearranging equation 10 in the main text (Charlesworth 1993), the mean phenotypic value at 796 

generation g is 797 

𝑧𝑔̅ = (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑔𝑧0̅ + 𝑆𝑡𝑜𝑡𝐺0∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)

𝑖−1𝜃𝑡𝑜𝑡,𝑔−𝑖
𝑔
𝑖=1 .     (A5) 798 

After a sufficiently large number of generations, the first term in equation (A5), corresponding to 799 

the initial conditions, can be neglected. We thus obtain 800 

E[(𝑧̅ − 𝜃𝑡𝑜𝑡)
2] = E [(𝑆𝑡𝑜𝑡𝐺0∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)

𝑖−1𝜃𝑡𝑜𝑡,𝑔−𝑖 − 𝜃𝑡𝑜𝑡,𝑔
𝑔
𝑖=1 )

2
],    (A6) 801 

By developing terms, using the autocorrelation of the effective optimum (eq. 12) and assuming 802 

that 𝑔 → ⁡∞, we obtain equation (16) in the main text (see also Charlesworth 1993; eq. 19a) 803 

Var[𝛽𝑡𝑜𝑡] = 2Var[𝜃𝑡𝑜𝑡]𝑆𝑡𝑜𝑡
2 1−𝜌(1+𝑆𝑡𝑜𝑡𝐺0(𝜑−1))

(2−𝑆𝑡𝑜𝑡𝐺0)(1−𝜌(1−𝑆𝑡𝑜𝑡𝐺0))
. 804 

Autocorrelation of the selection gradient 805 

The autocovariance of the selection gradient over τ generations is 806 

Cov[𝛽𝑡𝑜𝑡,𝑔, 𝛽𝑡𝑜𝑡,𝑔−𝜏] = 𝑆𝑡𝑜𝑡
2 (E[𝜃𝑡𝑜𝑡,𝑔𝜃𝑡𝑜𝑡,𝑔−𝜏] + E[𝑧𝑔̅𝑧𝑔̅−𝜏] − E[𝑧𝑔̅−𝜏𝜃𝑡𝑜𝑡,𝑔] − E[𝜃𝑡𝑜𝑡,𝑔−𝜏𝑧𝑔̅]).  (A7) 807 

Continuous time approach 808 

Following Lande and Shannon (1996), the dynamics can be approximated in continuous time. The 809 

continuous time approximation eases the analysis. After long enough time so that the we can 810 

neglect the initial conditions, the mean phenotype at time t is 811 

𝑧𝑡̅ = 𝑆𝑡𝑜𝑡𝐺0 ∫ 𝑒−𝑆𝑡𝑜𝑡𝐺0𝑥𝜃𝑡𝑜𝑡,𝑡−𝑥𝑑𝑥
∞

0
.         (A8) 812 

Equation (A8) is the continuous time equivalent to equation (A6) once the effect of initial 813 

conditions has been erased. From equations (A7) and (A8), the method to derive the 814 
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autocorrelation of the selection gradient is described in Chevin and Haller (2014, appendix for the 815 

autoregressive optimum). This approach cannot a priori be used in the context of the present model 816 

because the inflation factor is 1 for 𝜏 = 0 and is not defined for 0 < 𝜏 < 1. However, we found 817 

that the naïve approach to use equation (12) in the main text directly in the derivations from Chevin 818 

and Haller (2014) matches closely the exact discrete time approach that we develop in the next 819 

section. As we could not demonstrate this observation formally, we chose not to present this result 820 

in our main text. We nevertheless provide this result here as a heuristic: 821 

𝜌𝛽𝑡𝑜𝑡,𝜏 = 𝜑
𝜌⁡
𝜏𝑇−𝑆𝑡𝑜𝑡𝐺0

𝑇𝜃
𝑇
𝑒−𝑆𝑡𝑜𝑡𝐺0𝜏

1−𝑆𝑡𝑜𝑡𝐺0
𝑇𝜃
𝑇

,         (A9) 822 

where 
𝑇𝜃

𝑇
 measures the characteristic timescale of the autocorrelation of the environment in units 823 

of generation time.  824 

Discrete time approach 825 

In contrast with previous studies (Lande and Shannon 1996, Chevin and Haller 2014), we calculate 826 

the autocorrelation of the selection gradient in discrete time. Similarly to the calculation for the 827 

variance of the selection gradient, we use equation (A5) assuming that many generations occurred 828 

so that the first term can be neglected. We also use equation (12) in the main text for the 829 

autocorrelation of the effective optimum 𝜌𝜃𝑡𝑜𝑡,𝜏 = 𝜌⁡
𝜏𝑇𝜑, reminding that 𝜑 = 1 for τ = 0. The 830 

general procedure follows Chevin and Haller (2014, appendix for the autoregressive optimum) by 831 

calculating each expectation from equation (A7). Even though we kept notations concise, each 832 

sum in the expectations below can be resolved exactly. The first expectation is straightforward 833 

E[𝜃𝑡𝑜𝑡,𝑔𝜃𝑡𝑜𝑡,𝑔−𝜏] = 𝜑Var[𝜃𝑡𝑜𝑡]𝜌⁡
𝜏𝑇.         (A10) 834 

The expectation for the first cross product is 835 
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E[𝑧𝑔̅−𝜏𝜃𝑡𝑜𝑡,𝑔] = 𝑆𝑡𝑜𝑡𝐺0∑ (1− 𝑆𝑡𝑜𝑡𝐺0)
𝑖−1𝐸[𝜃𝑡𝑜𝑡,𝑔𝜃𝑡𝑜𝑡,𝑔−𝑖−𝜏]

𝑔−𝜏

𝑖=1
, taking into account the 836 

discontinuity of the inflation factor 𝐼𝑓 in 𝑖 = 𝑔 − 𝜏, it results in 837 

𝐸[𝑧𝑔̅−𝜏𝜃𝑡𝑜𝑡,𝑔] = 𝜑Var[𝜃𝑡𝑜𝑡]𝑆𝑡𝑜𝑡𝐺0∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖−1𝜌⁡

(𝜏+𝑖)𝑇𝑔−𝜏−1

𝑖=1
+ 𝑆𝑡𝑜𝑡𝐺0(1 −838 

𝑆𝑡𝑜𝑡𝐺0)
𝑔−𝜏−1Var[𝜃𝑡𝑜𝑡].         (A11) 839 

The expectation for second cross product is  840 

𝐸[𝜃𝑡𝑜𝑡,𝑔−𝜏𝑧𝑔̅] = 𝑆𝑡𝑜𝑡𝐺0∑ (1− 𝑆𝑡𝑜𝑡𝐺0)
𝑖−1𝐸⁡(𝜃𝑡𝑜𝑡,𝑔−𝑖𝜃𝑡𝑜𝑡,𝑔−𝜏)

𝑔

𝑖=1
. 841 

We need to distinguish 3 cases, i < τ, i > τ and i = τ : 842 

𝐸[𝜃𝑡𝑜𝑡,𝑔−𝜏𝑧𝑔̅] = 𝜑Var[𝜃𝑡𝑜𝑡]𝑆𝑡𝑜𝑡𝐺0 (∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖−1𝜌⁡

(𝜏−𝑖)𝑇𝜏−1

𝑖=1
+∑ (1 −

𝑔

𝑖=𝜏+1
843 

𝑆𝑡𝑜𝑡𝐺0)
𝑖−1𝜌⁡

(𝑖−𝜏)𝑇 + 𝜑−1(1 − 𝑆𝑡𝑜𝑡𝐺0)
𝜏−1).        (A12) 844 

Lastly,  845 

𝐸[𝑧𝑔̅𝑧𝑔̅−𝜏] = (𝑆𝑡𝑜𝑡𝐺0)
2∑ ∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)

𝑖+𝑘−2𝐸[𝜃𝑡𝑜𝑡,𝑔−𝑖𝜃𝑡𝑜𝑡,𝑔−𝜏−𝑘]
𝑔−𝜏
𝑘=1

𝑔
𝑖=1 . 846 

To calculate the double sum, it is convenient to perform a change of variables 847 

∑ ∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖+𝑘−2𝐸[𝜃𝑡𝑜𝑡,𝑔−𝑖𝜃𝑡𝑜𝑡,𝑔−𝜏−𝑘]

𝑔−𝜏
𝑘=1

𝑔
𝑖=1 = ∑ ∑ (1 −

𝑔
𝑗=𝜏+1

𝑔
𝑖=1848 

𝑆𝑡𝑜𝑡𝐺0)
𝑖+𝑗−𝜏−2𝐸[𝜃𝑡𝑜𝑡,𝑔−𝑖𝜃𝑡𝑜𝑡,𝑔−𝑗]. 849 

We then need to distinguish 4 cases, 850 

for i < +1, 𝐴 = 𝜑Var[𝜃𝑡𝑜𝑡] ∑ ∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖+𝑗−𝜏−2𝜌⁡

(𝑗−𝑖)𝑇𝑔
𝑗=𝜏+1

𝜏
𝑖=1 . 851 

for i >  and i = j, 𝐵 = Var[𝜃𝑡𝑜𝑡]∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
2𝑖−𝜏−2𝑔

𝑖=𝜏+1
.  852 
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for i >  and j > i, 𝐶 = ⁡𝜑Var[𝜃𝑡𝑜𝑡] ∑ ∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖+𝑗−𝜏−2𝜌⁡

(𝑗−𝑖)𝑇𝑗−1
𝑖=𝜏+1

𝑔
𝑗=𝜏+2 . 853 

for i >  and i > j, 𝐷 = ⁡𝜑Var[𝜃𝑡𝑜𝑡] ∑ ∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖+𝑗−𝜏−2𝜌⁡

(𝑖−𝑗)𝑇𝑖−1
𝑗=𝜏+1

𝑔
𝑖=𝜏+2 ,  854 

with C = D, and resulting in  855 

𝐸[𝑧𝑔̅𝑧𝑔̅−𝜏] = (𝑆𝑡𝑜𝑡𝐺0)
2(𝐴 + 𝐵 + 2𝐶).        (A13) 856 

Adding equations (A10) to (A13), finding the limit of this sum for large g, dividing by the 857 

variance of the selection gradient (eq. 16) and rearranging leads to the autocorrelation of the 858 

selection gradient 859 

𝜌𝛽𝑡𝑜𝑡,𝜏 =
𝜑𝜀𝜌⁡

𝜏𝑇+𝛾(1−𝑆𝑡𝑜𝑡⁡𝐺0)
𝜏

𝜗
,          (A14) 860 

where, 861 

𝜀 = (𝜌⁡
𝑇 − 1)2(2 − 𝑆𝑡𝑜𝑡⁡𝐺0), 862 

𝛾 =
𝑆𝑡𝑜𝑡⁡𝐺0

(1−𝑆𝑡𝑜𝑡⁡𝐺0)
(𝜌⁡
𝑇(1 − 𝜑)(𝑆𝑡𝑜𝑡⁡𝐺0)

2 − (1 − 𝜌⁡
𝑇)(1 + 𝜌⁡

𝑇(2𝜑 − 1))(1 − 𝑆𝑡𝑜𝑡⁡𝐺0)), 863 

𝜗 = 2(𝜌⁡
𝑇 − 1 + 𝑆𝑡𝑜𝑡⁡𝐺0)(𝜌⁡

𝑇 − 1 + 𝜌⁡
𝑇(𝜑 − 1)𝑆𝑡𝑜𝑡⁡𝐺0). 864 

Equation (A14) is written in a form similar to equation (A9), decomposing the effects of the 865 

autocorrelation of the environment and of the deviations of the mean phenotype to the optimum. 866 

An interpretation for equation (A14) is proposed in the main text.  867 

In the special case where there is a unique episode of selection per generation, i.e. 𝜑 = 1, equation 868 

(A14) is 869 

𝜌𝛽𝑡𝑜𝑡,𝜏 =
𝜌𝜃
𝜏𝑇−𝜅(1−𝑆𝑡𝑜𝑡⁡𝐺0)

𝜏

1−𝜅
,          (A15) 870 
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where 𝜅 =
(1+𝜌⁡

𝑇)𝑆𝑡𝑜𝑡⁡𝐺0

(1−𝜌⁡𝑇)(2−𝑆𝑡𝑜𝑡⁡𝐺0)
.  871 

Equation (A15) is very similar to equation 5b in Chevin and Haller (2014). Comparing equation 872 

(A14) and (A15) shows that the inflation factor, i.e. the autocorrelation of selection within 873 

generation, complicates the analysis by introducing new terms at the interface between the 874 

autocorrelation of the environment and the dynamics of selection within and across generations. 875 

A Taylor expansion performed on the reciprocals of equation (A15) and 5b in Chevin and Haller 876 

(2014) shows that both equations are identical to at least the second order. This result can be 877 

confirmed by representing both functions for different autocorrelation of the environment. Both 878 

functions match exactly on most of the autocorrelation range with minor deviation at very weak 879 

autocorrelation (not shown). 880 

Changes in (co)variances under selection 881 

Here we derive the changes in the variances and covariances of phenotypic components after each 882 

selection episode. Following classical quantitative genetics, we assume that the phenotype 𝑧 of 883 

any individual prior to any selection in a generation is the sum of two normally distributed 884 

components: the breeding value 𝑥 and environmental effect 𝑒. At the beginning of a generation, 885 

these phenotypic components have means 𝑥̅ and 𝑒̅ = 0, variances 𝐺 and 𝐸, and are uncorrelated, 886 

such that their covariance is 𝐶𝑥,𝑒 = 0 and the total phenotypic variance is 𝑃 = 𝐺 + 𝐸. Changes in 887 

the mean breeding value under selection are obtained from changes in mean phenotype using the 888 

regression of breeding values on phenotypes, which at the beginning of a generation has slope 889 

Cov(𝑥,𝑧)

𝑃
=

𝐺

𝐺+𝐸
= ℎ2, following the usual notation for heritability. 890 
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We consider episodes of selection caused by a Gaussian fitness peak, such that individuals with 891 

phenotype 𝑧 have fitness (𝑧) ∝ exp⁡(−
(𝑧−𝜃)2

2𝜔2
) (where we omit indices for selection episodes and 892 

generation for simplicity). It is informative to start by investigating the first selection episode in a 893 

generation, where 𝑥 and 𝑒 are independent and 𝑒̅ = 0, 𝑧̅ = 𝑥̅. The fitness function on breeding 894 

values is obtained by integrating over the distribution of environmental effects, 𝑊̃(𝑥) ∝895 

exp (−
(𝑥−𝜃)2

2(𝜔2+𝐸)
), and the fitness function on environmental effects is obtained similarly by 896 

integrating over breeding values, 𝑊𝑒(𝑒) ∝ exp⁡(−
(𝑥̅+𝑒−𝜃)2

2(𝜔2+𝐺)
). The fitness function on breeding 897 

values (respectively, on environmental effects) is thus also Gaussian, with squared width 𝜔2 + 𝑉𝑒 898 

(respectively 𝜔2 + 𝐺) and optimum 𝜃 (respectively 𝜃 − 𝑥̅). With a Gaussian fitness peak, the 899 

distribution of phenotypes, breeding values and environmental effects after selection remain 900 

Gaussian. Denoting the per-episode strength of stabilizing selection as 𝑆 =
1

𝜔2+𝑃
, the means after 901 

selection are 902 

𝑧̅∗ = 𝜃 +
𝜔2

𝜔2+𝑃
(𝑧̅ − 𝜃) = 𝜃 + (1 − 𝑆𝑃)(𝑧̅ − 𝜃) = 𝑧̅ − 𝑆𝑃(𝑧̅ − 𝜃)     (A16a) 903 

𝑥̅∗ = 𝜃 +
𝜔2+𝑉𝑒

𝜔2+𝑃
(𝑥̅ − 𝜃) = 𝜃 + (1 − 𝑆𝐺)(𝑥̅ − 𝜃) = 𝑧̅ − 𝑆𝐺(𝑧̅ − 𝜃)    (A16b) 904 

𝑒̅∗ = 𝜃 − 𝑥̅ +
𝜔2+𝐺

𝜔2+𝑃
(𝑥̅ − 𝜃) = 𝜃 − 𝑥̅ + (1 − 𝑆𝐸)(𝑥̅ − 𝜃) = −𝑆𝐸(𝑧̅ − 𝜃) ,   (A16c) 905 

where we have used the fact that 𝑒̅ = 0 and thus 𝑧̅ = 𝑥̅ prior to any selection. Note that 𝑥̅∗ − 𝑥̅ =906 

ℎ2(𝑧̅∗ − 𝑧̅) and 𝑒̅∗ − 𝑒̅ = (1 − ℎ2)(𝑧̅∗ − 𝑧̅), as required. The variances after selection are 907 

𝑃∗ = (
1

𝜔2
+
1

𝑃
)
−1

= (1 − 𝑆𝑃)𝑃         (A17a) 908 

𝐺∗ = (
1

𝜔2+𝐸
+
1

𝐺
)
−1

= (1 − 𝑆𝐺)𝐺         (A17b) 909 
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𝐸∗ = (
1

𝜔2+𝐺
+
1

𝐸
)
−1

= (1 − 𝑆𝐸)𝐸,         (A17c) 910 

which satisfy the relationships 𝐺∗ − 𝐺 = ℎ4(𝑃∗ − 𝑃) and 𝐸∗ − 𝐸 = (1 − ℎ2)2(𝑃∗ − 𝑃). The 911 

phenotypic variance after selection must also satisfy 912 

𝑃∗ = 𝐺∗ + 𝐸∗ + 2⁡𝐶𝑥,𝑒
∗           (A18) 913 

so the covariance of breeding values and environmental effects after selection is 914 

⁡𝐶𝑥,𝑒
∗ =

𝑃∗−𝐺∗−𝐸∗

2
.           (A19) 915 

Using 𝑃 = 𝐺 + 𝐸 this yields  916 

⁡𝐶𝑥,𝑒
∗ =

(1−𝑆𝑃)𝑃−(1−𝑆𝐺)𝐺−(1−𝑆𝐸)𝐸

2
= −𝑆

𝑃2−𝐺2−𝐸2

2
= −𝑆𝐺𝐸,      (A20) 917 

which satisfies 𝐶𝑥,𝑒
∗ = 𝐶𝑥,𝑒

∗ − 𝐶𝑥,𝑒 = ℎ
2(1 − ℎ2)(𝑃∗ − 𝑃).⁡  918 

These formulas apply to the first selection episode, but in further episodes the change in the mean 919 

breeding value and environmental effects also depend on their covariance. More general formulas 920 

for change at any selection episode can be derived through a multivariate approach. Let us denote 921 

the vector of breeding values and environmental effects as 𝐲 = (𝑥, 𝑒)T (where superscript T 922 

denotes a transposition), with mean 𝐲̅ and covariance matrix 𝐘. Substituting 𝑥 + 𝑒 for 𝑧 in the 923 

fitness function 𝑊(𝑧), and integrating over the joint distribution of 𝑥 and 𝑒, the mean fitness is  924 

𝑊̅ ∝ exp⁡(−
𝑆𝐶⁡(𝑥̅+𝑒̅−𝜃)

2

2
)          (A21) 925 

𝑆𝐶 =
1

𝜔2+𝐺+𝐸+2𝐶𝑥,𝑒
           (A22) 926 
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Then using standard results from evolutionary quantitative genetics (Lande 1979, 1980, Lande and 927 

Arnold 1983 ) and properties of the Gaussian function, the change in the vector of mean breeding 928 

values and environmental effects under selection within a generation is  929 

∆∗𝐲̅ = ⁡𝐘𝜕𝐲̅ln𝑊̅           (A23) 930 

where 𝜕𝐲̅⁡is the vector of partial derivatives with respect to each element of 𝐲̅, yielding 931 

∆∗𝑥̅ = −𝑆𝐶(𝑥̅ + 𝑒̅ − 𝜃)(𝐺 + 𝐶𝑥,𝑒)         (A24a) 932 

∆∗𝑒̅ = −𝑆𝐶(𝑥̅ + 𝑒̅ − 𝜃)(𝐸 + 𝐶𝑥,𝑒)         (A24b) 933 

∆∗𝑧̅ = ∆∗𝑥̅ + ∆∗𝑒̅ = −𝑆𝐶(𝑥̅ + 𝑒̅ − 𝜃)(𝐺 + 𝐸 + 2𝐶𝑥,𝑒)      (A24c) 934 

When 𝑒̅ = 𝐶𝑥,𝑒 = 0, these simplify to ∆∗𝑥̅ = −𝑆𝐺(𝑥̅ − 𝜃) and ∆∗𝑒̅ = −𝑆𝐸(𝑥̅ − 𝜃), consistent 935 

with the formulas above for the first episode of selection. The recursion for the covariance matrix 936 

is 937 

∆∗𝐘 = ⁡𝐘(𝜕𝐲̅
2ln𝑊̅)𝐘          (A25) 938 

where 𝜕𝐲̅
2⁡is the Hessian matrix of second partial derivatives with respect to each element of 𝐲̅, 939 

yielding 940 

∆∗𝐺 = −𝑆𝐶(𝐺 + 𝐶𝑥,𝑒)
2          (A26) 941 

∆∗𝐸 = −𝑆𝐶(𝐸 + 𝐶𝑥,𝑒)
2          (A27) 942 

∆∗𝐶𝑥,𝑒 = −𝑆𝐶(𝐺 + 𝐶𝑥,𝑒)(𝐸 + 𝐶𝑥,𝑒)         (A28) 943 

When 𝑒̅ = 𝐶𝑥,𝑒 = 0, these simplify to ∆∗𝐺 = −𝑆𝐺2, ∆∗𝐸 = −𝑆𝐸2,  and 𝐶𝑥,𝑒 = −𝑆𝐺𝐸, again 944 

consistent with the formulas above for the first episode of selection.  945 
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In the general case where 𝑒̅ and 𝐶𝑥,𝑒 are non-zero, as is expected if the population has previously 946 

undergone any episode of selection in the ongoing generation, then the relationship between 947 

phenotypic change and change in breeding values cannot be inferred directly from current 948 

components of phenotypic variance. Indeed we have 949 

∆∗𝑥̅

∆∗𝑧̅
=

𝐺+𝐶𝑥,𝑒

𝐺+𝐸+2𝐶𝑥,𝑒
=
Cov(𝑥,𝑥+𝑒)

Var(𝑥+𝑒)
         (A29) 950 

which is still a regression slope of breeding values on phenotypes, but this no longer translates into 951 

a ratio of additive genetic variance on phenotypic variance, because of the covariance between 952 

breeding values and environmental values. However, it can be shown that this ratio always equals 953 

the ratio 
𝐺

𝐺+𝐸
= ℎ2 at the beginning of a generation. 954 
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