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ABSTRACT 13 

Most natural environments vary stochastically and are temporally autocorrelated. Previous theory 14 

investigating the effects of environmental autocorrelation on evolution mostly assumed that total 15 

fitness resulted from a single selection episode. Yet organisms are likely to experience selection 16 

repeatedly along their life, in response to possibly different environmental states. We model the 17 

evolution of a quantitative trait in organisms with non-overlapping generations undergoing several 18 

episodes of selection in a randomly fluctuating and autocorrelated environment. We show that the 19 

evolutionary dynamics depends not directly on fluctuations of the environment, but instead on 20 

those of an effective phenotypic optimum that integrates the effects of all selection episodes within 21 
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each generation. The variance and autocorrelation of the integrated optimum shape the variance 22 

and predictability of selection, with substantial qualitative and quantitative deviations from 23 

previous predictions considering a single selection episode per generation. We also investigate the 24 

consequence of multiple selection episodes per generation on population load. In particular, we 25 

identify a new load resulting from within-generation fluctuating selection, generating the death of 26 

individuals without significance for the evolutionary dynamics. Our study emphasizes how taking 27 

into account fluctuating selection within lifetime unravels new properties of evolutionary 28 

dynamics, with crucial implications notably with respect to responses to global changes. 29 

  30 
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INTRODUCTION 31 

The study of adaptation to changing environments has received renewed attention in the context 32 

of current global changes induced by anthropogenic activities. Many theoretical studies on 33 

adaptation to changing environments have focused on cases where environmental change follows 34 

a deterministic trend (Lynch et al. 1991, Lynch and Lande 1993, Gomulkiewicz and Houle 2009, 35 

Cotto and Ronce 2014), motivated by major tendencies such as climate warming. Yet, most 36 

variation on short timescales results from stochastic fluctuations, and climatic time series generally 37 

include stochastic variations around their main trends (Stocker et al. 2013). The variance and 38 

autocorrelation of these fluctuations need to be modeled to accurately predict the impact of climate 39 

warming on biosystems (e.g. Katz 1996, Rowell 2005). Global climatic dynamics have recently 40 

been suggested to affect local selection pressures (Siepielski et al. 2017), and time series of 41 

climatic variables are generally autocorrelated in time, notably as a result of thermic inertia 42 

(Hasselmann 1976, Rowell 2005). As most climatic (and other ecologically relevant) 43 

environmental variables are autocorrelated in time (Vasseur and Yodzis 2004), environmental 44 

selective pressures are likely to also be temporally autocorrelated, an aspect that is often neglected 45 

in models of adaptation that do include stochasticity in the environment (e.g. Lynch and Lande 46 

1993, Engen et al. 2011, Engen et al. 2012).  47 

Theoretical models of adaptation to stochastically changing environments often assume 48 

that the fitness of an individual depends on the match between its phenotype and an optimum 49 

phenotype influenced by the environment (so-called “moving optimum” models, reviewed by 50 

Kopp and Matuszewski 2014). When the environment undergoes stationary stochastic 51 

fluctuations, the effect of evolutionary responses on long-term fitness and expected population 52 

growth depends on the variance and autocorrelation of changes in the optimum phenotype 53 
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(Charlesworth 1993, Lande and Shannon 1996, Chevin et al. 2017). If the stochastic fluctuations 54 

of the optimum are not autocorrelated, then responses to selection in a given generation might 55 

increase maladaptation in the next, with detrimental consequences for population growth (Lande 56 

and Shannon 1996). In contrast, temporal autocorrelation of the optimum makes the environment 57 

more predictable, such that the evolutionary response in a given generation is more likely to be 58 

beneficial in the next, and that any factor improving the response to selection leads to a higher 59 

expected long-term growth rate of the population (Lande and Shannon 1996, Chevin 2013). The 60 

autocorrelation of the optimum also affects the variance and overall shape of the probability 61 

distribution of population size of an evolving population, with consequences for extinction risk 62 

(Chevin et al. 2017). Lastly, temporal autocorrelation of the environment is a major driver of the 63 

evolution of plasticity, with higher reaction norm slopes evolving under more predictable 64 

(autocorrelated) environments of selection (Gavrilets and Scheiner 1993, Lande 2009, Chevin et 65 

al. 2015). 66 

On the empirical side, a number of studies undertook to determine the temporal 67 

characteristics of selection in natural populations. Temporal variation in selection is observed in 68 

classic long-term surveys, like beak shape in Darwin’s finches (Grant and Grant 2002), banding 69 

patterns in Cepea snails (Cain et al. 1990) or spine number in threespined sticklebacks (Reimchen 70 

and Nosil 2002, reviewed in Bell 2010). Consistent with these observations, studies analyzing 71 

several datasets with long-term selection estimates using a common framework also found that 72 

selection varies in strength and direction (Kingsolver and Diamond 2011, Siepielski et al. 2011, 73 

but see Morrissey and Hadfield 2012). Further, the development of a statistical framework that 74 

models temporal fluctuations in phenotypic selection as a random process, characterized by the 75 

variance and autocorrelation of an optimum phenotype, allowed to show that the optimum laying 76 
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date in a population of Great tits undergoes autocorrelated temporal fluctuations (Chevin et al. 77 

2015, Gamelon et al. 2018). This framework rests on a model of a Gaussian fitness peak, as in 78 

many theoretical studies (Kopp and Matuszewski 2014), so that the estimated parameters should 79 

have a direct theoretical interpretation.  80 

However, the comparison of empirical measures of fluctuating selection with theoretical 81 

results on adaptation to autocorrelated environment is an arduous task, because the definitions of 82 

fitness and selection may not be easily transposed from one to the other. Even regardless of 83 

theoretical considerations about the definition of long-term expected fitness in a stochastic 84 

environment, understanding how variation in selection integrates within lifetime is not 85 

straightforward. Most theoretical studies that included autocorrelation in the environment 86 

neglected the dynamics of selection within generations, by assuming (often implicitly) that 87 

selection occurs instantaneously, in discrete non-overlapping generations. In other word, lifetime 88 

fitness is assumed to result from a single instantaneous episode of selection; or at least, the 89 

unfolding of selection within lifetime is not modeled explicitly, making it ambiguous whether the 90 

per-generation optimum represents instantaneous or repeated selection. More realistically, 91 

selection occurs in several episodes along a generation (Lande 1982, Arnold and Wade 1984b). In 92 

fact, the vast majority of long-term estimates of selection gradients focused on a single fitness 93 

component (~ 98% among 2819 selection estimates in Kingsolver and Diamond 2011), and 94 

therefore correspond to a single episode of selection, among several possible others in a generation 95 

or lifetime. This has several related consequences for the interpretation of measurements of 96 

selection. First, the strength of selection over a single episode cannot necessarily be compared to 97 

predictions based on overall selection per generation, because this selection episode needs to be 98 

weighted by its contribution to the lifetime (or per-generation / per-unit-time) fitness. Second, both 99 
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the magnitude and predictability of temporal variation in selection is probably not well captured 100 

by treating each selection episode in isolation. The reason is that in organisms that undergo 101 

multiple selection episodes, environmental variability gets integrated over lifetime. This has 102 

important consequences, notably regarding the contribution of extreme events to selection, a topic 103 

of recent interest (Grant et al. 2017, Marrot et al. 2017). 104 

The study of demography has long questioned the relationship between variation in vital 105 

rates that contribute to elements of the transition matrix (e.g. fecundities, survival rates) and 106 

various measures of the population growth rate (Tuljapurkar et al. 2003, Morris et al. 2004, Saether 107 

et al. 2013). This theory has been used to analyse fluctuating selection in stochastic environments 108 

that are not autocorrelated (Engen et al. 2012, 2014). However, how stochastic autocorrelated 109 

fluctuating selection mediated by different fitness components integrates over lifetime is an under-110 

investigated topic, limiting our understanding of adaptation to randomly changing environments. 111 

Making progress on this question requires extending previous approaches that integrate the 112 

multiplicity of selection episodes along life. Of particular note is the approach by Arnold and Wade 113 

(1984b, 1984a), who proposed and applied a decomposition of lifetime selection into a series of 114 

selection episodes with multiplicative effects on fitness, resulting in selection gradients (dependent 115 

on log-fitness) that sum along a generation (see also McGlothlin 2010). Integrating the effect of 116 

successive selection episodes on lifetime fitness is appropriate to organisms with non-overlapping 117 

generations (Arnold and Wade 1984a), but has not been used to investigate the effect of 118 

environmental stochasticity. 119 

We here build a model of a phenotypic trait exposed to multiple selection episodes, in non-120 

overlapping generations. We assume that the phenotype of an individual at the focal trait does not 121 

change between selection episodes. This could correspond for example to a morphological trait 122 
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that only influences selection after it is fully developed, or a coloration trait that affects survival 123 

probability (due to e.g. predation, or thermoregulation) prior to reproduction. Under these 124 

assumptions, we detail and clarify how the temporal structure of selection during lifetime 125 

influences the predictability of lifetime viability selection, and the load caused by maladaptation 126 

in a stochastic environment. Our model applies directly to organisms that are semelparous with 127 

non-overlapping generations, including univoltine insects such as cicadas, and species with 128 

economic or cultural significance such as salmons or bamboos. Our analysis further applies to 129 

cohort analysis (see discussion) when considering more general life histories with overlapping 130 

generations. As such, our study provides a necessary step toward a complete understanding of how 131 

life history affects evolutionary dynamics in the context of autocorrelated fluctuating selection. 132 

Overall, we find that the way selection operates during a lifetime strongly determines the impact 133 

of environmental fluctuations on variation in selection across generations, and the incurred 134 

maladaptation load in a stochastic environment. 135 

MODEL  136 

Selection model 137 

We investigate the evolution of a single quantitative trait z in an organism with non-overlapping 138 

generations. Along their life cycle, individuals undergo several selection episodes that determine 139 

their probability to survive between stages before reproduction, with the latter occurring only at 140 

the end of each generation. We further assume that there is no selection on fecundity, which we 141 

denote B. For simplicity, we focused on a single trait, but our framework can be readily extended 142 

to the multivariate case, with different (correlated) traits undergoing selection at different stages 143 

(Arnold and Wade 1984b, Arnold and Wade 1984a, Cotto and Ronce 2014). 144 
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We further assume that the phenotype z at the beginning of a generation can be decomposed 145 

as z = x + e, where x is the additive genetic value and e is a residual component of variation 146 

independent of the additive genetic value, and with normal distribution of mean 0 and variance E 147 

(Falconer and Mackay 1996). We assume that many loci contribute to the additive genetic value, 148 

such that x is normally distributed with mean 𝑥̅ and variance G. Under these assumptions, z is also 149 

normally distributed with mean 𝑧̅ and variance P = G + E.  150 

The survival probability of an individual with phenotype z at age i in generation g depends 151 

on the match between its phenotype z and an optimum phenotype 𝜃𝑔,𝑖 that changes with the 152 

environment, 153 

𝑊𝑖,𝑔(𝑧) = 𝑊𝑚𝑎𝑥,𝑖exp⁡(−
(𝑧−𝜃𝑖,𝑔)

2

2𝜔𝑖,𝑔
2 ).        (1) 154 

where 𝑊𝑚𝑎𝑥,𝑖 is the maximum survival rate at age i and 𝜔𝑖 measures the width of the Gaussian 155 

survival function (inversely related to the strength of selection). We assume that selection occurs 156 

through all transitions preceding reproduction, so that the components of fitness are multiplicative 157 

(Arnold and Wade 1984a). If reproduction could occur at several stages, then the components of 158 

fitness would no longer be multiplicative, and another framework (e.g. overlapping generations, 159 

Charlesworth 1994) should be used. The total absolute fitness of an individual with phenotype z is 160 

then (where the subscript g has been dropped for simplicity) 161 

𝑊(𝑧) = 𝐵∏ 𝑊𝑖(𝑧)
𝑛
𝑖=1          (2) 162 

Under the assumption that selection is Gaussian at each episode (eq. 1), the total fitness function 163 

is also Gaussian,  164 

𝑊(𝑧) = 𝑊𝑚𝑎𝑥,𝑡𝑜𝑡 exp (−
(𝑧−𝜃𝑡𝑜𝑡)

2

2𝜔𝑡𝑜𝑡
2 ),         (3) 165 
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where, 𝜔𝑡𝑜𝑡
2 = (∑ 1/𝜔𝑖

2
𝑖 )−1 is the total strength of selection (that is the harmonic mean of the 166 

width of the selection function at each selection episode), 𝜃𝑡𝑜𝑡 = ∑ 𝑒𝑖𝑖 𝜃𝑖 is the per-generation 167 

effective optimum corresponding to the sum of the phenotypic optima at each selection episode, 168 

weighted by the contribution of these episodes to the total strength of selection. We denote this 169 

contribution as 𝑒𝑖 =
𝜔𝑡𝑜𝑡
2

𝜔𝑖
2 , by reference to elasticities in stage-structured population models 170 

(Caswell 2001). The maximum absolute fitness over a generation is 171 

 𝑊𝑚𝑎𝑥,𝑡𝑜𝑡 = 𝐵 exp(−
1

2𝜔𝑡𝑜𝑡
2 (∑ 𝑒𝑖𝑖 𝜃𝑖

2 − (∑ 𝑒𝑖𝑖 𝜃𝑖)
2))∏ 𝑊𝑚𝑎𝑥,𝑖𝑖 .    (4) 172 

With the further assumption that the strength of selection (here measured as a width of the fitness 173 

function) is the same at all selection episodes, we have 𝜔𝑖 = 𝜔 and 𝑒𝑖 = 1 𝑛⁄ , so the equations 174 

above further simplify as 175 

𝜔𝑡𝑜𝑡
2 =⁡𝜔2/𝑛           (5) 176 

𝜃𝑡𝑜𝑡 =
1

𝑛
∑ 𝜃𝑘𝑘 = Ê[𝜃]         (6) 177 

𝑊𝑚𝑎𝑥,𝑡𝑜𝑡 = 𝐵 exp (−
𝑛⁡V̂[𝜃]

2𝜔2
)∏ 𝑊𝑚𝑎𝑥,𝑖𝑖 ,        (7) 178 

where Ê[𝜃] and⁡V̂[𝜃] are the “sample” expectation and variance (respectively) of θ within a 179 

generation. 180 

The change in the mean phenotype over an entire generation, after reproduction, is (Lande 181 

1976) 182 

∆𝑧̅ = ℎ0
2(𝑧𝑛̅ − 𝑧0̅) = 𝐺0

𝜕 ln 𝑊̅(𝑧)

𝜕𝑧̅
,        (8) 183 

where 𝑧𝑛̅ is the mean phenotype after the last episode of selection, and additive genetic variance 184 

𝐺0 and heritability ℎ0
2 = 𝐺0/𝑃0 are measured at the beginning of a generation, prior to any 185 

selection. Indeed, each selection event can generate a covariance between P and E that needs to be 186 
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accounted for if dealing with selection episode by episode (as in Arnold and Wade 1984a), 187 

resulting in complications (see Supp. Mat.) that can be overcome by focusing on the effect on total 188 

selection on the phenotype distribution prior to any selection. With Gaussian stabilizing selection 189 

(eq. 1) and a normally distributed trait, the mean fitness in the population is  190 

𝑊̅(𝑧̅) = ∫ 𝑝(𝑧)𝑊(𝑧)𝑑𝑧 =𝑊𝑚𝑎𝑥,𝑡𝑜𝑡√𝑆𝑡𝑜𝑡𝜔𝑡𝑜𝑡
2 exp (−

(𝑧̅−𝜃𝑡𝑜𝑡)
2

2(𝜔𝑡𝑜𝑡
2 +𝑃0)

),    (9) 191 

where 𝑆𝑡𝑜𝑡 =
1

𝑃0+𝜔𝑡𝑜𝑡
2 .  From equation 8, it follows that the per-generation change in the mean trait 192 

value in the population is 193 

 ∆𝑧̅ = −𝐺0𝑆𝑡𝑜𝑡(𝑧̅ − 𝜃𝑡𝑜𝑡) = −𝐺0𝛽𝑡𝑜𝑡,        (10) 194 

where 𝛽𝑡𝑜𝑡 is the total selection gradient, and which has a similar form as in models with a single 195 

selection episode (e.g. Lande 1976).  196 

Fluctuations of the environment and timing of selection 197 

We are interested in cases where the optimum phenotype fluctuates because of random fluctuations 198 

in the environment, i.e. fluctuations of the optimum phenotype represent those of the environment. 199 

For simplicity, we assume that the optimum phenotypes at all selection events in a life cycle 200 

respond to the same environmental variable, so that fluctuations in the optimum during a lifetime 201 

can be modeled as a temporal sampling of the same stochastic process. We consider the case where 202 

the optimum follows a first-order autoregressive process with mean 0 (without loss of generality), 203 

defined by 204 

𝜃𝑡+1 = 𝜌⁡𝜃𝑡 + 𝜎𝜃√1 − 𝜌⁡2𝜁𝑡          (11) 205 

where 𝜌⁡ is the autocorrelation of the optimum over one (absolute; e.g. one year) time unit (which 206 

we assume is positive), 𝜎𝜃
2⁡its stationary stochastic variance, and 𝜁𝑡 a standard normal random 207 

deviate. For such a process, the autocorrelation of the optimum over k units of time is 𝜌⁡
𝑘 =208 
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exp(−𝑘/𝑇𝜃⁡), where 𝑇⁡𝜃 = −1/ln(𝜌⁡) is the characteristic timescale of the autocorrelation of the 209 

optimum. Note that the autoregressive process converges to white noise when 𝜌⁡ tends to 0, i.e. 210 

when the optimum phenotype is correlated over an infinitesimally small timescale.  211 

We assume that n episodes of selection occur before reproduction. These selection episodes 212 

all take place over a time-window that spans a fraction α of generation time T. The time-window 213 

for selection remains unchanged across generations. This models the fact that all traits in an 214 

organism need not be exposed to selection throughout life. Instead, it is more likely that there is a 215 

time-window within a generation during which a given trait may be sensitive to the environment 216 

and exposed to selection (e.g. during the first stages). When exactly the time-window of selection 217 

occurs within a generation (e.g. at the beginning or at the end) has no effect for the remaining of 218 

the analysis. Under our assumption of non-overlapping generations, only the duration of this 219 

window matters. For simplicity, we assume that the episodes of selection are evenly spaced along 220 

the time-window for selection, so that they occur every αT/n units of time. Using the index g for 221 

the number of generations, we denote as 𝑧𝑔̅,0 the mean trait value before the first episode of 222 

selection of generation g. The timescale of life history relative to that of the environment is 223 

represented in figure 1.  224 

RESULTS 225 

Predictability of selection 226 

The predictability of selection can be defined in several ways. For our purpose, we will focus on 227 

the autocorrelation of the effective optimum per generation, and that of the total selection gradient, 228 

because these relate to measurable quantities (Lande and Arnold 1983, Chevin et al. 2015, 229 

Gamelon et al. 2019) known to affect adaptation and population dynamics in a stochastic 230 

environment (Lande and Shannon 1996, Chevin 2013, Chevin et al. 2017). We first calculate the 231 
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autocorrelation of 𝜃𝑡𝑜𝑡, before investigating the properties of the fluctuations in the selection 232 

gradient 𝛽𝑡𝑜𝑡, which despite being less directly connected to theoretical predictions, are closer to 233 

what is commonly estimated empirically (Lande and Arnold 1983).  234 

Autocorrelation of the effective optimum.  235 

The autocorrelation of the effective optimum at a lag of one generation is (see also Supp. Mat.) 236 

𝜌𝜃𝑡𝑜𝑡 = 𝜌⁡
𝑇
∑ 𝑒𝑘

2𝑛
𝑘=1 +∑ ∑ 𝑒𝑖𝑒𝑗𝜌⁡

(𝑗−𝑖)𝛼𝑇 𝑛⁄ (1+𝜌⁡
2(𝑖−𝑗)𝛼𝑇 𝑛⁄ )𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1

∑ 𝑒𝑘
2+2∑ ∑ 𝑒𝑖𝑒𝑗𝜌⁡

(𝑗−𝑖)𝛼𝑇 𝑛⁄𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1

𝑛
𝑘=1

= 𝜌⁡
𝑇𝜑,    (12) 237 

where 𝜌⁡
𝑇 ⁡is the autocorrelation of the optimum over a generation time, and its autocorrelation 238 

between two consecutive selection episodes is 𝜌⁡
𝛼𝑇/𝑛 (which differs from⁡the autocorrelation 𝜌⁡ 239 

per time-unit). In the following we detail the inflating factor φ corresponding to the complex 240 

fraction that appears in the first equality in equation (12). The first sum in the numerator results 241 

from the covariance between the optimum in a given episode of selection and the same episode in 242 

the next generation. The second sum results from the covariances of the optimum between two 243 

different selection episodes in two consecutive generations. The denominator has a similar 244 

structure, and results from similar effects (variance per episode vs covariance across episodes) 245 

within a generation, contributing to the variance of the effective optimum (see Supp. Mat.). It can 246 

be shown (by noting that 0 < 𝜌⁡
(𝑗−𝑖)𝛼𝑇 𝑛⁄ ≤ 1, so that 𝜌⁡

−(𝑗−𝑖)𝛼𝑇 𝑛⁄ > 1) that the ratio in equation 247 

(12) is always larger than 1, and is thus an inflating factor, which always increases the 248 

autocorrelation of the effective optimum relative to the autocorrelation of the environment, as a 249 

results of the averaging of selection between episodes within generations. Remarkably, this result 250 

extends to the autocorrelation over 𝜏 > 1 generations when the autocorrelation of the environment 251 

decreases exponentially with time, as occurs under a Markovian process such as our first-order 252 
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autoregressive process.  We thus have for the autocorrelation of the effective optimum over 𝜏 ≥ 1 253 

generations 254 

𝜌𝜃𝑡𝑜𝑡,𝜏 = 𝜌⁡
𝜏𝑇𝜑.           (13) 255 

Equation (13) shows that, once the inflation factor has been accounted for, the autocorrelation of 256 

𝜃𝑡𝑜𝑡 declines exponentially at the same rate as the autocorrelation of θ (fig. 2A). In principle, then, 257 

information on the autocorrelation of the effective optimum between two generations allows to 258 

determine its autocorrelation over many generations, providing that the autocorrelation of the 259 

environment (here also corresponding to the autocorrelation of θ) driving selection is known.  260 

More insights arise from the simpler case where the strength of selection is the same at all 261 

selection episodes (eq. 5-6), wherein 𝜑 simplifies to  262 

𝜑 =
𝜓+𝜓⁡

−1−2

2(𝜓−1)+𝑛(𝜓⁡
−
1
𝑛−𝜓⁡

1
𝑛)

 ,         (14) 263 

where 𝜓 = 𝜌⁡
𝛼𝑇 is the autocorrelation of θ over the time window for selection. Equation (14) shows 264 

that when variance in the strength of stabilizing selection within generation can be neglected, then 265 

the inflation factor does not depend on the strength of selection, but only on environmental 266 

autocorrelation 𝜓 over the time window for selection, and on the number of selection episodes. 267 

The inflation factor φ increases when the autocorrelation of the environment decreases (fig. 2B, 268 

C), and when the number of selection episode increases (fig. 2B). In other words, weakly 269 

autocorrelated environments can actually correspond to much larger autocorrelations of variables 270 

relevant to selection. For example, when there are many episodes of selection per generation and 271 

the autocorrelation of the environment is 0.2, the autocorrelation of 𝜃𝑡𝑜𝑡 can be increased by more 272 

than 50% as compared to the autocorrelation of θ (fig. 2B). When the number of episodes of 273 

selection is large, φ converges to 274 
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𝜑
𝑛→∞
→   

(1−𝜓⁡)2

2𝜓(𝜓−ln𝜓−1)
,          (15) 275 

which only depends on environmental autocorrelation 𝜓 over the time window for selection. We 276 

found that equation (15) provides a good approximation for equation (13) as soon as there are more 277 

than a few episodes of selection per generation, and even if the actual strength of selection varies 278 

across episodes (fig. 2B). Interestingly, equation (15) does not depend on the strength of selection 279 

at each episode, and proposes a simple transformation between the autocorrelation of the 280 

environment and the autocorrelation of the effective optimum over a generation time. Substituting 281 

equation (15) into equation (13) thus provides, in principle, a simple way to estimate the 282 

autocorrelation of the effective optimum in natural populations from a measure of the 283 

autocorrelation of the environment, over the duration of selection within a generation on one hand 284 

(to compute the inflation factor), and across generations on the other hand. The longer the organism 285 

is sensitive to selection within a generation, the larger the inflation factor (fig. 2C). Lastly, when 286 

the environment is not autocorrelated, the effective optimum is not autocorrelated either, showing 287 

that within-generation selection alone does not generate autocorrelation of the effective optimum.  288 

 289 

 290 

Fluctuations in directional selection.  291 

Variance of the selection gradient  292 

Ultimately, evolutionary change in the mean phenotype in response to selection is directly related 293 

to the total per-generation selection gradient 𝛽𝑡𝑜𝑡 (eq. 10). At stationarity after many generations, 294 

we find that the variance of the selection gradient is approximately (see Supp. Mat.) 295 

Var[𝛽𝑡𝑜𝑡] ≈ 2⁡Var[𝜃𝑡𝑜𝑡]𝑆𝑡𝑜𝑡
2

1−𝜌⁡
𝑇(1+𝑆𝑡𝑜𝑡𝐺0(𝐼𝑓−1))

(2−𝑆𝑡𝑜𝑡𝐺0)(1−𝜌⁡𝑇(1−𝑆𝑡𝑜𝑡𝐺0))
.      (16) 296 
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The variance of the selection gradient increases with the variance of fluctuations in the effective 297 

optimum (and of the environment, see Supp. Mat.) and with the total strength of selection (eq. 16 298 

and fig. 3). Equation (16) further shows that the variance of the selection gradient decreases when 299 

the inflation factor increases. Correspondingly, Var[𝛽𝑡𝑜𝑡] decreases with α (because the inflation 300 

factor increases with α, fig. 2C) and with the number of selection episodes (fig. 2B and 3A). In 301 

other words, recurrent selection along a generation tends to decrease the variance of the selection 302 

gradient, as expected since environmental variation is averaged among selection episodes.  303 

Less expected is the effect of environmental autocorrelation. We find that with several selection 304 

episodes per generation, the variance of the selection gradient depends non-monotonically on the 305 

autocorrelation of the environment, with a maximum when the environment is moderately 306 

autocorrelated (fig. 3B). This result contrasts with the case with a single selection episode per 307 

generation, where the variance in the selection gradient decreases with increasing autocorrelation 308 

of the environment, as a result of better adaptive tracking of the optimum (Lande and Shannon 309 

1996, Chevin and Haller 2014). This difference arises because, with several episodes of selection, 310 

positive autocorrelation in the environment not only produces autocorrelation of the total optimum 311 

𝜃𝑡𝑜𝑡 across generations, but also increases the variance of 𝜃𝑡𝑜𝑡 (see eq. A1 and fig. A1 in Supp. 312 

Mat.), with antagonistic effects on adaptive tracking by genetic evolution, and hence on the 313 

variance of the total selection gradient across generations (Lande and Shannon 1996, Chevin and 314 

Haller 2014).  315 

We also investigated the influence of variable selection strength, by comparing the variance of the 316 

selection gradient obtained for a fixed strength of selection per episode (eq. 5-6) with the case 317 

where the strength of selection is drawn randomly at each episode from a distribution with the 318 

same expected total selection Stot (details in fig. 2 caption). We found that when there are only few 319 
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episodes of selection per generation, variance in total selection per generation increases the 320 

variance of the selection gradient relative to what is expected in the deterministic case. However, 321 

with many selection episodes per generation, the variance in total selection decreases, resulting in 322 

a good fit between the simulations and the deterministic expectation (fig. 3, compare crosses with 323 

dashed lines and circles). The effect of random selection per generation increases when selection 324 

is strong (fig. 3). Lastly, we compared predictions from equation (16) calculated from a discrete 325 

generation model to previous results using a continuous time approximation (Lande and Shannon 326 

1996 eq. 7 and table 1, and Chevin and Haller 2014 eq. 5a). The continuous time approximation 327 

provides more compact equations but tends to underestimate the variance of the selection gradient 328 

when selection increases (fig. 3, compare dashed and continuous lines).  329 

  330 

 331 

Autocorrelation of the selection gradient 332 

For the autocorrelation function of the total selection gradient across generations, we start by 333 

analyzing its expression in the case of a single selection episode per generation (i.e. when φ  = 1). 334 

We obtain (see Supp. Mat.) for selection gradients 𝜏 generations apart 335 

𝜌𝛽𝑡𝑜𝑡,𝜏|𝑛=1 =
𝜌⁡
𝜏𝑇−𝜅(1−𝑆𝑡𝑜𝑡⁡𝐺0)

𝜏

1−𝜅
,         (17) 336 

where 𝜅 ≈ 𝑆𝑡𝑜𝑡⁡𝐺0
(1+𝜌⁡

𝑇)

2(1−𝜌⁡𝑇)
 (see eq. A15). Equation (17) is similar in form to an expression obtained 337 

previously using a continuous-time approximation (eq. 5a in Chevin and Haller 2014), and leads 338 

to similar conclusions. The autocorrelation of the selection gradient with one selection episode is 339 

a linear combination of two exponentially decreasing functions, corresponding on the one hand to 340 

the autocorrelation of the environment (first term in numerator), and to evolutionary responses to 341 
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deviations from the optimum (second term in the numerator) on the other hand. Consistent with 342 

the result of Chevin and Haller (2014), we find that for large autocorrelation in the environment, 343 

equation (17) converges to (1 − 𝑆𝑡𝑜𝑡⁡𝐺0)
𝜏, demonstrating that inertia in responses to selection sets 344 

an upper limit to the autocorrelation of the selection gradient.  345 

In the general case where selection can occur in several episodes within a generation, we 346 

find a more complex expression for the autocorrelation of the selection gradient, which can 347 

nevertheless still be written in the form 348 

𝜌𝛽𝑡𝑜𝑡,𝜏 =
𝜑𝜀𝜌⁡

𝜏𝑇+𝛾(1−𝑆𝑡𝑜𝑡⁡𝐺0)
𝜏

𝜗
 ,         (18) 349 

where the detailed expressions of ε, γ and ϑ depend on the per-generation evolutionary potential 350 

𝑆𝑡𝑜𝑡⁡𝐺0, the autocorrelation of the environment over a generation 𝜌⁡
𝑇, and γ and ϑ depend 351 

additionally on the inflation factor φ. The details of these terms can be found in the calculations 352 

provided in supplementary material (eq. A14). Equations (17) and (18) provide general 353 

expressions for the autocorrelation of the selection gradient with discrete generations and multiple 354 

selection episodes, extending previous results that used a continuous-time approximation with a 355 

single episode (Chevin and Haller 2014).  356 

Comparing equations (17) and (18) highlights that with multiple selection episodes, the 357 

autocorrelation of the environment 𝜌⁡
⁡⁡and the rate of response to selection 𝑆𝑡𝑜𝑡⁡𝐺0 do not have in 358 

general an additive influence on the autocorrelation of selection gradients across generations, 359 

because the factor φ multiplying the former depends on the latter, and reciprocally for γ. This 360 

occurs because with multiple episodes of selection, the relevant autocorrelation is that of the 361 

effective optimum, which integrates the effect of selection across and within generations. The 362 

autocorrelation of the selection gradient increases most with the number of selection episodes 363 

when the autocorrelation of the environment is low (fig. 4A), consistent with what we found for 364 
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the inflation factor (fig. 2B and eq. 18).  We also find that for a given number of selection episodes 365 

per generation, the autocorrelation of the selection gradient slightly decreases when the total 366 

strength of selection  increases (fig. 4B).  367 

Over time intervals longer than a generation, the autocorrelation function of selection 368 

gradients for a single selection episode (eq. 17) and for multiple episodes (eq. 18) have a similar 369 

shape (fig. 5), because they depend on the autocorrelation of the environment and of the effective 370 

optimum (respectively), which have the same exponential rate of decrease (fig. 2A). Importantly 371 

however, the autocorrelation of 𝛽𝑡𝑜𝑡  in the first few generations - where the effect of multiple 372 

episodes is most pronounced - weights most in determining the expected maladaptation in a given 373 

generation (see e.g. eq. A6 in Supp. Mat.), so that differences in autocorrelation over short intervals 374 

of generations can have profound effects. It is worth mentioning that equations (17) and (18) can 375 

produce negative autocorrelations (fig. 5) when the effect of the evolutionary inertia (second term 376 

at the numerator) grows larger that the effect of the autocorrelation of environment (see also 377 

Chevin and Haller 2014). 378 

Lastly, and similarly to the variance of the selection gradient, we found that when the 379 

strength of selection is drawn randomly at each selection episode (see previous related paragraph 380 

for variance), the autocorrelation of selection is below its expectation under constant selection 381 

strength, when there are only few selection episodes per generation (fig. 4A). This difference is 382 

especially marked when the environment is very autocorrelated and when selection is strong (fig. 383 

4A, B) and vanishes as the number of selection episodes per generation increases. 384 

 385 
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Maladaptation load  386 

Much of the work on adaptation of quantitative traits to autocorrelated stochastic environments 387 

has focused on the resulting expected lag load caused by deviations of the mean phenotype from 388 

the optimum, as this directly connects to long-term population growth and extinction risk (Lande 389 

and Shannon 1996, Chevin et al. 2017). From equation (10), the log mean fitness in the population 390 

(which relates to the relative increase in population size) is  391 

ln𝑊̅ = 𝑟𝑚𝑎𝑥 −
1

2𝜔𝑡𝑜𝑡
2 [∑ 𝑒𝑘𝑘 𝜃𝑘

2 − (∑ 𝑒𝑘𝑘 𝜃𝑘)
2] −

1

2
ln (1 +

𝑃0

𝜔𝑡𝑜𝑡
2 ) −

𝑆𝑡𝑜𝑡

2
(𝑧̅ − 𝜃𝑡𝑜𝑡)

2  (19) 392 

where 𝑟𝑚𝑎𝑥 = ln𝐵 + ∑ 𝑟𝑚𝑎𝑥,𝑘
𝑛
𝑘=1  corresponds to the maximum potential fitness, for a hypothetical 393 

population that would be monomorphic for the optimal phenotype in each selection episode. The 394 

last two terms describe reductions in fitness caused by maladaptation of the mean phenotype and 395 

phenotypic variance in the population, as described in the literature (Lande and Shannon 1996). 396 

When considering several selection episodes per generation, there is an additional load that is 397 

directly linked to the fluctuations in the optimum (second term in eq. 19). Indeed, this load vanishes 398 

when the optimum does not fluctuate across episodes (𝜃𝑘 = 𝜃 for all k). It thus corresponds to the 399 

deaths of individuals induced by environmental fluctuations within a generation, which reduce 400 

population growth without evolutionary significance. Note that when the trait has phenotypic 401 

variance, the mean phenotype does change under selection within a generation, tracking the 402 

optimum phenotype to some extent following each selection episode. But each of these selection 403 

episodes requires a number of selective deaths, and the resulting total cost of natural selection 404 

(sensu Haldane 1957) over a generation is unaffected by phenotypic tracking: the load is exactly 405 

the same if there is no phenotypic variation, and no within-generation phenotypic tracking. When 406 

the strength of selection at each episode ω is constant (corresponding to eq. 5), we further have 407 

1

2𝜔𝑡𝑜𝑡
2 [∑ 𝑒𝑘𝑘 𝜃𝑘

2 − (∑ 𝑒𝑘𝑘 𝜃𝑘)
2] =

𝑛⁡V̂[𝜃]

2𝜔2
,       (20) 408 
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such that the intra-generational load is proportional to the sample variance V̂[𝜃] of the optimum 409 

across selection episodes within a generation. 410 

In models of selection with a Gaussian fitness peak, there is a simple connection between 411 

the temporal distribution of the directional selection gradients and the expected maladaptation 412 

affecting populations growth, since both depend on the expected squared mismatch of the mean 413 

phenotype from the optimum (Chevin and Haller 2014), 𝑦 = 𝑧̅ − 𝜃𝑡𝑜𝑡. The expected maladaptation 414 

load Lm, defined as the decrease in log mean fitness induced by a mismatch between the population 415 

mean and the optimum phenotype, is 𝐸[𝐿𝑚] =
𝑆

2
𝐸[(𝑧̅ − 𝜃𝑡𝑜𝑡)

2] =
𝑆

2
Var[𝑦] in a stationary 416 

stochastic environment, and the variance of the selection gradient is 𝑉𝑎𝑟[𝛽𝑡𝑜𝑡] = 𝑆𝑡𝑜𝑡
2 𝑉𝑎𝑟[𝑦] (eq. 417 

A5), leading to the simple relationship E[𝐿𝑚] = Var[𝛽𝑡𝑜𝑡] (2𝑆𝑡𝑜𝑡)⁄ . The maladaptation load in a 418 

fluctuating environment thus increases with the variance of the selection gradient and decreases 419 

with the total strength of selection. In particular, in an autoregressive environment where several 420 

selection episodes can occur within generations, we find that 421 

E[𝐿𝑚] = ⁡Var[𝜃𝑡𝑜𝑡]𝑆𝑡𝑜𝑡
⁡

1−𝜌⁡
𝑇(1+𝑆𝑡𝑜𝑡𝐺0(𝐼𝑓−1))

(2−𝑆𝑡𝑜𝑡𝐺0)(1−𝜌⁡𝑇(1−𝑆𝑡𝑜𝑡𝐺0))
      (21) 422 

The first term in equation (21) shows that the expected component of the maladaptation load 423 

affected by responses to selection increases with the variance of the effective optimum (weighted 424 

by the strength of selection). The maladaptation load changes non-monotonically as a function of 425 

the autocorrelation of the environment (fig. 6A), as does the variance of the total selection gradient 426 

(fig 3A). Total maladaptation is strongest at intermediate autocorrelation of the environment (fig. 427 

6A), contrary to the case of a single selection episode. Furthermore, the expected maladaptation 428 

decreases with increasing number of selection episodes within generation (fig. 6B), because this 429 

decreases the variance of the effective optimum, and in turn the variance of the selection gradient 430 

(see Supp. Mat. and fig. A1). However, note that this decreased variance of the effective optimum 431 
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come at the expense of an increased load of fluctuating selection within a generation, which cannot 432 

be overcome by adaptive tracking.  433 

  434 

DISCUSSION 435 

Most theoretical studies investigating the effect of an autocorrelated environment on evolutionary 436 

dynamics and their consequences for population dynamics assumed simple life cycles, where the 437 

timing of selection within a generation was left implicit (e.g. Charlesworth 1993, Lande and 438 

Shannon 1996, Chevin 2013). In models of non-overlapping generations, the timing of life-history 439 

events is generally not addressed, and selection is most often modeled as a single, effectively 440 

instantaneous process. This contrasts with the fact that many traits are likely to affect fitness at 441 

different times in life, and thus undergo several episodes of selection (Arnold and Wade 1984b, 442 

Marshall and Morgan 2011). Another difficulty at the interface of theory and empirical work on 443 

these questions is that measuring fitness is in practice challenging, such that natural selection is 444 

mostly estimated in the form of individual selection episodes acting via specific fitness 445 

components in the life cycle (Kingsolver and Diamond 2011, Siepielski et al. 2017). Recent 446 

refinements (e.g. McGlothlin 2010) of theory on the measurement of selection gradient (Lande 447 

and Arnold 1983, Arnold and Wade 1984a, Wade and Kalisz 1989) investigated how estimates of 448 

selection at different episodes within a generation can be integrated to infer overall selection, and 449 

the resulting evolutionary response. The present study extends this theory by investigating how 450 

fluctuating selection resulting from changes in the environment within and across generations 451 

impacts evolutionary trajectories, and the potential for population persistence.  452 

To this aim, we developed a model of an organism with non-overlapping generations, 453 

where several transitions between stages (survival) prior to reproduction depend on the match 454 
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between a phenotypic trait and a fluctuating optimal value directly related to the environment, 455 

consistent with recent empirical estimates of fluctuating selection in the form of a moving 456 

phenotypic optimum (Chevin et al. 2015, Gamelon et al. 2019).  Our analysis of this model 457 

demonstrates that knowledge of fluctuation patterns for the environment affecting selection is not 458 

sufficient to infer the predictability of selection across generations, when there are multiple 459 

selection episodes per generation. Selection across generations depends on an integrated optimum 460 

that includes the relative contribution of each selection episode to total selection along the life 461 

cycle, similar to recent formulations for age-structured populations but without autocorrelation 462 

(Engen et al. 2011, Cotto et al. 2019). Therefore, fluctuations of selection across generations 463 

depend on the pattern of variance and autocorrelation of the effective optimum, rather than of the 464 

environment per se. One of our main results is that, when the environment undergoes red noise 465 

(first-order autoregressive process), fluctuating selection within a generation causes the 466 

autocorrelation of the effective optimum to be inflated relative to the autocorrelation of the 467 

environment. We show that as the number of selection episode per generation increases, the 468 

inflation factor rapidly converges to an asymptotic value that depends neither on the number of 469 

episodes of selection nor on the strength of selection, but only on the autocorrelation of the 470 

environment over a time window of selection. This asymptotic value can be used in practical 471 

situations to estimate the autocorrelation of the effective optimum directly from measurement of 472 

the autocorrelation of the environment. Importantly, however, this result depends on the 473 

assumption that total selection (or its expectation) does not depend on the number of selection 474 

episodes per generation. This assumption allows us to disentangle the effect of selection acting 475 

repetitively along a generation from the effect of stronger total selection. We emphasize that this 476 
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independence may not be satisfied in natural populations, where more selection episodes may often 477 

cause stronger overall selection.  478 

The inflation factor for the optimum directly influences the autocorrelation of directional 479 

selection gradients, which relates more directly to empirical measurements of the predictability 480 

and consistency of directional selection through time (Grant and Grant 2002, Morrissey and 481 

Hadfield 2012). However, an important point when considering the connection with empirical 482 

work is that, instead of tracking phenotypic change under selection episode per episode as done 483 

empirically (Arnold and Wade 1984b, McGlothlin 2010), we combined all episodes to derive a 484 

total per-generation individual fitness function. This allowed us to elude the difficulties arising 485 

from the dynamics of variances and covariances of breeding and phenotypic values at each 486 

successive episode of selection (see Supp. Mat. for the calculations per-episode). Indeed, the 487 

quantitative genetics framework assumes that genetic and environmental values are independent 488 

prior to selection. It is no longer the case after the first episode of selection within a generation 489 

(prior to reproduction), which generates a covariance between the above components. Tracking 490 

changes in the mean phenotype and breeding values across selection episodes therefore requires 491 

taking into account the change in covariance between breeding value and environmental values 492 

(See. Supp. Mat. for a demonstration). The buildup of this covariance complicates the investigation 493 

at the scale of individual selection episodes, from both a theoretical and empirical point of view 494 

(Wade and Kalisz 1989, Cam et al. 2002, McGlothlin 2010), because the selection gradients are 495 

no longer sufficient to describe accurately the change in the mean breeding value.  496 

We also found that allowing for multiple selection episodes complicates the connection 497 

between environmental autocorrelation and the variance of selection gradients, which is directly 498 

linked to the expected maladaptation load reducing population growth (Chevin et al. 2017). With 499 
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multiple selection episodes, both these metrics vary non-monotonically with the autocorrelation of 500 

the environment, with a maximum at an intermediate value. This contrasts with previous results 501 

from models with a single episode of selection per generation, where the expected maladaptation 502 

load decreases monotonically with increasing autocorrelation of the environment, because this 503 

allows for closer adaptive tracking of the moving optimum via genetic evolution (Chevin 2013, 504 

Chevin et al. 2015). That this may not hold with multiple episodes of selection crucially revises 505 

previous understanding of the role of environmental autocorrelation on maladaptation: 506 

maladaptation can actually increase with increasing autocorrelation of the environment.  507 

Lastly, we found that selection that fluctuates within a generation results in a specific load, 508 

which adds up to the maladaptation and variance loads classically described in the literature on 509 

adaptation to changing environments (see Lynch and Lande 1993, Burger and Lynch 1995, Lande 510 

and Shannon 1996, Kopp and Matuszewski 2014). This load only exists when the direction and/or 511 

strength of selection varies within a generation, and also increases with the number of selection 512 

episodes and the total per-generation strength of selection. The reason for this load is that each 513 

selection episode results in selective deaths that reduce the demographic output of the population, 514 

as previously discussed in extensions of Haldane’s (1957) famous “cost of natural selection” to 515 

the context of adaptation to a changing environment, with a single selection episode (Nunney 516 

2003). Within-generation fluctuations in selection increase this number of selective deaths without 517 

any net beneficial effect on adaptation: from an evolutionary perspective, individuals are 518 

essentially wasted by within-generation fluctuation in selection. An important implication of this 519 

result is that disturbances that increase temporal variation in the environment can lead to the 520 

decline of a population, regardless of its phenotypic state (mean phenotype, additive genetic 521 

variance). This bears particular importance in light of the increasing frequency of extreme climatic 522 
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events (Coumou and Rahmstorf 2012), and accumulating evidence of their effect on evolutionary 523 

and demographic dynamics (Moreno and Møller 2011, Marrot et al. 2017). This load caused by 524 

fluctuating selection within a generation may only be alleviated by mechanisms that cause within-525 

generation adaptive changes in the mean phenotype without requiring any selective death. This 526 

suggests that a powerful mechanism by which labile, reversible plasticity can evolve (as 527 

investigated theoretically in a few studies, Gabriel 2005, Lande 2014, Ratikainen and Kokko 2019) 528 

is by reducing the load caused by fluctuating selection within a generation.  529 

Our non-overlapping generation model applies directly to univoltine species. An 530 

interesting extension would be to investigate the case with overlapping generations. The most 531 

closely related life cycle with overlapping generations is that of perennial semelparous organisms, 532 

encompassing a large diversity of organisms (Young and Augspurger 1991) spanning from 533 

microbial parasites (Ebert and Weisser 1997) to long lived plants (e.g. semelparous yucca) and 534 

vertebrates (e.g. pacific salmon). This type of life cycle can lead to asynchrony in reproduction 535 

among age classes (Caswell 2001 p.81-88), such that the population at any time is composed of 536 

cohorts with different ages that rarely interbreed, in which case our conclusions directly apply to 537 

each of these cohorts. Perennial semelparous life cycles can also produce instability in age 538 

structure, which has been proposed to contribute to periodicity in species such as cicadas (Bulmer 539 

1977) or bamboos (Keeley and Bond 1999). This instability may even lead to a collapse of age 540 

structure and to a synchrony in reproduction (Mjølhus et al. 2005), in which case our model would 541 

apply to the entire population. In contrast, iteroparity in perennial organisms would add 542 

considerable complications to the investigation of the effects of fluctuations in the environment. 543 

Indeed, each cohort of offspring is contributed from cohorts of reproductive individuals having 544 
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experienced different history of selection, possibly generating deviations from the stable (st)age 545 

structure (see Lorimer 1980 for an example). We leave such an investigation for a future study. 546 
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FIGURE CAPTIONS 684 

 685 

Figure 1: Schematic representation of the timescales and autocorrelation measures. Generations 686 

last T units of time, within which selection occurs in n selection episodes spread over 𝛼𝑇 units of 687 

time. The autocorrelation of the optimum phenotype (which is identical to that of the environment) 688 

over the within-generation time of selection is 𝜓 = 𝜌𝛼𝑇 , and over a generation time is 𝜌𝑇. The per-689 

generation effective optimum integrates the effect of selection within generations. We denote 𝜌𝜃𝑡𝑜𝑡  690 

the autocorrelation of this measure over a generation. The schema highlights that the variance and 691 

autocorrelation differ between the optimum phenotype at each episode of selection (i.e. the 692 

environment) and the effective optimum relevant for the evolutionary dynamics across 693 

generations.   694 

 695 

Figure 2: Autocorrelation of the effective optimum and inflation factor. Panel A: Autocorrelation of the effective 696 

optimum as a function of the number of generations for 10 selection episodes per generation. Panel B: Inflation factor 697 

as a function of the number of selection episodes. Panel C: Inflation factor as a function of the duration of the selection 698 

window relative to the generation time α.  Dotted lines (panel A) correspond to the autocorrelation of the environment 699 

(θ) alone over g generations: 𝜌⁡
𝑔𝑇 .Crosses show results from simulations with a strength of stabilizing selection that 700 

varies across selection episodes, while lines show the expectation assuming constant selection strength with same 701 

mean (full lines: exact prediction using eq. 12, dashed lines: prediction for continuous selection along each generation 702 

– infinite number of selection episodes, eq. 15). Numerical simulations are performed using eq. (10), with 𝜃𝑡𝑜𝑡 and 703 

𝜔𝑡𝑜𝑡
2  calculated as described in eq. 3 from phenotypic optima 𝜃𝑖 and corresponding strengthes of selection 𝜔𝑖

2 704 

corresponding to each episode of selection i per generation as described in the following: for each episode of selection, 705 

a phenotypic optimum is drawn from equation 11 and the strength of selection is drawn independently in a Gaussian 706 

with mean √𝜔𝑡𝑜𝑡
2 /𝑛 − 1 and variance 1. Total selection per generation thus follows a non-central χ2 with mean 𝜔𝑡𝑜𝑡

2  707 

and variance 4𝜔𝑡𝑜𝑡
2 − 2𝑛. For simulations, we kept the expected total strength of selection constant (independent on 708 

the number of selection episode) to isolate the effect of the number of selection episodes from that of the total strength 709 
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of selection. For A and B, α = 0.8. For all panels: light gray to black: 𝜌⁡
𝑇 = 0.2, 0.5 and 0.9 respectively,  𝜔̅𝑡𝑜𝑡

2  = 25, 710 

𝜎𝜃
2 = 1. 711 

 712 

Figure 3: Variance of the selection gradient as a function of the number of selection episode per generation (A) and 713 

of the autocorrelation of the environment (B). Panel A: environmental autocorrelation over a generation time is 𝜌⁡
𝑇 =714 

0.5 (dark gray) and 𝜌⁡
𝑇 = 0.2 (light gray), for two total strengths of selection per generation (𝜔̅𝑡𝑜𝑡

2  = 25 [lower two 715 

sets of simulations/expectations] and 10 [upper sets]). Panel B represents the variance of the total selection gradient 716 

as a function of the autocorrelation of the environment, for the same two total strengths of selection, and n = 10. 717 

Crosses represent results from numerical simulations where the strength of stabilizing selection varies across selection 718 

episodes, whereas circles represent constant strength of stabilizing selection, as described in the caption of figure 2. 719 

The dashed lines correspond to the predictions from eq. (16). Continuous lines represent predictions derived from a 720 

continuous time approximation as in Lande and Shannon (1996, eq. 7), resulting in equation 5a in Chevin and Haller 721 

(2014): Var[𝛽𝑡𝑜𝑡] = Var[𝜃𝑡𝑜𝑡]𝑆𝑡𝑜𝑡
2 ⁡ (1 + 𝑆𝑡𝑜𝑡𝐺0𝑇𝜃)⁄ , where 𝑇𝜃  is the characteristic time scale of the autocorrelation of 722 

the environment (from eq. 13, and see eq. 11 and below). For both panels: α = 1 and 𝜎𝜃
2 = 1. 723 

 724 

Figure 4: Autocorrelation of 𝛽𝑡𝑜𝑡 over a single generation as a function of the number of selection episodes (A) and 725 

of the total strength of selection per generation 𝜔𝑡𝑜𝑡
2  (B). Crosses represent results from numerical simulations with 726 

variable strength of stabilizing selection, whereas circles represent those with constant stabilizing selection, as 727 

described in the caption of figure 2. Dashed lines: expectations using equation 18. Continuous lines: expectation for a 728 

single selection episode (eq. 17). From light gray to black, 𝜌⁡
𝑇 = 0.1, 0.5 and 0.9. Panel A: 𝜔𝑡𝑜𝑡

2 = 10. Panel B: n = 5. 729 

For both panels: α = 1 and 𝜎𝜃
2 = 1. 730 

 731 

Figure 5: Autocorrelation function of 𝛽𝑡𝑜𝑡 across generations. The embedded graph shows a detailed view of the first 732 

five generations. Crosses represent results from numerical simulations with variable strength of stabilizing selection 733 

whereas circles represent those with constant stabilizing selection, as described in the caption of figure 2. Dashed 734 

lines: expectations using equation (18). Continuous lines: expectation for a single selection episode (eq. 17). Note that 735 

for parameters shown here (number of selection episode and strength of selection) there is almost no difference 736 



 

35 

 

between simulations with deterministic (circles) and random (square) strength of selection per episode. From light 737 

gray to black, 𝜌⁡
𝑇 = 0.1, 0.5 and 0.9, 𝜔𝑡𝑜𝑡

2 = 10, α = 1 and 𝜎𝜃
2 = 1. 738 

 739 

Figure 6: Maladaptation load as a function of the autocorrelation of the environment 𝜌⁡
𝑇 (A) and as a function of the 740 

number of selection episodes (B). Crosses represent results from numerical simulations with variable strength of 741 

stabilizing selection whereas circles represent those with constant stabilizing selection, as described in the caption of 742 

figure 2. The gray scale represents different number n of selection episodes per generation in panel A, and different 743 

autocorrelation of the environment in panel B (light to dark gray, 𝜌⁡
𝑇 = 0.2, 0.5 and 0.9). For both panels,  𝜔̅𝑡𝑜𝑡

2 = 25, 744 

𝜎𝜃
2 = 1, 𝛼 = 1. 745 
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SUPPLEMENTARY ANALYSIS  763 

Variance of the effective optimum 764 

By definition, the variance in the per-generation effective optimum is 765 

Var[𝜃𝑡𝑜𝑡] = 𝑉𝑎𝑟[∑ 𝑒𝑘𝜃𝑘
𝑛
𝑘=1 ] = 𝜎𝜃

2∑ 𝑒𝑘
2𝑛

𝑘=1 + 2∑ ∑ 𝑐𝑜𝑣[𝑒𝑖𝜃𝑖 , 𝑒𝑗𝜃𝑗]
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 ,   (A1) 766 

where 𝜎𝜃
2 is the stationary variance of the per-episode optimum. Rewriting (A1) using the 767 

properties of the autocorrelation of the environment (eq. 11) leads to 768 

Var[𝜃𝑡𝑜𝑡] = 𝜎𝜃
2(∑ 𝑒𝑘

2𝑛
𝑘=1 + 2∑ ∑ 𝑒𝑖𝑒𝑗𝜌⁡

(𝑗−𝑖)𝛼𝑇 𝑛⁄𝑛
𝑗=𝑖+1 )𝑛−1

𝑖=1  ,      (A2) 769 

with 𝑒𝑖 = 𝜔𝑡𝑜𝑡
2 𝜔𝑖

2⁄ . The first term in the right-hand side of equation (A2) corresponds to the direct 770 

contribution of the variance of the environment. The second term on the right-hand side results 771 

from the autocorrelation of the environment between selection episodes within a generation, 772 

generating additional variation to the effective optimum. With the further assumption that the 773 

strength of selection is the same at all episodes of selection, 𝜔𝑖
2 = 𝜔2,⁡Equation A2 further 774 

simplifies in 775 

Var[𝜃𝑡𝑜𝑡] = 𝜎𝜃
2 (

1

𝑛
+
2

𝑛
∑ ∑ 𝜌𝜃

(𝑗−𝑖)𝛼𝑇 𝑛⁄𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 ) = 𝜎𝜃

2 𝑛−𝑛𝜌⁡
2𝛼𝑇/𝑛⁡+2𝜌⁡

𝛼𝑇/𝑛⁡(𝜌⁡
𝛼𝑇⁡−1)

𝑛2(𝜌⁡𝛼𝑇/𝑛−1)2
  (A3) 776 

The variance of the effective optimum 𝜃𝑡𝑜𝑡 is always lower than the variance of the environment 777 

(set to 1 in figure A1), and decreases with increasing number of selection episodes (fig A1-A). 778 

However, Var[𝜃𝑡𝑜𝑡] does not decrease without bounds, instead reaching a limit value for a large 779 

number of episodes of selection, lim
𝑛→∞

(Var[𝜃𝑡𝑜𝑡]) = 2
𝜓−ln𝜓−1

(ln𝜓)2
, which only depend on the 780 

autocorrelation of the environment over the time window for selection 𝜓 = 𝜌⁡
𝛼𝑇. In addition, for 781 

a given number of selection episodes, the variance of the effective optimum increases with the 782 

autocorrelation of the environment (fig. A1-B).  783 
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 784 

  785 

Figure A1: Variance of the effective optimum as a function of the number of selection episodes (A) and as a function 786 

of the autocorrelation of the environment (B). Crosses represent the results from simulations where the strength of 787 

selection is drawn from a probability distribution as described in fig. 2  caption. Full lines represent the expectation 788 

from eq. A3 and dashed lines represent the limit for a large number of selection episodes. Panel A: from light grey to 789 

dark 𝜌𝜃,𝑇 = 0.2, 0.5 and 0.9 respectively. Panel B: the gray scale represents different number of selection episode per 790 

generation (see within the panel). For both panels, 𝜔̅𝑡𝑜𝑡
2 = 25, 𝜎𝜃

2 = 1, 𝛼 = 1. 791 

Variance of the selection gradient 792 

The variance of 𝛽𝑡𝑜𝑡 is proportional to the variance of the distance of the mean phenotype to the 793 

optimum 794 

Var[𝛽𝑡𝑜𝑡] = (𝑆𝑡𝑜𝑡)
2Var[(𝑧̅ − 𝜃𝑡𝑜𝑡)] = (𝑆𝑡𝑜𝑡)

2E[(𝑧̅ − 𝜃𝑡𝑜𝑡)
2].    (A4) 795 
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By rearranging equation 10 in the main text (Charlesworth 1993), the mean phenotypic value at 796 

generation g is 797 

𝑧𝑔̅ = (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑔𝑧0̅ + 𝑆𝑡𝑜𝑡𝐺0∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)

𝑖−1𝜃𝑡𝑜𝑡,𝑔−𝑖
𝑔
𝑖=1 .     (A5) 798 

After a sufficiently large number of generations, the first term in equation (A5), corresponding to 799 

the initial conditions, can be neglected. We thus obtain 800 

E[(𝑧̅ − 𝜃𝑡𝑜𝑡)
2] = E [(𝑆𝑡𝑜𝑡𝐺0∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)

𝑖−1𝜃𝑡𝑜𝑡,𝑔−𝑖 − 𝜃𝑡𝑜𝑡,𝑔
𝑔
𝑖=1 )

2
],    (A6) 801 

By developing terms, using the autocorrelation of the effective optimum (eq. 12) and assuming 802 

that 𝑔 → ⁡∞, we obtain equation (16) in the main text (see also Charlesworth 1993; eq. 19a) 803 

Var[𝛽𝑡𝑜𝑡] = 2Var[𝜃𝑡𝑜𝑡]𝑆𝑡𝑜𝑡
2 1−𝜌(1+𝑆𝑡𝑜𝑡𝐺0(𝜑−1))

(2−𝑆𝑡𝑜𝑡𝐺0)(1−𝜌(1−𝑆𝑡𝑜𝑡𝐺0))
. 804 

Autocorrelation of the selection gradient 805 

The autocovariance of the selection gradient over τ generations is 806 

Cov[𝛽𝑡𝑜𝑡,𝑔, 𝛽𝑡𝑜𝑡,𝑔−𝜏] = 𝑆𝑡𝑜𝑡
2 (E[𝜃𝑡𝑜𝑡,𝑔𝜃𝑡𝑜𝑡,𝑔−𝜏] + E[𝑧𝑔̅𝑧𝑔̅−𝜏] − E[𝑧𝑔̅−𝜏𝜃𝑡𝑜𝑡,𝑔] − E[𝜃𝑡𝑜𝑡,𝑔−𝜏𝑧𝑔̅]).  (A7) 807 

Continuous time approach 808 

Following Lande and Shannon (1996), the dynamics can be approximated in continuous time. The 809 

continuous time approximation eases the analysis. After long enough time so that the we can 810 

neglect the initial conditions, the mean phenotype at time t is 811 

𝑧𝑡̅ = 𝑆𝑡𝑜𝑡𝐺0 ∫ 𝑒−𝑆𝑡𝑜𝑡𝐺0𝑥𝜃𝑡𝑜𝑡,𝑡−𝑥𝑑𝑥
∞

0
.         (A8) 812 

Equation (A8) is the continuous time equivalent to equation (A6) once the effect of initial 813 

conditions has been erased. From equations (A7) and (A8), the method to derive the 814 
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autocorrelation of the selection gradient is described in Chevin and Haller (2014, appendix for the 815 

autoregressive optimum). This approach cannot a priori be used in the context of the present model 816 

because the inflation factor is 1 for 𝜏 = 0 and is not defined for 0 < 𝜏 < 1. However, we found 817 

that the naïve approach to use equation (12) in the main text directly in the derivations from Chevin 818 

and Haller (2014) matches closely the exact discrete time approach that we develop in the next 819 

section. As we could not demonstrate this observation formally, we chose not to present this result 820 

in our main text. We nevertheless provide this result here as a heuristic: 821 

𝜌𝛽𝑡𝑜𝑡,𝜏 = 𝜑
𝜌⁡
𝜏𝑇−𝑆𝑡𝑜𝑡𝐺0

𝑇𝜃
𝑇
𝑒−𝑆𝑡𝑜𝑡𝐺0𝜏

1−𝑆𝑡𝑜𝑡𝐺0
𝑇𝜃
𝑇

,         (A9) 822 

where 
𝑇𝜃

𝑇
 measures the characteristic timescale of the autocorrelation of the environment in units 823 

of generation time.  824 

Discrete time approach 825 

In contrast with previous studies (Lande and Shannon 1996, Chevin and Haller 2014), we calculate 826 

the autocorrelation of the selection gradient in discrete time. Similarly to the calculation for the 827 

variance of the selection gradient, we use equation (A5) assuming that many generations occurred 828 

so that the first term can be neglected. We also use equation (12) in the main text for the 829 

autocorrelation of the effective optimum 𝜌𝜃𝑡𝑜𝑡,𝜏 = 𝜌⁡
𝜏𝑇𝜑, reminding that 𝜑 = 1 for τ = 0. The 830 

general procedure follows Chevin and Haller (2014, appendix for the autoregressive optimum) by 831 

calculating each expectation from equation (A7). Even though we kept notations concise, each 832 

sum in the expectations below can be resolved exactly. The first expectation is straightforward 833 

E[𝜃𝑡𝑜𝑡,𝑔𝜃𝑡𝑜𝑡,𝑔−𝜏] = 𝜑Var[𝜃𝑡𝑜𝑡]𝜌⁡
𝜏𝑇.         (A10) 834 

The expectation for the first cross product is 835 
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E[𝑧𝑔̅−𝜏𝜃𝑡𝑜𝑡,𝑔] = 𝑆𝑡𝑜𝑡𝐺0∑ (1− 𝑆𝑡𝑜𝑡𝐺0)
𝑖−1𝐸[𝜃𝑡𝑜𝑡,𝑔𝜃𝑡𝑜𝑡,𝑔−𝑖−𝜏]

𝑔−𝜏

𝑖=1
, taking into account the 836 

discontinuity of the inflation factor 𝐼𝑓 in 𝑖 = 𝑔 − 𝜏, it results in 837 

𝐸[𝑧𝑔̅−𝜏𝜃𝑡𝑜𝑡,𝑔] = 𝜑Var[𝜃𝑡𝑜𝑡]𝑆𝑡𝑜𝑡𝐺0∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖−1𝜌⁡

(𝜏+𝑖)𝑇𝑔−𝜏−1

𝑖=1
+ 𝑆𝑡𝑜𝑡𝐺0(1 −838 

𝑆𝑡𝑜𝑡𝐺0)
𝑔−𝜏−1Var[𝜃𝑡𝑜𝑡].         (A11) 839 

The expectation for second cross product is  840 

𝐸[𝜃𝑡𝑜𝑡,𝑔−𝜏𝑧𝑔̅] = 𝑆𝑡𝑜𝑡𝐺0∑ (1− 𝑆𝑡𝑜𝑡𝐺0)
𝑖−1𝐸⁡(𝜃𝑡𝑜𝑡,𝑔−𝑖𝜃𝑡𝑜𝑡,𝑔−𝜏)

𝑔

𝑖=1
. 841 

We need to distinguish 3 cases, i < τ, i > τ and i = τ : 842 

𝐸[𝜃𝑡𝑜𝑡,𝑔−𝜏𝑧𝑔̅] = 𝜑Var[𝜃𝑡𝑜𝑡]𝑆𝑡𝑜𝑡𝐺0 (∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖−1𝜌⁡

(𝜏−𝑖)𝑇𝜏−1

𝑖=1
+∑ (1 −

𝑔

𝑖=𝜏+1
843 

𝑆𝑡𝑜𝑡𝐺0)
𝑖−1𝜌⁡

(𝑖−𝜏)𝑇 + 𝜑−1(1 − 𝑆𝑡𝑜𝑡𝐺0)
𝜏−1).        (A12) 844 

Lastly,  845 

𝐸[𝑧𝑔̅𝑧𝑔̅−𝜏] = (𝑆𝑡𝑜𝑡𝐺0)
2∑ ∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)

𝑖+𝑘−2𝐸[𝜃𝑡𝑜𝑡,𝑔−𝑖𝜃𝑡𝑜𝑡,𝑔−𝜏−𝑘]
𝑔−𝜏
𝑘=1

𝑔
𝑖=1 . 846 

To calculate the double sum, it is convenient to perform a change of variables 847 

∑ ∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖+𝑘−2𝐸[𝜃𝑡𝑜𝑡,𝑔−𝑖𝜃𝑡𝑜𝑡,𝑔−𝜏−𝑘]

𝑔−𝜏
𝑘=1

𝑔
𝑖=1 = ∑ ∑ (1 −

𝑔
𝑗=𝜏+1

𝑔
𝑖=1848 

𝑆𝑡𝑜𝑡𝐺0)
𝑖+𝑗−𝜏−2𝐸[𝜃𝑡𝑜𝑡,𝑔−𝑖𝜃𝑡𝑜𝑡,𝑔−𝑗]. 849 

We then need to distinguish 4 cases, 850 

for i < +1, 𝐴 = 𝜑Var[𝜃𝑡𝑜𝑡] ∑ ∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖+𝑗−𝜏−2𝜌⁡

(𝑗−𝑖)𝑇𝑔
𝑗=𝜏+1

𝜏
𝑖=1 . 851 

for i >  and i = j, 𝐵 = Var[𝜃𝑡𝑜𝑡]∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
2𝑖−𝜏−2𝑔

𝑖=𝜏+1
.  852 
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for i >  and j > i, 𝐶 = ⁡𝜑Var[𝜃𝑡𝑜𝑡] ∑ ∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖+𝑗−𝜏−2𝜌⁡

(𝑗−𝑖)𝑇𝑗−1
𝑖=𝜏+1

𝑔
𝑗=𝜏+2 . 853 

for i >  and i > j, 𝐷 = ⁡𝜑Var[𝜃𝑡𝑜𝑡] ∑ ∑ (1 − 𝑆𝑡𝑜𝑡𝐺0)
𝑖+𝑗−𝜏−2𝜌⁡

(𝑖−𝑗)𝑇𝑖−1
𝑗=𝜏+1

𝑔
𝑖=𝜏+2 ,  854 

with C = D, and resulting in  855 

𝐸[𝑧𝑔̅𝑧𝑔̅−𝜏] = (𝑆𝑡𝑜𝑡𝐺0)
2(𝐴 + 𝐵 + 2𝐶).        (A13) 856 

Adding equations (A10) to (A13), finding the limit of this sum for large g, dividing by the 857 

variance of the selection gradient (eq. 16) and rearranging leads to the autocorrelation of the 858 

selection gradient 859 

𝜌𝛽𝑡𝑜𝑡,𝜏 =
𝜑𝜀𝜌⁡

𝜏𝑇+𝛾(1−𝑆𝑡𝑜𝑡⁡𝐺0)
𝜏

𝜗
,          (A14) 860 

where, 861 

𝜀 = (𝜌⁡
𝑇 − 1)2(2 − 𝑆𝑡𝑜𝑡⁡𝐺0), 862 

𝛾 =
𝑆𝑡𝑜𝑡⁡𝐺0

(1−𝑆𝑡𝑜𝑡⁡𝐺0)
(𝜌⁡
𝑇(1 − 𝜑)(𝑆𝑡𝑜𝑡⁡𝐺0)

2 − (1 − 𝜌⁡
𝑇)(1 + 𝜌⁡

𝑇(2𝜑 − 1))(1 − 𝑆𝑡𝑜𝑡⁡𝐺0)), 863 

𝜗 = 2(𝜌⁡
𝑇 − 1 + 𝑆𝑡𝑜𝑡⁡𝐺0)(𝜌⁡

𝑇 − 1 + 𝜌⁡
𝑇(𝜑 − 1)𝑆𝑡𝑜𝑡⁡𝐺0). 864 

Equation (A14) is written in a form similar to equation (A9), decomposing the effects of the 865 

autocorrelation of the environment and of the deviations of the mean phenotype to the optimum. 866 

An interpretation for equation (A14) is proposed in the main text.  867 

In the special case where there is a unique episode of selection per generation, i.e. 𝜑 = 1, equation 868 

(A14) is 869 

𝜌𝛽𝑡𝑜𝑡,𝜏 =
𝜌𝜃
𝜏𝑇−𝜅(1−𝑆𝑡𝑜𝑡⁡𝐺0)

𝜏

1−𝜅
,          (A15) 870 
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where 𝜅 =
(1+𝜌⁡

𝑇)𝑆𝑡𝑜𝑡⁡𝐺0

(1−𝜌⁡𝑇)(2−𝑆𝑡𝑜𝑡⁡𝐺0)
.  871 

Equation (A15) is very similar to equation 5b in Chevin and Haller (2014). Comparing equation 872 

(A14) and (A15) shows that the inflation factor, i.e. the autocorrelation of selection within 873 

generation, complicates the analysis by introducing new terms at the interface between the 874 

autocorrelation of the environment and the dynamics of selection within and across generations. 875 

A Taylor expansion performed on the reciprocals of equation (A15) and 5b in Chevin and Haller 876 

(2014) shows that both equations are identical to at least the second order. This result can be 877 

confirmed by representing both functions for different autocorrelation of the environment. Both 878 

functions match exactly on most of the autocorrelation range with minor deviation at very weak 879 

autocorrelation (not shown). 880 

Changes in (co)variances under selection 881 

Here we derive the changes in the variances and covariances of phenotypic components after each 882 

selection episode. Following classical quantitative genetics, we assume that the phenotype 𝑧 of 883 

any individual prior to any selection in a generation is the sum of two normally distributed 884 

components: the breeding value 𝑥 and environmental effect 𝑒. At the beginning of a generation, 885 

these phenotypic components have means 𝑥̅ and 𝑒̅ = 0, variances 𝐺 and 𝐸, and are uncorrelated, 886 

such that their covariance is 𝐶𝑥,𝑒 = 0 and the total phenotypic variance is 𝑃 = 𝐺 + 𝐸. Changes in 887 

the mean breeding value under selection are obtained from changes in mean phenotype using the 888 

regression of breeding values on phenotypes, which at the beginning of a generation has slope 889 

Cov(𝑥,𝑧)

𝑃
=

𝐺

𝐺+𝐸
= ℎ2, following the usual notation for heritability. 890 
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We consider episodes of selection caused by a Gaussian fitness peak, such that individuals with 891 

phenotype 𝑧 have fitness (𝑧) ∝ exp⁡(−
(𝑧−𝜃)2

2𝜔2
) (where we omit indices for selection episodes and 892 

generation for simplicity). It is informative to start by investigating the first selection episode in a 893 

generation, where 𝑥 and 𝑒 are independent and 𝑒̅ = 0, 𝑧̅ = 𝑥̅. The fitness function on breeding 894 

values is obtained by integrating over the distribution of environmental effects, 𝑊̃(𝑥) ∝895 

exp (−
(𝑥−𝜃)2

2(𝜔2+𝐸)
), and the fitness function on environmental effects is obtained similarly by 896 

integrating over breeding values, 𝑊𝑒(𝑒) ∝ exp⁡(−
(𝑥̅+𝑒−𝜃)2

2(𝜔2+𝐺)
). The fitness function on breeding 897 

values (respectively, on environmental effects) is thus also Gaussian, with squared width 𝜔2 + 𝑉𝑒 898 

(respectively 𝜔2 + 𝐺) and optimum 𝜃 (respectively 𝜃 − 𝑥̅). With a Gaussian fitness peak, the 899 

distribution of phenotypes, breeding values and environmental effects after selection remain 900 

Gaussian. Denoting the per-episode strength of stabilizing selection as 𝑆 =
1

𝜔2+𝑃
, the means after 901 

selection are 902 

𝑧̅∗ = 𝜃 +
𝜔2

𝜔2+𝑃
(𝑧̅ − 𝜃) = 𝜃 + (1 − 𝑆𝑃)(𝑧̅ − 𝜃) = 𝑧̅ − 𝑆𝑃(𝑧̅ − 𝜃)     (A16a) 903 

𝑥̅∗ = 𝜃 +
𝜔2+𝑉𝑒

𝜔2+𝑃
(𝑥̅ − 𝜃) = 𝜃 + (1 − 𝑆𝐺)(𝑥̅ − 𝜃) = 𝑧̅ − 𝑆𝐺(𝑧̅ − 𝜃)    (A16b) 904 

𝑒̅∗ = 𝜃 − 𝑥̅ +
𝜔2+𝐺

𝜔2+𝑃
(𝑥̅ − 𝜃) = 𝜃 − 𝑥̅ + (1 − 𝑆𝐸)(𝑥̅ − 𝜃) = −𝑆𝐸(𝑧̅ − 𝜃) ,   (A16c) 905 

where we have used the fact that 𝑒̅ = 0 and thus 𝑧̅ = 𝑥̅ prior to any selection. Note that 𝑥̅∗ − 𝑥̅ =906 

ℎ2(𝑧̅∗ − 𝑧̅) and 𝑒̅∗ − 𝑒̅ = (1 − ℎ2)(𝑧̅∗ − 𝑧̅), as required. The variances after selection are 907 

𝑃∗ = (
1

𝜔2
+
1

𝑃
)
−1

= (1 − 𝑆𝑃)𝑃         (A17a) 908 

𝐺∗ = (
1

𝜔2+𝐸
+
1

𝐺
)
−1

= (1 − 𝑆𝐺)𝐺         (A17b) 909 
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𝐸∗ = (
1

𝜔2+𝐺
+
1

𝐸
)
−1

= (1 − 𝑆𝐸)𝐸,         (A17c) 910 

which satisfy the relationships 𝐺∗ − 𝐺 = ℎ4(𝑃∗ − 𝑃) and 𝐸∗ − 𝐸 = (1 − ℎ2)2(𝑃∗ − 𝑃). The 911 

phenotypic variance after selection must also satisfy 912 

𝑃∗ = 𝐺∗ + 𝐸∗ + 2⁡𝐶𝑥,𝑒
∗           (A18) 913 

so the covariance of breeding values and environmental effects after selection is 914 

⁡𝐶𝑥,𝑒
∗ =

𝑃∗−𝐺∗−𝐸∗

2
.           (A19) 915 

Using 𝑃 = 𝐺 + 𝐸 this yields  916 

⁡𝐶𝑥,𝑒
∗ =

(1−𝑆𝑃)𝑃−(1−𝑆𝐺)𝐺−(1−𝑆𝐸)𝐸

2
= −𝑆

𝑃2−𝐺2−𝐸2

2
= −𝑆𝐺𝐸,      (A20) 917 

which satisfies 𝐶𝑥,𝑒
∗ = 𝐶𝑥,𝑒

∗ − 𝐶𝑥,𝑒 = ℎ
2(1 − ℎ2)(𝑃∗ − 𝑃).⁡  918 

These formulas apply to the first selection episode, but in further episodes the change in the mean 919 

breeding value and environmental effects also depend on their covariance. More general formulas 920 

for change at any selection episode can be derived through a multivariate approach. Let us denote 921 

the vector of breeding values and environmental effects as 𝐲 = (𝑥, 𝑒)T (where superscript T 922 

denotes a transposition), with mean 𝐲̅ and covariance matrix 𝐘. Substituting 𝑥 + 𝑒 for 𝑧 in the 923 

fitness function 𝑊(𝑧), and integrating over the joint distribution of 𝑥 and 𝑒, the mean fitness is  924 

𝑊̅ ∝ exp⁡(−
𝑆𝐶⁡(𝑥̅+𝑒̅−𝜃)

2

2
)          (A21) 925 

𝑆𝐶 =
1

𝜔2+𝐺+𝐸+2𝐶𝑥,𝑒
           (A22) 926 
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Then using standard results from evolutionary quantitative genetics (Lande 1979, 1980, Lande and 927 

Arnold 1983 ) and properties of the Gaussian function, the change in the vector of mean breeding 928 

values and environmental effects under selection within a generation is  929 

∆∗𝐲̅ = ⁡𝐘𝜕𝐲̅ln𝑊̅           (A23) 930 

where 𝜕𝐲̅⁡is the vector of partial derivatives with respect to each element of 𝐲̅, yielding 931 

∆∗𝑥̅ = −𝑆𝐶(𝑥̅ + 𝑒̅ − 𝜃)(𝐺 + 𝐶𝑥,𝑒)         (A24a) 932 

∆∗𝑒̅ = −𝑆𝐶(𝑥̅ + 𝑒̅ − 𝜃)(𝐸 + 𝐶𝑥,𝑒)         (A24b) 933 

∆∗𝑧̅ = ∆∗𝑥̅ + ∆∗𝑒̅ = −𝑆𝐶(𝑥̅ + 𝑒̅ − 𝜃)(𝐺 + 𝐸 + 2𝐶𝑥,𝑒)      (A24c) 934 

When 𝑒̅ = 𝐶𝑥,𝑒 = 0, these simplify to ∆∗𝑥̅ = −𝑆𝐺(𝑥̅ − 𝜃) and ∆∗𝑒̅ = −𝑆𝐸(𝑥̅ − 𝜃), consistent 935 

with the formulas above for the first episode of selection. The recursion for the covariance matrix 936 

is 937 

∆∗𝐘 = ⁡𝐘(𝜕𝐲̅
2ln𝑊̅)𝐘          (A25) 938 

where 𝜕𝐲̅
2⁡is the Hessian matrix of second partial derivatives with respect to each element of 𝐲̅, 939 

yielding 940 

∆∗𝐺 = −𝑆𝐶(𝐺 + 𝐶𝑥,𝑒)
2          (A26) 941 

∆∗𝐸 = −𝑆𝐶(𝐸 + 𝐶𝑥,𝑒)
2          (A27) 942 

∆∗𝐶𝑥,𝑒 = −𝑆𝐶(𝐺 + 𝐶𝑥,𝑒)(𝐸 + 𝐶𝑥,𝑒)         (A28) 943 

When 𝑒̅ = 𝐶𝑥,𝑒 = 0, these simplify to ∆∗𝐺 = −𝑆𝐺2, ∆∗𝐸 = −𝑆𝐸2,  and 𝐶𝑥,𝑒 = −𝑆𝐺𝐸, again 944 

consistent with the formulas above for the first episode of selection.  945 
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In the general case where 𝑒̅ and 𝐶𝑥,𝑒 are non-zero, as is expected if the population has previously 946 

undergone any episode of selection in the ongoing generation, then the relationship between 947 

phenotypic change and change in breeding values cannot be inferred directly from current 948 

components of phenotypic variance. Indeed we have 949 

∆∗𝑥̅

∆∗𝑧̅
=

𝐺+𝐶𝑥,𝑒

𝐺+𝐸+2𝐶𝑥,𝑒
=
Cov(𝑥,𝑥+𝑒)

Var(𝑥+𝑒)
         (A29) 950 

which is still a regression slope of breeding values on phenotypes, but this no longer translates into 951 

a ratio of additive genetic variance on phenotypic variance, because of the covariance between 952 

breeding values and environmental values. However, it can be shown that this ratio always equals 953 

the ratio 
𝐺

𝐺+𝐸
= ℎ2 at the beginning of a generation. 954 
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