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Abstract: In this paper, the problem of the quantitative characterization of thermal resistance fields
in a multilayer sample is addressed by using the classical front face flash method as the thermal
excitation and infrared thermography (IRT) as the monitoring sensor. In this challenging problem,
the complete inverse processing of a multilayer analytical model is difficult due to the lack of
sensitivity of some parameters (layer thickness, depth of thermal resistance, etc.) and the expansive
computational iterative processing. For these reasons, the proposed strategy is to use a simple
multilayer problem where only one resistive layer is estimated. Moreover, to simplify the inverse
processing often based on iterative methods, an asymptotic development method is proposed here.
Regarding the thermal signal reconstruction (TSR) methods, the drawback of these methods is the
inability to be quantitative. To overcome this problem, the method incorporates a calibration process
originating from the complete analytical quadrupole solution to the thermal problem. This analytical
knowledge allows self-calibration of the asymptotic method. From this calibration, the quantitative
thermal resistance field of a sample can be retrieved with a reasonable accuracy lower than 5%.

Keywords: thermal resistance estimation IR thermography; inverse processing

1. Introduction

In the domain of material and microelectronic device characterizations, many groups and studies
have emerged with the goal to estimate both the thermal properties and resistance of these thin
multilayers. One of the most common procedures is based on the 3ω technique [1], which has been
extensively used since it offers absolute measurements of the heat flux and the temperature and is also
well suited for characterizations at low temperatures. At high temperatures, contactless photothermal
methods, such as the thermoreflectance [2,3] and infrared radiometry [4–6] techniques, have been
implemented and allow measuring the relative change in temperature and heat flux. Nevertheless,
calibration is a complex task within those experimental configurations. In this community, very few
studies are based on field characterizations. The notion of fields introduces the requirement to propose
new methods for which the computation time is reasonable, passing from only one time vector, to find
the inverse of a matrix. On the other hand, within the research groups involved in quantitative
infrared thermography, many authors have developed a technique for qualitative in-depth defect
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detection by using flash thermography and thermal signal reconstruction (TSR) [7,8] or the lock-in
technique [9]. Few authors, e.g., Tranta et al. [10] and Roche et al. [11], have linked the TSR method
with quantitative estimation of the defect depth. The same kind of studies have been performed by
Ibarra et al. [12] with a technique based on pulsed phase transformation (PPT) and thermographic
signal reconstruction similar to [13]. As depicted in [14] one alternative to these qualitative methods
is the use of parametrized 1D simulations with the quadrupole method as presented in the book
of Maillet et al. [15]. Some works were performed by coupling infrared thermography (IRT) and
the quadrupole approach, such as the one of Bendada et al. [16–18]. In fact, with these analytical
methods, it becomes easy to calculate a multilayer sample with several thermal properties as well as
thermal resistance. Then, by using nonlinear regression methods as proposed by Muller et al. [14],
the parameters of the model can be adjusted by least square minimization between the model output
and the experimental data. This approach is difficult when the initial values are poorly known and
could be time consuming when addressing a large amount of data, such as temperature fields, with
IRT. In the publication of Feuillet et al. [19], artificial delaminations were manufactured by introducing
PTFE (Teflon) inlays in carbon-fiber-reinforced plastics, and they attempted to reduce the inversion
by using singular value decomposition (SVD) [20–23]. Nevertheless, in this challenging problem,
the complete inverse processing of a multilayer analytical model is difficult due to the lack of sensitivity
of some parameters (layer thickness, depth of thermal resistance, etc.) and the expansive computational
iterative processing. For these reasons, the proposed strategy is to use a simple multilayer problem
where only one resistive layer is estimated. Moreover, to simplify the inverse processing often based
on iterative methods, an asymptotic development method is proposed. The main novelty comes
from the calibrating method between the analytical calculation of a theoretical base and the estimated
parameters of the asymptotic method. Then with the knowledge of this calibration curve, the estimated
parameters based on the measured one can be turn to quantitative ones.

Finally, in this work, a well-known flash setup is presented. A method is developed to model the
heat transfer within the multilayer sample by using the quadrupole formulation. Then, in the inverse
processing section, the autoregressive asymptotic development method is presented as well as the
calibration procedure. Finally, the results and discussion section presents the characterization of a
standard sample as a validation of the method.

2. Experimental Setup and Materials

The setup illustrated in Figure 1a and presented in Figure 1b is the classical front face flash system
associated with an IR camera. The flash lamp comes from Uniblitz and has an energy E of 1600 J.
Each lamp is synchronized with the IR camera by using an analogical TTL link to perform a pretrigger
mode before the flash. The IR camera is an MCT long-wave (λ = 9–11 µm) FLIR SC7600 with a matrix
sensor of 320 × 256 pixels and a pitch of 30 × 30 µm2. With the used lenses and the sample distance,
the resulting spatial resolution is approximately 300 × 300 µm2 per pixel.

For this study, a homemade reference sample was machined to calibrate the depth and thickness
of the thermal resistance, represented by an air square hole, as illustrated in Figure 2. The sample
is composed of polycarbonate layer of thickness ePC and the air thickness of the thermal resistance
is noted eRth.The geometrical and thermal properties are reported in Figure 2 and extracted from
reference [24] for aluminum and [25] for the polycarbonate. In this simple case, only a bilayer sample
was designed to demonstrate the capacity of the proposed method. However, the method can be
extended to multilayer stack. It is important to note that the minimum tolerance guaranteed by the
supplier is approximately +50 µm of the desired thickness (see Figure 2).
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Figure 1. (a) Schema of the experimental setup and (b) photograph of the bench.

3 Methods

a)

b)

Fig. 2: a) Photograph of the polycarbonate layer and b) schema of the reference sample used in this
study

3 Methods

3.1 Direct Problem

As illustrated in figure 3, the direct problem of the heat transfer within a multilayer sample can
be solved by using the quadrupole method [15]. It is important to note that according to the
multilayer used for characterization, the complete stack can be overlaid onto a substrate with
different thermal properties to also control the boundary condition imposed at the rear face of
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Figure 2. (a) Photograph of the polycarbonate layer and (b) schema of the reference sample used in
this study.

3. Methods

3.1. Direct Problem

As illustrated in Figure 3, the direct problem of the heat transfer within a multilayer sample can
be solved by using the quadrupole method [15]. It is important to note that according to the multilayer
used for characterization, the complete stack can be overlaid onto a substrate with different thermal
properties to also control the boundary condition imposed at the rear face of the sample. Usually,
a foam bulk is used to mimic an adiabatic condition, whereas a metallic plate is used to mimic the
imposed temperature.

Figure 3. Schema of multilayer with thermal resistance and a boundary condition.

Using the quadrupole formulation [15], the thermal response of any assembly (see Figure 3) can
be generalized according to the Equation (1). The quadrupole method enables taking into account
many layers as well as thermal resistances. A MATLAB homemade application (https://fr.mathworks.
com/matlabcentral/fileexchange/74199-1dt-multilayer-thermalquadrupole-solver-and-builder) was

https://fr.mathworks.com/matlabcentral/fileexchange/74199-1dt-multilayer-thermalquadrupole-solver-and-builder
https://fr.mathworks.com/matlabcentral/fileexchange/74199-1dt-multilayer-thermalquadrupole-solver-and-builder
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developed to generate any assembly and to realize a sensitivity study for any parameters of the
multilayer. The model is then expressed as:[

θe(p)
Ψe(p)− hθe(p)

]
=
[
∏N

i=1 M1R1...Ri−1MiRi...RN−1MN

] [ θs(p)
hθs(p)

]
(1)

In the Equation (1), Mi is the matrix relative to layer i and Ri is the matrix associated with the
thermal resistance between layers i and i + 1. They are both expressed in Equation (2). Moreover,
θe(K) and θs(K) represent the Laplace transforms of the front and rear face temperatures, respectively.
Ψe(p)(W.m−2) is the Laplace transform of the heat flux at the front face. Usually, the heat flux
waveforms can be Dirac, heaviside or a pulse with a duration linked with the flash lamp discharge
time. Finally, h(W.m−2.K−1) represents the convective heat losses.
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(2)

In Equation (2), p(s−1) is the Laplace variable, ei(m) is the thickness of layer i, ai (m2.s−1) is
the thermal diffusivity of layer i, λi(W.m−1.K−1) is the thermal conductivity and Rthi(m2.K.W−1) is
the interfacial thermal resistance. In the case of the sample represented in Figure 2, the front face
temperature can be solved for a wide range of layer 1 (i.e., the polycarbonate layer) thicknesses
ePC = [100, 1000] µm (9 steps of 100 µm) and corresponding thermal resistance thicknesses
eRth = [0, 1000] µm (10 steps of 100 µm) with a thermal conductivity of λair = 0.025 W.m−1.K−1 to
give the final generated thermal resistance Rth = [0,0.036] m2.K.W−1 with 10 steps of 0.004 m2.K.W−1.
Since the heat flux amplitude is unknown, the data are normalized according to any time step included
in the semi-infinite behavior of the temperature relaxation inside the first cross layer according to

the following formulation: Tn(t) =
T(t ≥ tre f )

T(tre f )
. To calculate the inverse Laplace transform of the

temperature, the Stehfest algorithm [26] is used. The dimensionless temperatures as a function of
time and for different polycarbonate layer thicknesses and thermal resistances are plotted in Figure 4.
The thermal properties of the polycarbonate layer and the aluminum layer are given in Figure 2.

3.2. Autoregressive Asymptotic Method

The asymptotic method consists of the development of the amplitude and time delay between
a reference temperature signal and a measured or generated one. The main assumption is that this
pseudothermal contrast is sensitive only to the intensity variations A (due to the presence of the
thermal resistance) and a delay τ(s) proportional to both the depth of the thermal resistance and its
thickness. If both parameters are estimated only the amplitude will be used to quantitatively estimated
the thermal resistance.

Tm(t) = ATre f (t) + τ
dTre f (t)

dt
(3)
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Figure 4. Loglog dimensionless temperature response of the front face to a pulse of 1 ms duration and
under adiabatic boundary conditions as a function of the thermal resistance depth and thickness of the
reference sample composed of polycarbonate and aluminum.

From the asymptotic Equation (3), and to avoid the influence of noisy data, an autoregressive
inverse algorithm [27] is applied for a long time, as described by the Equation (4). The inverse
processing is based on the Moore-Penrose inversion method [28,29]. The advantage of using this
autoregressive method is the ability to estimate the parameters as a function of time to create a strong
link with the maximum sensitivity corresponding to the early "separation" between the reference signal
and the signal to process. With the above remarks under consideration, the inverse of the system can
be written as follows

∫ t1
0 Tm(t)dt

...∫ ti
0 Tm(t)dt

...∫ tN
0 Tm(t)dt


=



∫ t1
0 Tre f (t)dt Tre f (0, t1)

...
...∫ ti

0 Tre f (t)dt Tre f (0, ti)
...

...∫ tN
0 Tre f (t)dt Tre f (0, tN)


[

A1 · · · Ai · · · AN
τ1 · · · τi · · · τN

]
⇔ Y = Xβ (4)

where A(−) is the amplitude of the asymptotic development, τ(s) is the time delay, t(s) is the time, and
the indices m and re f correspond to the measured temperature and the reference one. From Equation (4),
the pseudoinverse X is obtained by using the singular value decomposition (SVD) methods [20–23].
The principle of SVD is to decompose a matrix I of size m by n into a product of three matrices, where
U is an orthogonal matrix of size m by m, V is an orthogonal matrix of size n by n, and S is a “diagonal”
matrix of size m by n. The diagonal elements of S are called singular values. They are positive and
ranked from largest to smallest. If only the first p singular values are different from zero (p < n),
the SVD can then be further reduced. Thus, the pseudoinversion of Equation (4) gives:

β =
p

∑
k=1

UT
k Y
sk

(5)
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From the reference sample and the temperature response calculated and plotted in Figure 4, the
autoregressive method is applied to all the data, with the Rth = 0 plot as the reference, corresponding
to an assembly without any thermal resistance. The estimated parameters A(−) is reported in Figure 5
as a function of the generated thermal resistance Rth . The time required to calculate all the time
steps of the autoregressive method is approximately 6 s with a 2.3 GHz quad-core i5 MacBook Pro
with 16 GB of RAM. The data can be fitted by using polynomial regression for the thermal resistance
(Figure 5b). These results can be qualified by using a calibrating curve to link the nonquantitative
estimation given by the asymptotic development method to the absolute value of he thermal resistance.

(a) (b)

Figure 5. Results of the autoregressive inverse method based on the simulated analytical temperature
response from Figure 4: (a) estimated amplitude A as a function of time, the solid lines corresponds to
the different Rth of the Figure 4 and (b), calibration curve obtained from the extraction of the maximum
amplitude A as a function of the thermal resistance and amplitude at any time step of 19.7 s.

4. Results and Discussion

In this part, the results on the sample described in Section 2 are measured under the following
parameters: (i) flash duration of 1 ms, (ii) camera frequency acquisition of 200 Hz, and (iii) 4000 images
corresponding to a final time of 20 s and a pixel area of 300 × 300 µm2 for the spatial resolution.
The obtained results are plotted in Figure 6:

From these measurements, 5 regions of interest (ROIs) appeared. For each ROI, the corresponding
temperature evolution of one pixel can be extracted: 4 of them in the center of the thermal resistance
square hole and the fifth in the center of the image. All these temperatures plot are normalized

(baseline subtraction and reference division T∗n (t) =
T∗(t ≥ tre f )

T∗(tre f )
with T∗n (t) = T∗n (t ≥ t0)− T∗0 (t0),

where t0(s) is the time of the flash and tre f (s) any time during the -1/2 slope) and superposed onto the
"healthy" analytical model (calculated for the bilayer of Figure 2) assuming perfect contact between
all the layers. This normalization also avoid the non-uniformity of the global temperature coming
from the non-homogeneity of the flash lamp. The results represented in Figure 7 show a -1/2 slope
for a short time and the influence of the thermal resistance as well as the different depth effects as a
function of time. In the Figure 7, it can be clearly observed that for the deepest ROI the temperature
evolution quit the -1/2 slope further. For higher thermal resistance, the behavior is closer to adiabatic
case with variable inflexion tendencies. Moreover, it is very interesting to note that the ROI extracted
in the center of the image seems to be affected by a small thermal resistance (no exact superposition
with the supposed healthy model can be achieved).
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(a) (b)

(c) (d)

Figure 6. Temperature of the sample at (a) t = 0.87 s, (b) t = 1.12 s, (c) t = 1.67 s and (d) t = 5.12 s.

From this, we can estimate in Figure 8 the corresponding parameters. First, in Figure 8a,
the obtained amplitude is plotted. Here, one can see that the estimated values are in good agreement
with the ones estimated using the analytical solution represented in Figure 5a. Then, from the calibrated
curves calculated and represented in Figure 5b, the absolute and quantitative fields of the amplitude
value can be represented, as shown in Figure 8b. Here, the time required to calculate the parameters
with the inverse process (4) is approximately 7 s with a 2.3 GHz quad-core i5 MacBook Pro with 16 GB
of RAM. This computational time includes the inversion of a 51,012 × 4000 matrix representative of
the number of pixels in space (218 × 234) and the number of time steps of the thermograms.

In this validation case, the geometry and thermal properties of the studied sample are well known
(see Figure 2). Then, from the results in Figure 8, the agreement with the value is good, and the
respective theoretical and estimated values are reported in Table 1.

From the data Table 1 one can see that the error is always lower than 5%, with the maximum
uncertainty for ROI number 3 corresponding to a hole of 500 µm. One can also note that a threshold
has been performed before the identification in order to treat only the pertinent points belonging
to the patches. Indeed, a certain number of points in the ROIs borders are not pertinent because of
the strong gradient present here due to the 3D effect of the diffusion not taken into account in the
identification process (see Figure 8). For example, for ROI3, 1500 points over 1900 have been used for
the identification.
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Figure 7. Loglog dimensionless temperature response of the front face to a pulse of 1 ms duration and
adiabatic boundary conditions as a function of the thermal resistance for a sample composed of one
layer of polycarbonate, one layer of thermal resistance and one aluminum layer.

(a) (b)

Figure 8. Fields of: (a) estimated amplitude and (b), calculated thermal resistance based on the
calibration curve in Figure 5a.

Table 1. Comparison between the theoretical and estimated values.

eRth λair Rththeo Rthest Error ***
(µm) (W.m−1.K−1) (m2.K.W−1) (m2.K.W−1) (%)

* ROI 1 [200–250] ** 0.025 [0.008–0.01] 0.0087 3.4

* ROI 2 [300–350] ** 0.025 [0.012–0.014] 0.0126 3.1

* ROI 3 [500–550] ** 0.025 [0.02–0.022] 0.0221 5.2

* ROI 4 [800–850] ** 0.025 [0.032–0.034] 0.0328 0.85

*, The ROI order can be found in the schema in Figure 2 or the results in Figure 8; **, Systematic maximum

machining uncertainty of +50 µm given by the supplier; see Section 2; ***, Error 100×
∣∣∣∣1− Rthest

Rththeo

∣∣∣∣ calculated

with the average value Rththeo of the Rththeo gap.
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5. Conclusions

In this paper, a methodology for quantitative thermal resistance imaging estimation is proposed.
This method is based on asymptotic development and quantitative calibration by using an analytical
quadrupole formulation of the problem. The main advantages of this method are as follows: (i) the
possibility to address any type of multilayer (high numbers of layers, etc.), (ii) a fast inverse process
that can be adapted for online monitoring (inverse processing in less than 7 s), and (iii) the ability to
overcome the knowledge of the initial excitation heat flux as well as the absolute measured temperature.
The main drawbacks of the proposed methods are (i) the 1D character of the model and (ii) the
sensitivity to only one thermal resistive layer. Nevertheless, the complete method applied on a
heterogeneous bi-layer sample reveals a very good result with a complete estimation of the thermal
resistance fields in fast time (complete calculation time lower than 7 s) and accuracy with maximum
thermal resistance errors around 5%.
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