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 7 

Random environmental fluctuations pose major threats to wild populations. As patterns of 8 

environmental noise are themselves altered by global change, there is growing need to identify 9 

general mechanisms underlying their effects on population dynamics. This notably requires 10 

understanding and predicting population responses to the color of environmental noise, i.e. its 11 

temporal autocorrelation pattern. Here, we show experimentally that environmental 12 

autocorrelation has a large influence on population dynamics and extinction rates, which can be 13 

predicted accurately provided that a memory of past environment is accounted for. We exposed 14 

near to 1000 lines of the microalgae Dunaliella salina to randomly fluctuating salinity, with 15 

autocorrelation ranging from negative to highly positive. We found lower population growth, 16 

and twice as many extinctions, under lower autocorrelation. These responses closely matched 17 

predictions based on a tolerance curve with environmental memory, showing that non-genetic 18 

inheritance can be a major driver of population dynamics in randomly fluctuating 19 

environments.  20 

21 
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The demography and extinction risk of wild populations is largely determined by responses to random 22 

fluctuations in their environment
1–7

, the magnitude and predictability of which are currently altered by 23 

anthropogenic activities
8,9

. In addition to their amplitude, stochastic (i.e., random) fluctuations are 24 

characterized by their temporal autocorrelation, which determines the extent to which one time step is 25 

a good predictor for the next. Temporal autocorrelation, sometimes described as the color of noise in 26 

reference to the spectral decomposition of random fluctuations, is a ubiquitous feature of natural 27 

systems
10,11

. Because environmental autocorrelation characterizes the pattern and ordering of 28 

environmental noise rather than its magnitude, it was originally thought to be irrelevant to expected 29 

population dynamics in a stochastic environment, which instead were predicted to only depend on the 30 

mean and variance of environmental fluctuations in population growth
3
. However, more recent theory 31 

has shown that environmental autocorrelation may have a dramatic impact on population growth and 32 

extinction risk in a stochastic environment
12–16

. The reason is that positive temporal autocorrelation 33 

facilitates phenotypic tracking of environmental fluctuations by phenotypic plasticity
17,18

, evolutionary 34 

responses to natural selection
19

, or both, thereby modifying the mean and variance of population 35 

growth rates. However theoretical predictions are scarcer for negatively autocorrelated fluctuations, 36 

where high and low conditions alternate rapidly but predictably. More importantly, we lack empirical 37 

validation of this theory in a form that combines the realism of a continuously varying environment 38 

(such as temperature, humidity, salinity) with the high replication required to properly investigate 39 

responses to stochasticity. High replication is all the more important as environmental autocorrelation 40 

is expected to influence the variance of population size among independent realizations of stochastic 41 

population dynamics, therefore increasing extinction risk
12

. 42 

An increasing number of studies have inferred the level of environmental stochasticity in population 43 

growth in the wild
20,21

 and the demographic consequences of environmental autocorrelation
22,23

. 44 

However, attributing population size fluctuations to measured environmental factors is extremely 45 

challenging in the wild, where such factors may largely covary among each other, and the origin of 46 

their variation is unknown. Furthermore, observations from natural population generally consist of a 47 

single realization of a process with a limited number of time points (usually below 50), whereas 48 
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assessing the range of likely outcomes for any stochastic process in the future requires many 49 

replicates, and/or long time spans. Experimental studies in the laboratory with short-lived organisms 50 

appears as a necessary bridge between theory and nature, because they allow testing theoretical 51 

predictions with ample replication and precision, potentially yielding general insights about population 52 

responses to environmental stochasticity. However, the few experimental studies about demographic 53 

consequences of environmental autocorrelation have had contrasting findings
24–27

. To achieve 54 

significant progress on this question, we need to overcome the specificities of each individual system 55 

by establishing robust and general mechanistic links between environments and population 56 

demographic processes. 57 

Such a link can be provided by environmental tolerance curves, which measure how fitness or its life 58 

history components (survival and fecundity) respond to abiotic environmental variables such as 59 

temperature or salinity. Tolerance curves are increasingly popular tools connecting physiology and 60 

ecology in response to climate change
28–30

, notably because they share many commonalities across 61 

taxa and environmental factors, thus allowing for generalization. They are typically hump-shaped, 62 

with an optimum at some intermediate environmental value that coincides to some extent with the 63 

historical environment of the species
31,32

. This non-linear relationship between the environment and 64 

absolute fitness is predicted to strongly drive effects of environmental stochasticity on population 65 

dynamics and extinction risk
12

, but these predictions still largely lack empirical validation. 66 

Furthermore, environmental tolerance curves can potentially be influenced by the history of 67 

environments experienced by an individual
30,33–35

 (phenotypic plasticity) or its ancestors
36

 (trans-68 

generational plasticity), but it is unclear to what extent population dynamics will be affected by such 69 

environmental memory effects. To answer these questions, we carried out a highly replicated 70 

experiment with a eukaryotic microorganism, in order to investigate how environmental 71 

autocorrelation influences population dynamics and extinction risk in a stochastic environment. 72 
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Results 73 

We exposed six ancestral lineages (hereafter genotypes) of the facultative sexual microalgae 74 

Dunaliella salina to randomly varying salinities during 37 transfers (~100 generations). Using a liquid 75 

handling robot, we transferred each line twice a week (every 3 or 4 days), diluting 15% of the 76 

population of origin into fresh medium with controlled salinity, which differed across lines. More 77 

precisely, our treatments consisted of 164 time series with the same mean (µ = 2.4M NaCl) and 78 

variance (standard deviation σ = 1M NaCl), but 4 autocorrelation levels, from negative ( = -0.5) to 79 

highly positive ( = 0.9). In doing so, we modulated the pattern of salinity change between two 80 

successive transfers, without modifying the overall magnitude of fluctuations (Figure 1 a. and b., 81 

upper panel). Importantly, 39 (out of 41) time series within each treatment were different, independent 82 

realizations of the same stochastic process, allowing investigation of the variance introduced by 83 

environmental stochasticity, which is known to be an important driver of extinction risk
2,12

. We 84 

tracked population densities and the proportion of extinct populations at each of 37 transfers (~100 85 

generations, over 4 months) using optical density, fluorescence and flow cytometry. We then 86 

estimated the intrinsic rate of increase between each successive transfers, assuming continuous logistic 87 

growth following the 15% dilution (Figure 1c). 88 

In addition to three single strains (genotypes A: CCAP 19/18, B: CCAP 19/18 and C: CCAP 19/15), 89 

we used the three possible mixes of two of these strains (genotype AB, AC and BC), to test for 90 

potential advantages of genetic diversity on population dynamics. One of the single genotypes (B) 91 

grew too slowly to compensate for dilution at each transfer and got extinct rapidly (Extended Data 1) 92 

even in constant treatments, so it was discarded from further analysis. 93 

Environmental autocorrelation strongly affects population size. Environmental stochasticity 94 

initially caused a rapid increase of variation in population size among our different lines of a same 95 

stochasticity treatment (as materialized by the dashed confidence interval in Figure 2.a.), as expected 96 

because population growth accumulates linearly on the log scale during a phase of exponential 97 

growth
2,12

. The stochastic variation among lines then settled to an approximately constant value, 98 
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characteristic of the stationary phase (days > 45, Figure 2a), where fluctuating population sizes 99 

spanned several orders of magnitude, in contrast with the small variance among replicates in constant 100 

environments (Extended Data 2). This is consistent with theory showing that stochastic environments 101 

can cause large fluctuations in population sizes around their expected carrying capacity
2,12,37

. 102 

The distribution of log-population size was asymmetric for all treatments and genotypes, with a 103 

negative skew causing an excess of very small populations undergoing high extinction risk (Figure 104 

2.b. and e). Remarkably, this skewness is consistent with models of a moving optimum phenotype in a 105 

stochastic environment
12

 - equivalent to models of tolerance curves with an optimum 106 

environment
12,35,38

 -, but not necessarily with classic phenomenological models where noise is added to 107 

the population growth rate without an explicit tolerance curve
2,3,39

. This suggests that fluctuations in 108 

our experimental populations are driven to some extent by the interplay of a stochastic environment 109 

with a hump-shaped tolerance curve with an optimum. However, density dependence in population 110 

growth also impacts the distribution of population size, modifying the influence of the stochastic 111 

environment
2,40

. To control for this influence of density dependence, we analyzed the distribution of 112 

the intrinsic growth rate r, i.e. the rate of exponential growth at low population density, extracted from 113 

a model of continuous logistic growth (Figure 1.c). We found strong support for an asymmetrical 114 

distribution of r (ΔAIC = -3713 between a normal and a reverse gamma distribution), with an 115 

estimated skewness between -1.7 and -0.4 (Figure 3.d).  116 

Using the population sizes estimations obtained from the reverse gamma model, we found important 117 

differences between the dynamics of populations exposed to different autocorrelation treatments. For 118 

each of the genotype x autocorrelation treatment (from 438 to 833 data points), we computed the 119 

distributions of the population size during the stationary phase, and analyzed the influence of 120 

environmental autocorrelation on moments of these distributions. As environmental autocorrelation 121 

increased, populations underwent fewer episodes of negative growth, and smaller fluctuations in size 122 

(Figure 1). As a consequence, the mean (log) population size was larger under larger environmental 123 

autocorrelation (Figure 2c, slope = 0.71±0.11, p = 4.0.10
-5

), contrary to classical population dynamics 124 

predictions where the expected intrinsic growth rate only depends on the mean and variance of the 125 
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environment
3,4,6

. The variance in log population size among replicate lines decreased with increasing 126 

autocorrelation (Figure 2d, slope = -3.0±0.71, p = 1.3.10
-3

). This contrasts with the common 127 

theoretical prediction that higher autocorrelation generates long batches of good/bad environments in 128 

different lines, thereby increasing population size variance among lines
12–15

, but is consistent with a 129 

contribution of environmental autocorrelation to phenotypic tracking of the environment (via 130 

phenotypic plasticity or genetic evolution), reducing the magnitude of population fluctuations
19

. We 131 

found a general trend for lower asymmetry (negative skewness closer to 0) with increasing temporal 132 

autocorrelation, but this effect highly depended on the strain (or mix) used and was not significant 133 

(Figure 3.d, slope = 0.19±0.25). Temporal autocorrelation of the stationary population size was highly 134 

variable within genotype x autocorrelation treatment (Figure 3.e). In particular, it was never found 135 

significantly different from 0, even in the highly autocorrelated treatment (ρ = 0.9), highlighting that 136 

temporal autocorrelation of the environmental factors translates only very weakly into autocorrelation 137 

of population sizes
25,41–43

. 138 

Environmental memory governs population dynamics. To reach more mechanistic insights 139 

into drivers of stochastic population dynamics in our experiment, we used the known salinity and 140 

population measurements to estimate a hump-shaped tolerance curve relating the intrinsic rate of 141 

increase r(T) following transfer T to the current salinity ST, 142 

                              
 , 1 

where the subscript ‘univ’ is for univariate. This was compared to a bivariate tolerance curve that also 143 

includes an effect of memory of the previous environment (prior to the last transfer), via the salinity 144 

ST - 1, 145 

                             
       

             2 

where e determines the tolerance breadth with respect to the current environment, d the breadth of the 146 

environmental memory effect, and f the interaction between past and current salinity. 147 

We fitted parameters of the tolerance curve with (equation 2) or without memory (equation 1), under 148 

the same model of logistic growth as in the first section, assuming a Gaussian distribution of the 149 
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population size around its expected value (given the value at the previous time step). We found strong 150 

support for the generalized bivariate tolerance curve (ΔAIC < -10
-3 

and p-values from likelihood ratio 151 

test < 10
-9

 for all genotypes, see Supplementary Table 1), revealing an important impact of 152 

environmental memory on population growth. Growth rates were highest for populations transferred 153 

from high to low salinity, while populations transferred from low to high salinities declined (Figure 154 

3.a), notably because of high mortality that could be detected by flow cytometry (Extended Data 3a, b, 155 

c). 156 

To quantify the extent to which tolerance curves and memory effects explain the variation in growth 157 

within and across autocorrelation treatments, we derived the moments of population growth rates 158 

predicted by combining these tolerance curves with the realized salinity time series, and compared 159 

them to their estimated counterparts that do not use information about salinity (Supplementary Table 160 

1). The tolerance curve with memory correctly predicted increases in the mean (slope = 0.069±0.009, 161 

p = 1.5.10
-5

) and skewness (slope = 0.58±0.09, p = 2.9.10
-5

) of population growth rates with increasing 162 

environmental autocorrelation, and a decrease in their variance (slope = -0.12±0.01, p = 2.18.10
-8

), 163 

while all these effects were entirely missed by a memoryless tolerance curve (continuous vs dashed 164 

lines in Figure 3b, c, d). The predicted and observed responses to environmental autocorrelation were 165 

in very good quantitative agreement for the mean and variance of population growth rate (Figure 3b, 166 

c), and were qualitatively consistent for the skewness of population growth rate (Figure 3.d). Temporal 167 

autocorrelation of the growth rate displayed discrepancy between the fit from the data and prediction 168 

from the tolerance curves (Figure 3e). Nevertheless, the tolerance curve with memory allowed for 169 

negative autocorrelation of population growth rates despite positive environmental autocorrelation, as 170 

observed in the data but not possible with a memoryless tolerance curve. 171 

A candidate mechanism: plasticity of glycerol content. Although a range of physiological 172 

mechanisms are probably involved in these population responses to salinity fluctuations, glycerol 173 

content is a key candidate phenotypic trait. Glycerol acts as an osmoregulator, with intracellular 174 

concentration responding nearly linearly to the environmental salinity
44

. It is the major mechanism that 175 

makes Dunaliella a model species for salinity tolerance
44

. To investigate the possible role of this 176 
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metabolite in our population responses to salinity, we tracked the dynamics of intracellular glycerol 177 

following a change in salinity. When going from high (3.5M NaCl) to low salinity, intracellular 178 

glycerol concentration first changed almost immediately, with significant differences in glycerol 179 

contents as soon as 16 minutes after transfer in 0.5, 2 or 3.5M NaCl (Supplementary Table 1), 180 

probably through excretion
45

, followed by a slower adjustment of glycerol level (Figure 4). In contrast, 181 

the reciprocal transfer from low (0.5M NaCl) to high salinity, which requires de novo production of 182 

glycerol
44

, triggered slower change in glycerol content, with significant differences between transfer in 183 

0.5 and in 2M NaCl found only after 135 minutes (Figure 4 and Supplementary Table 1). Most cells 184 

even died before their glycerol content could be measured in the transfer to the highest salinity (Figure 185 

4). This is consistent with our observation that transitions from low to high salinity are more 186 

detrimental to the population dynamics than the reverse (Figure 3a). 187 

Extinction rates increase with decreasing autocorrelation. Nearly half the lines went extinct 188 

by the end of the experiment (Figure 5a). Environmental autocorrelation had a strong impact on 189 

extinction risk. Populations from low autocorrelation treatments (ρ = -0.5 and ρ = 0) went more extinct 190 

(72 and 61% extinct by the end of the experiment, median survival time: 77 days and 83 days, 191 

respectively) than populations from positive autocorrelation treatments (33 and 34% extinct by the end 192 

of the experiment for ρ = 0.5 and ρ = 0.9, respectively; p < 1.10
-4

, log ranked test performed 193 

independently for all genotypes, see Supplementary Table 1 for details). We found no evidence for an 194 

effect of genetic variation on extinction risk in our experiment, as single-strain lines did not differ 195 

significantly from mixed-strain lines, and there was no indication that recombination contributed to 196 

population persistence in mixed-strain lines (Supplementary Information). Simulations using the 197 

tolerance curve with environmental memory combined with the actual times series of environments 198 

gave results qualitatively similar to our data (Figure 5b). By contrast, a memoryless tolerance curve 199 

reversed the predictions, with the lowest extinction risk predicted under negative or null 200 

autocorrelation. The reason for this reversal is that, without environmental memory (and neglecting 201 

rapid evolution), environmental autocorrelation does not help phenotypic tracking of the 202 

environmental optimum, and therefore has no direct effect on the distribution of population growth 203 
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rates (dashed lines in Figure 3b-d), but only influences how growth rates are integrated into the 204 

population dynamics. Because all things being equal, more autocorrelated growth rates cause larger 205 

variance in population size (as confirmed in simulations without memory, p < 10
-3

), they are expected 206 

to increase extinction risk in the absence of environmental memory
12,15

. This effect is totally buffered 207 

by environmental memory: with higher mean and lower variance in growth rates, populations 208 

experiencing positively autocorrelated environments are less likely to fall below a critical threshold for 209 

extinction.  210 

Discussion 211 

Random environmental fluctuations largely contribute to natural baseline rates of extinction
1–6

, which 212 

are currently aggravated by trends such as global climate change. Furthermore anthropogenic 213 

activities, beyond their effects on mean environments, are altering the patterns of these random 214 

fluctuations, including their temporal autocorrelation
8,9

. There is thus is a pressing need to empirically 215 

characterize and quantify drivers of extinction risk in an autocorrelated stochastic environment. Using 216 

a highly replicated experiment with many independent environmental time series, we found that 217 

environmental autocorrelation can have a strong impact on population dynamics and extinction risk. In 218 

other words, extinction risk depends not only on the mean and variance of environmental fluctuations, 219 

but also on the order in which environments are encountered, within and across generations. This 220 

implies that the color of environmental noise, as increasingly documented in the ecological 221 

literature
10,13,15,16,24–26

, is likely to be an important driver of population dynamics. Importantly, the 222 

impacts of environmental autocorrelation on population dynamics could be predicted accurately in our 223 

experiment using the simple and general concept of the environmental tolerance curve, which 224 

summarizes all influences of the environment with a few parameters. This validates the utility of this 225 

tool as a way to predict population dynamics in a changing environment, by connecting physiology to 226 

ecology
28

. However, we only reached accurate predictions when an influence of past environment was 227 

accounted for in these tolerance curves.  228 
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The large influence of environmental memory on population dynamics in our experiment implies that 229 

the phenotype of an individual cell is partly affected by the environment experienced by its recent 230 

ancestor(s), which can be described as trans-generational phenotypic plasticity, or environment-231 

dependent parental effect, a form on non-genetic inheritance
30

. There is abundant evidence in microbes 232 

that prior exposure to stress can affect later stress responses
46

, and such acclimation experiments 233 

generally span over several cellular generations. In our experiment, genetic evolution could in 234 

principle also contribute, because some lines are highly polymorphic, but the time scale of ~3 235 

generations between transfers is not consistent with large evolutionary change between transfers. In 236 

addition, clones isolated from mixed BC populations displayed similar tolerance curves as the whole 237 

population (Extended Data 5), confirming that (trans-generational) phenotypic plasticity is the major 238 

mechanism responsible for this short-term environmental memory.  239 

Our experiment included elements of realism that are uncommon in the laboratory, such as 240 

continuously distributed fluctuations of an environmental variable, and a large number of independent 241 

realization of the same stochastic process. This represents a large step towards bridging the gap 242 

between theory and natural populations on quantitative rather than qualitative grounds, an important 243 

goal for population ecology. Note that in our batch culture setting, the environment changed every 3 or 244 

4 days, i.e. every 2 to 5 generations (depending on salinity) for our model species D. salina, while 245 

salinity remained constant during the interval between transfers. This means that the autocorrelation 246 

we report is not a value per generation or per unit time as in theoretical models, but across transfers. 247 

This limitation is common to any experiment that uses organisms with continuous overlapping 248 

generations in batch culture, since changing the environment continuously over time in a stochastic 249 

way is essentially impossible. Such discretization does not hamper our conclusions about the influence 250 

of environmental correlation on population growth and extinction risk in our experiment, but it should 251 

be kept in mind when comparing quantitatively the effect of environmental autocorrelation in our 252 

experiment versus in wild populations of higher organisms, where censuses and environmental 253 

measurements are made at regular intervals (typically a year
2
).  254 
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Microbes are inherently prone to transgenerational effects because they lack soma-germline 255 

differentiation, and therefore transmit their cytoplasm content and regulation factors to daughter cells 256 

upon reproduction. However, trans-generational effects mediated by non-genetic inheritance are 257 

increasingly documented in multicellular eukaryotes
47

, and have been shown recently to affect 258 

demographic parameters in a fluctuating environment in an animal
36

. This suggests that our results are 259 

also relevant to natural populations of larger organisms with conservation concerns, and that plasticity 260 

and non-genetic inheritance should generally be considered when investigating extinction risk in a 261 

randomly changing environment.262 
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Methods 263 

Dunaliella strains 264 

We used two closely related strains of the facultative sexual microalgae Dunaliella salina, 265 

CCAP 19/12 (A) and CCAP 19/15 (C), and one more distant strain CCAP 19/18 (B). The lines were 266 

not axenic nor clonal when received from Culture Collection of Algae and Protozoan (Glasgow).We 267 

exposed them to increasing salinities (up to 4.8M) during several weeks to eliminate putative non-268 

Dunaliella species of eukaryotes and finally isolated them by cell sorting (BD FACS Aria IIu, up to 269 

10
5
 cells). We then initiated 1074 lines from six ancestral backgrounds, with either low or high genetic 270 

diversity. Single strain lines (A, B and C) were used for the low genetic diversity treatment, and high 271 

genetic diversity lines were initiated by a 50% mix of two strains (AB, BC and AC). 272 

Experimental design 273 

Each ancestral genetic background was exposed to three constant salinities (with 5 replicate lines per 274 

salinity), and 156 fluctuating salinity times series. The latter consisted of 39 independent time series 275 

(with the first one replicated 3 times) for each of four autocorrelation treatments: ρ = -0.5 (blue noise), 276 

ρ = 0 (white noise), ρ = 0.5 and ρ = 0.9 (red noise).  277 

At each transfer, a 15% aliquot of each population was replicated in fresh medium with controlled 278 

salinity. The same dilution rate (d = 15%) was used in all treatments, and set so as to compensate for 279 

the intrinsic growth rate across variable environments for the slowest growing strain (strain B). 280 

However, growth rates were overestimated in our preliminary measurements, so that the dilution rate 281 

that we used caused the loss of most B lines before the end of the experiment. 282 

Constant treatments were low ([NaCl] = 0.8M), medium (2.4M), and high (3.2M) salinities. The 283 

stochastic treatments involved continuously ranging, (near) normally distributed salinities, with same 284 

mean 2.4M and variance 1 among treatments, but temporal autocorrelation set by the treatment. We 285 

generated fluctuating salinity time series as follows: 286 
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- Generate a first-order autoregressive (AR1) process of length 1000000, mean 2.4, variance 1 287 

and autocorrelation set by the treatment. An AR1 process is a stationary Gaussian process, in 288 

which the value at a given time step is a linear combination of the value at the previous time 289 

step plus an independent normally distributed noise.  290 

- Truncate this theoretical process so as to keep only reachable salinity values. This involved 291 

removing salinities below 0 and above [NaCl]max = 4.8M, as well as salinities that made the 292 

transition from the previous time point impossible because of the constraints imposed by the 293 

15% dilution upon transfer. 294 

- Estimate the (reduced) variance of this truncated process  295 

- Increase input variance (step += 0.05) and repeat all previous steps, until the reduced variance 296 

V = 1 ± 0.01 297 

- Generate 39 times series of length 37 time steps for each autocorrelation treatment, using as 298 

input variance the value from the iterative search described above. The mean, variance, and 299 

temporal autocorrelation of these times series were checked to conform to their setpoint 300 

values. The distribution of salinities in all time series for the different autocorrelation 301 

treatments did not deviate from the expected Gaussian (Extended Data 4).  302 

Transfers and growth 303 

Experimental lines were cultured in 96 deep-well plates with artificial saline water + 2% Guillard’s 304 

F/2 marine water enrichment solution (Sigma; G0154-500ml). Lines were distributed in 18 plates, 305 

such that each combination of ancestral genotype x environmental treatment was equally represented 306 

in all plates. Population positions in each plate were then randomized across the 60 central wells 307 

(external wells were not used because they experience larger evaporation). A liquid handling robot 308 

(Biomek NX from Beckman) was used to serially transfer these lines twice per week (alternating 309 

three-day and four-day cycles) into fresh medium. The salinity in this new medium was set 310 

independently in each well by adjusting the volumes of a hyposaline ([NaCl]min = 0M) and a 311 

hypersaline ([NaCl]max = 4.8M) solution, following 312 
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3 

where [NaCl]ρ,i,T and [NaCl]ρ,i,T - 1 are the setpoint salinities at transfers T and T - 1 (respectively) for 313 

time series i of autocorrelation treatment ρ, Vtot = 800 µL is the total volume of culture, and d = 15% is 314 

the dilution rate as defined above. 315 

Plates were covered with plastic lids, sealed with Parafilm and placed at a fixed position in a growth 316 

chamber, with temperature set at 24°C, and light at 200 μmol.m
-2

.s
-1

 for 12:12h LD cycles. 317 

Population density measures 318 

After each transfer, cell density before dilution was measured using 3 complementary methods. We 319 

measured optical density (absorbance at 680nm) and fluorescence (excitation at 390-80nm, emission at 320 

685-40 nm) in a 200 µL sample of the each population using a BMG ClarioStar spectrophotometer. 321 

Cells from the same sample were then counted by flow cytometry (Guava EasyCyte HT). Dunaliella 322 

cells were isolated from debris using forward scatter (FSC), side scatter (SSC), red (695/50 nm) and 323 

yellow (583/26 nm) fluorescence emissions (excitation 488 nm, See Extended Data 3a., b. and c. for 324 

details). Cytometer performance was checked using a standardized fluorescent bead reagent 325 

(EasyCheck Kit, Merck Millipore) before each measure. Because of time limitation, only half of the 326 

plates went into the flow cytometer after each transfer, while the remaining plates were read in the 327 

next transfer, such that each plate was passed through the flow cytometer once per week. 328 

To calibrate among our different measures of population density, we first regressed the fluorescence 329 

and OD over the population density as estimated from cytometer counts (see Extended Data 3 d. and 330 

e.), excluding the data points where spectrometer measures were too low and exhibited high 331 

uncertainty (fluorescence < 400 and absorbance < 0.01). We obtained: 332 

                             

                                   
 4 
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where ODblank and Fluoblank are the fluorescence and absorbance in wells known to be empty (control 333 

wells or extinct populations) within each given plate. 334 

Statistical analysis 335 

We analyzed population dynamics using an ad hoc state-space model. As typical in state-space 336 

models
48

, our model comprised two main components: (i) an underlying, unobserved process 337 

describing the true stochastic dynamics of the populations size; (ii) and an observation model, which 338 

describes how this process translates into measurements, with errors that are independent after 339 

conditioning by the underlying process. We wrote an explicit likelihood function in C++ and 340 

optimized it in R (version 3.5.2), using the TMB package
49

. R and C++ codes are available from the 341 

Dryad digital repository
55

.  342 

Observation model 343 

In a preliminary experiment, we determined the error distributions of cytometer counts, absorbance 344 

and fluorescence error. We made replicated (x3) measured of population sizes in serial dilutions of a 345 

Dunaliella culture, with concentration ranging from 30 to 10
6
 cells.mL

-1
, and fitted generalized linear 346 

regression between measurements and the known relative population sizes, expressed as a ratio of the 347 

maximal population size. We compared AIC from normal, lognormal, poisson and negative binomial 348 

models. Absorbance and fluorescence error were respectively normally and log-normally distributed, 349 

while cytometer measures followed a negative binomial distribution, with mean the actual population 350 

size. We thus used as the observation model for cytometer counts  , fluorescence  and absorbance 351 

  ,  352 

            

                      

              
 5 

where    denotes a negative binomial, N is the true population density (governed by the unobserved 353 

process), and the   are parameters that control the error variances (or overdispersion for cytometer 354 

counts) of these measurements. 355 
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Process model 356 

We assumed that population density followed continuous logistic growth: 357 

          

  
             

         

  
  6 

where N(t)g,ρ,i is the population density for the population from strain g, environmental treatment ρ, 358 

and time serie i at time t, Kg the carrying capacity of genotype g and r(t)g,i,ρ its intrinsic growth rate in 359 

the environment experienced at time t. In the constant treatment analysis, Kg was also allowed to vary 360 

between salinity treatments (Kg,S). 361 

Given that r(t)g,ρ,i is constant over the time interval between two successive transfer, population size at 362 

transfer T + 1 can be implemented from population size at transfer T by integrating equation 6 363 

(         3 or 4 days), following a 15% dilution rate (d): 364 

            
              

                     

                 
                   

 7 

A convenient property of state-space models is that observation errors are independent conditional on 365 

the process
50

 (and independent of the process). Therefore, the overall log-likelihood in our model was 366 

simply the sum of the log likelihood of the process (equation 7, 8, 9, 10) and that of all observations 367 

(equation 5), producing an explicit formula amenable to numerical optimization. 368 

Density dependence analysis using constant treatments  369 

As our model was unable to estimate density dependence directly from the time series of fluctuating 370 

salinities, we first analyzed the population dynamics from constant time series in an independent 371 

model for this purpose. We considered that both the intrinsic growth rate rg,S and the carrying capacity 372 

Kg,S were constant across replicates and transfers for one strain g in one salinity S. The probability 373 

distribution of population size at transfer T + 1, for strain g and salinity treatment S is then  374 

                                                   8 

where                            is the continuous logistic function given by equation 8 and   is the 375 

process error. For each genotype, likelihood ratio test between a model where      was constant across 376 
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salinity and a model where      varies with salinity was performed. We found that       differed 377 

significantly but slightly between salinity treatments (Extended Data 2 d), so we used a constant     378 

for each genotype in further analysis. 379 

Fluctuating growth analysis 380 

Environmental fluctuations caused variation in the intrinsic rate of increase r in all our stochastic lines. 381 

The distribution of r results from the interaction between moments of the stochastic environment 382 

(mean, variance and autocorrelation) and the growth response of each genotype to the environment. 383 

The distribution of r may be characterized by its mean, variance, but also skewness
12

 and potentially 384 

by the autocorrelation of r across transfers. We estimated the parameters of this distribution for each 385 

autocorrelation treatment x genotype, within the state space model described by equations 5 and 8. We 386 

fitted either an autocorrelated normal (equation 9) or a reverse gamma distribution (equation 10) for 387 

         ,  388 

                                                      
        

   9 

or  

       
                            10 

where           and      are the maximal growth rate, the shape and the scale parameter for the 389 

gamma distribution for strain g in the   environment. Mean      , standard deviation      and skewness 390 

           were simultaneously estimated (estimation and standard error) from        
,      and      391 

using the ADREPORT procedure of the TMB package.  392 

Population densities were estimated as random variables with a residual component of variation, and 393 

were hence only very weakly affected by the assumed shape of the growth rate distribution (r² > 0.99 394 

between the normal and the reverse gamma estimates, see Extended Data 6). This allowed us to 395 

visualize the goodness of fit for the reverse gamma and the autocorrelated normal. Using the 396 

population size estimates, we computed the realized intrinsic growth rate, corrected for density 397 

dependence: 398 
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11 

and plotted them against the predicted distribution fitted by the normal and reverse gamma model 399 

(Extended Data 1). 400 

To assess the extent to which population fluctuations were driven by responses to fluctuating salinity, 401 

we then used salinity as an environmental covariate. We explicitly expressed the growth rate           402 

as a function of both the current (        ) and the previous salinity             . We modeled a bivariate 403 

tolerance curve using a 2
nd

 order polynomial, with parameters depending on the strain g, 404 

         
                                       

           
    

                 
12 

leading to equation 2 in the main text. 405 

Population size at T + 1 then followed a logistic growth (equation 7) with growth rate determined by 406 

current and previous salinity following equation 10, and we assumed a constant Gaussian distribution 407 

of the residuals generated by the process error, with standard deviation β: 408 

                                                           
       13 

Similar analysis was performed using only the salinity of growth (        ) in order to fit a tolerance 409 

curve without environmental memory (equation 1 in the main text): 410 

         
                                       

  14 

Moments of population density and intrinsic growth rates. 411 

We used the population density outputs of the gamma model (equation 10) to estimate the mean, 412 

variance, skewness and autocorrelation of log population density of non-extinct lines during the 413 

stationary phase (day > 40), for each autocorrelation treatment   genotype combination (39 414 

independent lines over up to 26 transfers – replicates 2 and 3 of series 1 were excluded from this 415 

analysis). Confidence intervals for these estimates were obtained by bootstrap (1000 simulations), 416 

where population densities were sampled for each simulation from a normal distribution with mean 417 
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and standard deviation given by their corresponding estimate and standard error. We then performed 418 

mixed linear regression between these computed moments and the environmental autocorrelation, with 419 

ancestral genotype as a random factor, using the R package lme4
51

. To include the uncertainty in the 420 

estimation of population size moments, we performed 1000 generalized linear regression with 421 

population moment sampled from a normal distribution with parameters their estimate and error, and 422 

corrected for multiple imputation using the R package MICE
52

. 423 

Similar regressions were performed on 1000 simulations of the growth rate moments, sampled from a 424 

normal distribution with parameters the estimate and standard error obtained from the gamma model. 425 

Mean, variance, skewness estimates, and their associated errors, were directly fitted in the gamma 426 

model. Autocorrelation of the intrinsic rate of increase was computed using the realized population 427 

sizes estimated in the gamma model, with similar bootstrap and sampling as used for the population 428 

log density analysis. 429 

Fitted moments of the intrinsic rate of increase were compared to analytical predictions based on the 430 

tolerance curves, with or without memory. Subsequent salinities in our time series closely follow a 431 

binormal distribution (except for a weak truncation caused by our experimental design, see Extended 432 

Data 4), with mean µ = 2.4M and variance σ
2
 = 1 at both steps, and correlation given by the 433 

environmental autocorrelation ρ. Combining this with the tolerance curve with memory leads to 434 

explicit formulas in the Mathematica 11 notebook available from the Dryad repository
55

. In particular, 435 

we found that the mean growth rate    increases linearly with the environmental autocorrelation ρ(E), 436 

while the variance Var(r) is a quadratic function of ρ(E). Analytic formula for the skewness and the 437 

variance are more complex, but show notably that environmental memory allows for negative 438 

autocorrelation of the growth rate ρ(r), even when the environment is positively autocorrelated, a 439 

pattern that we found in our data but that could not be achieved without a memory effect.  440 

Without memory (equation 14), the moments of the distribution of growth rates take a simpler form, 441 

summarized in Supplementary Table 2 (details in Mathematica 11 notebook in Dryad digital 442 

repository
55

). In the absence of environmental memory, the mean, variance and skewness of the 443 

intrinsic rate of increase do not change with environmental autocorrelation ρ. Skewness is always 444 
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negative for humped-shaped tolerance curves (cuniv < 0). The effect of the environmental 445 

autocorrelation ρ(E) on the autocorrelation of the intrinsic rate of increase ρ(r) depends on the distance 446 

between the salinity optimum and the mean environment. When the phenotypic optimum corresponds 447 

to the mean environment, ρ(r) = ρ²(E), while ρ(r) tends rapidly towards ρ(E) as the mismatch between 448 

environmental mean and salinity optimum increases. 449 

Survival analysis 450 

We determined the extinction time for each population in the stochastic environment. Because OD, 451 

fluorescence and cytometry measures were not precise enough to discriminate between population 452 

sizes below 1000 cells.mL
-1

, we considered that a population was extinct from the time it fell below an 453 

estimated 1000 cells.mL
-1

 (corresponding to a small number of cytometer counts, and a negligible 454 

density compared with the carrying capacity close to 10
6
) and remained under this threshold for at 455 

least 5 transfers. After this delay, observed growth events that occurred only in 8 populations were due 456 

to contamination. 457 

The survival responses in each treatment were then assessed by plotting the Kaplan-Meier survival 458 

curves (non-parametric model for the ratio of non-extinct populations through time), and analyzing 459 

differences in survival by log rank tests (ggsurvplot R package 
53

). Independent analyses were 460 

performed for each genotype, and average extinction rates and autocorrelation effects were found 461 

similar in all genotypes except B. To illustrate these effects, we plotted the Kaplan-Meier survival 462 

curves and median survival time (time by which 50% of the population were extinct) for the joined 463 

genotypes in each autocorrelation treatment (Figure 5). 464 

Simulations 465 

Tolerance curves fitted with (equation 12) and without (equation 14) memory were used to simulate 466 

population dynamics under our fluctuating salinity treatments. Process noise and observation errors 467 

were not simulated. Population size variance was analyzed using the same bootstrap method as used 468 

for the real dynamics, except that here the true simulated population sizes were known and not 469 
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sampled from their estimation distribution. Simulations did not include demographic stochasticity, so 470 

simulated lines were considered extinct after population densities were found below 1000 cells.mL
-1

. 471 

Intracellular glycerol dosage 472 

A background culture of genotype C was used to measure variation in intracellular glycerol 473 

concentration in response to salinity changes. The ancestral population was cultivated in 2.4M for 10 474 

days until it reached the late exponential phase. It was then split and acclimated for 7 days in 50mL 475 

flasks at low (0.5M) and high (3.5M NaCl) salinities. Each of these flasks was then split again and 476 

transferred to 0.5M, 2M and 3.5M NaCl in 50mL flasks, and sampled after 16, 45, 72 minutes, 2h15, 477 

4h15 and 1 day for glycerol dosage. 478 

Intracellular glycerol concentration was estimated from the difference between total and extra-cellular 479 

(after cell filtration) glycerol concentrations. 800µL Free Glycerol Reagent (Sigma Aldrich) was 480 

mixed to 200µL culture (with or without cells), and we measured optical density at 540nm after 5 481 

minutes incubation at 37°C. Glycerol concentration was then interpolated from a (linear) standard 482 

curve. Dunaliella densities were also estimated by flow cytometry, and we made two independent 483 

replicates of all measures. Intracellular glycerol concentration per cell was computed as 484 

                
                               

            
, 485 

where [] denotes a density/concentration. We computed the first-order standard errors of the intra-486 

cellular glycerol concentration using the delta method, accounting for the (independent) error of the 487 

cytometer, the total and the extracellular glycerol measures (Figure 4). We then performed Wald test 488 

to assess whether different glycerol levels were found under different treatments (Supplementary 489 

Table 1). 490 
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available from the Dryad digital repository
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Code availability statement 494 
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Figures legends 626 

Figure 1: Salinity, growth rates and population dynamics for two time series with different 627 

environmental autocorrelations. a. Times series number 19 for ancestral genotype AC and 628 

autocorrelation 0. b. Times series number 22 for ancestral genotype AC and autocorrelation 0.9. For 629 

the population growth rate, colors indicate whether growth rate compensates (blue, r > 0.542) or not 630 

(red) the bi-weekly dilution. Population size estimates and standard errors from the reverse gamma fit 631 

(solid line and ribbon) are represented together with the three raw measurements at each transfer 632 

(dots): cytometer counts (black), fluorescence (dark gray) and optical density (light gray). c. Estimated 633 

logistic population dynamics during transfers 14 to 19 (days 49 to 76), accounting for the biweekly 634 

dilution (arrows down). Red points and error bars correspond to the estimates and standard error for 635 

population size fitted in the model. Note that even when the population reaches high densities (here 636 

> 2.10
5
, while carrying capacity is estimated around 10

6
), the biweekly 15% dilution leads to nearly 637 

exponential growth after each transfer. The colored straight lines materialize the exponential phase, 638 

over which the population grows at rate r, the intrinsic rate of increase, colored in the same way as in 639 

the times series of r above. 640 

Figure 2. Population dynamics in a stochastic environment. Colors correspond to the temporal 641 

autocorrelation of salinity time series: -0.5: blue, 0: green, 0.5: orange, 0.9: red. a. Time series of 642 

population sizes under the 156 stochastic salinity series are plotted for genotype A (shaded lines), 643 

together with the exponential of the mean log population size (solid line) ± standard deviation (dashed 644 

lines). Population densities larger than 1000 cells.mL
-1

 are plotted on the log scale, on which mean and 645 

standard deviation were also estimated, excluding extinct lines. Population sizes under 1000 are 646 

plotted on the linear scale, thus allowing tracking extinctions. b. Histograms of log-population size 647 

during the stationary phase for genotype A (day > 40). Panels c-f: Moments of the distribution of log 648 

population size during the stationary phase (computed on 22497 points). Different symbols represent 649 

different genotypes: A (■), C (+), AB (▲), AC ( ) and BC (●), and bootstrapped 95% confidence 650 

interval are represented. The solid line represents the generalized linear regression on environmental 651 

autocorrelation. 652 
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Figure 3. Population growth rate in response to environmental autocorrelation. a. Tolerance 653 

curve with environmental memory relating growth rate r (intrinsic rate of increase) to the current (ST) 654 

and previous salinities (ST - 1), for genotype C (gray surface, black to light gray: r = -2 to r = 1), 655 

compared with the 3119 growth rates fitted under the reverse gamma model, under each 656 

autocorrelation treatment (points – same colors as Figure 2). The thick black line corresponds to the 657 

growth rate that allows overcoming the biweekly dilution (r = 0.542) and the thin black line shows 658 

r = 0. Ellipsoids at the bottom materialize the joint distributions of pre- and post-transfer salinities, 659 

under our four autocorrelation treatments. Panels b-e: Moments of the intrinsic rate of increase of lines 660 

A (■), C (+), AB (▲), AC ( ) and BC (●) in the four autocorrelation treatments. Mean (b.), variance 661 

(c.), skewness (d.) and autocorrelation (e.) of r are plotted against environmental autocorrelation for all 662 

genotypes, with their standard errors. Predictions from the tolerance curve with (solid line) or without 663 

(dotted line) environmental memory are also plotted for genotype C.  664 

 665 
Figure 4: Intracellular glycerol concentration in genotype C after transfer to a new salinity. The 666 

transfers were at time = 0, from 0.5M (dashed lines) or 3.5M (solid lines), to 0.5M (blue), 2M (purple) 667 

and 3.5M (red) NaCl. Transfer from 0.5 to 3.5M caused high mortality, and thus could not be 668 

analyzed. Each measurement was replicated twice, and first-order standard errors (bars) were 669 

computed using the delta method, accounting for the independent errors of the extra-cellular, total 670 

glycerol and population size (cytometer) estimations. The first time point corresponds to 16 min post-671 

transfer.  672 

Figure 5: Population extinctions across environmental autocorrelations. a. Survival curves 673 

(Kaplan-Meier) for the pooled genotypes A, AB, AC, BC and C, under the four autocorrelation 674 

treatments (same colors as in Figure 2). For each autocorrelation treatment, the solid lines show the 675 

estimated proportion of non-extinct populations, among the initial 195 populations (39 independent 676 

time series x 5 genotypes), and the dashed lines indicate 95% confidence bands. Stars and numbers 677 

indicate median survival times (times at which 50% of the populations has gone extinct) in the 678 

corresponding survival curve. b-c: Survival curves estimated from simulations parametrized with (b) 679 

or without (c) environmental memory, using the same salinity time series as in the experiment. 680 


