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Thermal resistance field estimations from IR thermography using multiscale Bayesian inference

The main goal of this paper is the estimation of thermal resistive fields in multilayer samples using the classical front face flash method as excitation and InfRared Thermography (IRT) as a monitoring sensor. The complete inverse processing of a multilayer analytical model can be difficult due to a lack of sensitivity to certain parameters (layer thickness, depth of thermal resistance, etc.) or processing time. For these reasons, our present strategy proposes a Bayesian inference approach. Using the analytical quadrupole method, a reference model can be calculated for a set of parameters. Then, the Bayesian probabilistic method is used to determine the maximum likelihood probability between the measured data and the reference model. To keep the processing method robust and fast, an automatic selection of the calculation range is proposed. Finally, in the case of a bilayer sample, both the thickness and resistive 3D layers are estimated in less than 2 min for a space and time matrix of 50000 pixels by 4000 time steps with a reasonable relative error of less than 5%.

Introduction

This work is a continuity study by our team on the development of quantitative methods for thermal resistance field characterization. Thus, as presented in [START_REF] Groz | Estimation of thermal resistance field in layered materials by analytical asymptotic method[END_REF], in the field of Quantitative InfraRed Thermography (QIRT), Non Destructive Testing (NDT) methods are very widespread for the detection of defaults, whereas few techniques are completely quantitative. In fact, many authors have developed techniques for qualitative in-depth defect detection using flash thermography, the Thermal Signal Reconstruction (TSR) technique [START_REF] Shepard | Flash thermography of aerospace composites[END_REF]3] or the lock-in technique [4]. Moreover, [5] and [START_REF] Roche | Imagerie quantitative tsr-rvb: de la détection de défauts au d-scan thermique[END_REF] linked the TSR method with the quantitative estimation of defect depth. A similar study was performed by [START_REF] Ibarra-Castanedo | Pulsed phase thermography reviewed[END_REF] with a technique based on Pulsed Phase Transformation (PPT) and thermographic signal reconstruction [8]. Similarly, these methods are often applied in techniques stemming from measurements of monosensors and minimization by nonlinear methods. For example , the Markov chain Monte Carlo method has been implemented within the picosecond timeresolved technique to estimate the thermal resistance at the interface between thin films at high temperatures [9,10]. In addition, the Levenberg-Marquardt minimization technique has been use to estimate the thermal resistance between thin films from measurements collected using either the thermoreflectance technique [11] or modulated photothermal radiometry within the infrared spectrum [12]. Adapting these inverse methods to field methods becomes very time consuming. Thus, our main objective is to develop rapid and quantitative methods. [START_REF] Groz | Estimation of thermal resistance field in layered materials by analytical asymptotic method[END_REF] was based on an asymptotic development with a quantitative and fast computational approach that does not allow for the estimation of several resistive layers. To extend the applicability of these approaches, we propose the implementation of Bayesian-type methods. comparing this study with a prior study [START_REF] Groz | Estimation of thermal resistance field in layered materials by analytical asymptotic method[END_REF]based on asymptotic method, we can highlight that in this sample case, the Bayesian approach allows for the estimation of more parameters. In fact, the knowledge of delamination and more particularly of Rth is of crucial interest for material health as well as the possibility of calculating a heat balance on materials subjected to high flows such as composite materials but more recently materials from additive manufacturing processes for example. In this work, a flash setup is used, and then, the methods, including several components, are developed to introduce the direct modeling of multilayer samples using a quadrupole formulation. Then, in the inverse processing section, the Bayesian inference is presented, and finally, in the results and discussion section, the method is validated on the same sample used in [START_REF] Groz | Estimation of thermal resistance field in layered materials by analytical asymptotic method[END_REF] to compare both approaches.

Materials and Measurements

In this paper, the same classical front face flash method setup, as illustrated in [START_REF] Groz | Estimation of thermal resistance field in layered materials by analytical asymptotic method[END_REF], is used for the measurements. To briefly describe the setup, the flash lamp comes from 2/14 Uniblitz and has an energy 𝐸 of 1600 J. The lamp is synchronized with the IR camera by using an analogical TTL link to perform a pre-trigger mode before the flash. The IR camera is an MCT long-wave (𝜆 = 9-11 μm) FLIR SC7600 with a matrix sensor of 320 × 256 pixels and a pitch of 30 × 30 μm 2 . With the used lenses and the sample distance, the resulting spatial resolution is approximately 300 × 300 μm 2 per pixel. A homemade (as illustrated in figure 1) reference sample was used to calibrate the depth and thickness of the thermal resistance represented by an air square hole. The geometrical and thermal properties are reported in figure 1.a. In this case, only a bilayer was designed to demonstrate the capacity of the proposed method. Moreover the polycarbonate front face was black painted to guarantee a surfacic absorption of the flash lamp heat flux and uniform temperature measurement of the IR camera. The goal of the Bayesian approach is to estimate the fields of the two resistive layers as well as the thickness variation of the polycarbonate layer located between these layers. For all reference samples in figure 1, it is important to note that the minimum tolerance guarantee by the supplier is approximately +50 𝜇m for the designed thickness.

Fig. 1: Schematic of the reference monoresistive layer sample used in [START_REF] Groz | Estimation of thermal resistance field in layered materials by analytical asymptotic method[END_REF] 3 Principle of the proposed methods

Direct Problem

Using the quadrupole formulation [13], the thermal response of any assembly can be generalized according to equation 1. The quadrupole method enables many layers as well as thermal resistances to be accounted for. A MatLab homemade application (https://fr.mathworks.com/matlabcentral/fileexchange/74199-1dt-multilayer-thermalquadrupole-solver-and-builder) was developed to generate any assembly and also to realize the sensitivity analysis [START_REF] Pech-May | Generalizing the flash technique in the front-face configuration to measure the thermal diffusivity of semitransparent solids[END_REF][START_REF] Bernegger | Quantification of delaminations in semitransparent solids using pulsed thermography and mathematical 1d models[END_REF] to all parameters of the multilayer. The model can be expressed as follows:

[ 𝜃 0 (𝑝) 𝜙 0 (𝑝) -ℎ𝜃 0 (𝑝) ] = [∏ 𝑁 𝑖=1 𝑀 1 𝑅 1 ...𝑅 𝑖-1 𝑀 𝑖 𝑅 𝑖 ...𝑅 𝑁-1 𝑀 𝑁 ] [ 𝜃 𝑒 (𝑝) ℎ𝜃 𝑒 (𝑝) ] (1) 
where 𝜃 0 (𝐾) and 𝜃 𝑒 (𝐾) represent the Laplace transforms of the front (𝑧 = 0) and rear (𝑧 = 𝑒) face temperature, respectively, in each pixel composing the temperature fields; ℎ (𝑊 .𝑚 -2 .𝐾 -1 ) is the convective heat loss; and 𝜙 0 (𝑝) (𝑊 .𝑚 -2 ) is the Laplace transform of the heat flux at the front face. The heat flux waveform can be represented by a Dirac function, a Heaviside function or a pulse with a duration linked to the flash lamp discharge time. Finally, 𝑀 𝑖 is the matrix relative to layer 𝑖, and 𝑅 𝑖 is associated with the thermal resistance between layers 𝑖 and 𝑖 + 1, expressed as follows:
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where 𝑝 (𝑠 -1 ) is the Laplace variable, 𝑒 𝑖 (𝑚) is the thickness of layer 𝑖, 𝑎 𝑖 (𝑚 2 .𝑠 -1 ) is the thermal diffusivity of layer 𝑖, 𝜆 𝑖 (𝑊 .𝑚 -1 .𝐾 -1 ) is the thermal conductivity, and 𝑅𝑡ℎ 𝑖 (𝑚 2 .𝐾.𝑊 -1 ) is the interfacial thermal resistance. All of these parameters are collected in the variable 𝜷. Finally, from the solutions to equations 1 and 2 expressed in the Laplace domain, the 1D transient analytical front face temperature 𝑇 0 (𝑡, 𝜷) can be calculated using the Stehfest algorithm [16] for any assembly characterized by the variable 𝜷.

In the following, and without a loss of generality, a unique thermal resistance is considered in the thickness of the sample. Then, the variable 𝜷 is reduced to the couple [𝑒, 𝑅𝑡ℎ].

Inverse processing method based on Bayesian inference

To reconstruct the sample, the inverse problem can now be defined in each pixel of the image as follows: knowing the measured temperature evolution 𝑇 𝑒 (𝑡) at 𝑧 = 0 (front face), we can determine the polycarbonate thickness 𝑒 𝑃 𝐶 and thermal resistance magnitude 𝑅𝑡ℎ, i.e., the couple 𝛽 = [𝑒 𝑃 𝐶 , 𝑅𝑡ℎ].

To do so, it is proposed to use Bayesian inference, a probabilistic method based on the Bayes relations [17]:

𝜋 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 (𝜷|𝑇 0 (𝑡)) = 𝜋(𝑇 0 (𝑡)|𝜷) ⋅ 𝜋 𝑝𝑟𝑖𝑜𝑟 (𝜷) 𝜋(𝑇 0 (𝑡)) (3) 
where 𝜋 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 (𝜷|𝑇 0 (𝑡)) is the posterior probability density, i.e., the conditional probability of 𝜷, given the measured front face temperature 𝑇 0 (𝑡); 𝜋 𝑝𝑟𝑖𝑜𝑟 (𝜷) is the prior density, which is the a priori information about 𝜷 prior to the measurements; 𝜋(𝑇 0 (𝑡)|𝜷) is the likelihood function, which expresses the likelihood of different temperature measurement outcomes 𝑇 0 (𝑡) with 𝜷 given; and 𝜋(𝑇 0 (𝑡)) is the model evidence or the marginal probability density of the measurements, which plays the role of a normalizing constant. Bayesian inference is then a stochastic approach that results in a probability density function providing a probability weight to each possible variable 𝜷.

In the first stage, the evidence is not considered. Indeed, even if its computation does not represent a tricky issue due to the analytical nature of the direct problem, the knowledge of the more probable 𝜷 in each pixel, independent of the normalization, is sufficient to reconstruct the thickness composition. For the prior, which allows us to account for the a priori knowledge of 𝜷, only a limitation of the parametric space (𝑒 𝑃 𝐶 , 𝑅𝑡ℎ) in the variation range of the parameters is considered to be as general as possible. Then, the prior is taken as a uniform probability of the variation range of each parameter [𝑒 𝑃 𝐶𝑚𝑖𝑛 , 𝑒 𝑃 𝐶𝑚𝑎𝑥 ] and [𝑅𝑡ℎ 𝑚𝑖𝑛 , 𝑅𝑡ℎ 𝑚𝑎𝑥 ] with a null probability outside.

Then, finally, in our case, the posterior probability density is directly linked to the likelihood function [18]:

𝜋 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 (𝜷|𝑇 0 (𝑡)) ∝ 𝜋(𝑇 0 (𝑡)|𝜷), 𝜷 ∈ [𝑒 𝑃 𝐶𝑚𝑖𝑛 , 𝑒 𝑃 𝐶𝑚𝑎𝑥 ] × [𝑅𝑡ℎ 𝑚𝑖𝑛 , 𝑅𝑡ℎ 𝑚𝑎𝑥 ] (4) 
The likelihood function 𝜋(𝑇 0 (𝑡)|𝜷) is defined as follows:

𝜋(𝑇 0 (𝑡)|𝜷) ∝ exp (- 1 2Γ 2 ||𝑇 𝑀 (𝑡) -𝑇 0 (𝑡, 𝜷)|| 2 2 ) , (5) 
where 𝑇 0 (𝑡, 𝜷) is the estimated front face temperature computed using the direct model defined in Section 3.1 for 𝜷 ∈ [𝑒 𝑃 𝐶𝑚𝑖𝑛 , 𝑒 𝑃 𝐶𝑚𝑎𝑥 ] × [𝑅𝑡ℎ 𝑚𝑖𝑛 , 𝑅𝑡ℎ 𝑚𝑎𝑥 ], and 𝑇 𝑀 (𝑡) is the measured front face temperature at each pixel.

In this case, as the forward problem is analytical and few parameters are considered, the likelihood function is built by directly sampling the discretized parametric space (𝑒 𝑃 𝐶 , 𝑅𝑡ℎ). This allows us to not have to rely on Markov chain Monte Carlo methods, which are commonly used when the large computation time of the forward problem 5/14

prevents the exploration of the entire parameter space [18,[START_REF] Carlin | Bayesian model choice via markov chain monte carlo methods[END_REF][START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF]21]. This also allows for defining an iterative multiscale refinement of the parametric space function of the sample parameter heterogeneity, as presented in Section 4.

Results and Discussion

In this section, the method presented in the previous section is detailed through the following results based on the bilayer presented in figure 1. The main idea of the proposed method is to obtain a complete automatic estimation of the sample properties. To do so, the following steps are performed: (i) a coarse grid of the parameter space is defined, (ii) the inverse processing 5 is performed, (iii) a segmentation process is performed to identify the sample heterogeneity and segment it in several ROIs, (iv) a fine parameter grid is defined, and (v) this is used to realize the final inverse processing. First, by using the front face flash setup, the sample is measured according to the following parameters: (i) flash duration of 1 ms, (ii) camera frequency acquisition of 200 Hz, and (iii) 4000 images corresponding to a final time of 20 s and a spatial resolution of 300×300 𝜇𝑚 2 per pixel. The obtained results are plotted in figure 2. 

a). The measurements properties are a pulse of 1 ms duration. Whereas dimensionless analytical solution are calculated from the estimated value (solid line) of the table 1 and without thermal resistance (dash line)

.

In figure 2.b, the dimensionless temperature comes from the following formulation:

𝑇 * 0 (𝑡) = 𝑇 𝑐 (𝑡 ≥ 𝑡 𝑟𝑒𝑓 ) 𝑇 𝑐 (𝑡 𝑟𝑒𝑓 )
, with 𝑇 𝑐 (𝑡) = 𝑇 0 (𝑡) -𝑇 0 (𝑡 ≤ 𝑡 0 ), 𝑡 0 (𝑠) being the starting time of the flash, and 𝑡 𝑟𝑒𝑓 (𝑠) being the reference time for the normalization with a -1/2 slope.

One can observed that depending on the thermal resistance depth and magnitude, the temperature moves away from the -1/2 reference slope. Moreover in the figure 2.b, from the final estimated interval data of each ROIs reported in the table 1, the exact dimensionless analytical model was calculated and superposed with the experimental dimensionless measurements.

From the measurements, a first estimation is performed for (i) variation range of layer 1 thickness (i.e., polycarbonate) 𝑒 𝑃 𝐶 = [50, 950] 𝜇𝑚 and (ii) corresponding thermal resistance thickness 𝑒 𝑅𝑡ℎ = [50, 950] 𝜇𝑚 with a thermal conductivity value of 𝜆 𝑎𝑖𝑟 = 0.025 𝑊 .𝑚 -1 .𝐾 -1 to give the final generated thermal resistance variation range 𝑅𝑡ℎ 𝑔 = [0.0020, 0.038] 𝑚 2 .𝐾.𝑊 -1 . Using these variation ranges, one can then build the 2D parametric space needed for the Bayesian inference method by discretizing the variation range of depth 𝑒 𝑃 𝐶 and thermal resistance 𝑅𝑡ℎ.

In the first attempt, a coarse discretization of 10 nodes per parameter is considered, which corresponds to a discretization step of 100 𝜇m for the depth and 0.004 m 2 .K.W -1 for the thermal resistance. The parametric space can then be filled by computing the temperature 𝑇 0 (𝑡, 𝜷) for the 11 × 11 possible combinations of the parameters defining 𝜷. The complete calculation of such a base takes 0.6 s on a 2.3 GHz quad-core i5 laptop with 16 GHz of RAM.

The likelihood is then computed from equation 5. For each couple of parameters, a maximum probability corresponding to the minimum likelihood deviation is obtained for each pixel (see figure 3.a). From this couple, the maximum can be reported for the entire image, as depicted in figure 3 Furthermore, a parameter minimum step was chosen, i.e., 𝛿𝑅𝑡ℎ = 0.001 and 𝛿𝑒 𝑃 𝐶 = 25𝜇𝑚, to recalculate a new refined analytical database. The corresponding fine grid is reported in table 1. In this database, Bayesian inference can be applied and the couple of maximum probability linked with the fine mesh (or parameter space) of each ROI is reported using the small dots. From the probabilistic processing, the complete parameters are reported in figure 6 according to the fine grid of each ROI or sample heterogeneity. 9/14 a) b)

Fig. 6: Estimated fields for a fine mesh of a) thermal resistance 𝑅𝑡ℎ(𝑚 2 .𝐾.𝑊 -1 ) and b) polycarbonate layer thickness 𝑒 𝑃 𝐶 (𝑚).

The exact CPU times are reported in table 1. It is important to note that the calculation process of each ROI is approximately 0.2 s for the ROI database and 2 s for the Bayesian processing, which is mainly linked to the number of pixels in the ROIs. Finally, from the fine maps of both parameters (𝑅 𝑡ℎ and 𝑒 𝑃 𝐶 ), the 3D topology of the polycarbonate layer thickness and thermal resistance deepness are reported in figure 7.

10/14 One can observed that in figure 7.a, the polycarbonate layer is in very good agreement with the machining sample shape shown in figure 1. The 3D map in figure 7.b represents the shape of the air layer inside the complete assembly. This representation can be assembled to form the complete 3D topology of the sample which demonstrates the use of thermal tomography of the bilayer heterogeneous sample from IRT surface measurements using flash excitation.

From the estimated parameters fields represented figure 6, the measured temperatures (figure 2) are plotted and superposed with the model recalculated for the pixels of the different ROIs (see figure 2) as illustrated in the figure 8 ) with 𝑇 𝑚𝑒𝑠 , the measured temperature and 𝑇 𝑚𝑜𝑑𝑒𝑙 , the calculated temperature. It is interesting to notice that the error are very low excepted for the ROI4 where a bias appeared at the short time. This gap is mostly due to the normalisation that cannot be correctly done due to the lack of short time measurements. As a consequence a bias occurred, nevertheless the error is around 10%. Finally, to quantitatively analyse the uncertainty of Bayesian approaches, the sum of the estimated thickness of the bilayer is calculated and presented in figure 8.c. In figure 8.d, the relative error, based on the theoretical well-known polycarbonate layer thickness of 1 mm, is calculated. The maximal uncertainty reaches 15% with an average value of 3.15%, which is very acceptable for the complete measurement, inversion and reconstruction processing. This maximal uncertainty is mainly located in the background ROI and close to the boundary of the thermal resistance ROIs. For the background, the explanation comes from the depth, which causes a decreases in the method sensitivity. However, close to the interface of the resistive square hole, the explanation comes from the 1D model used as a direct model in Bayesian inference, whereas 3D heat transfer is predominant close to the sample interface. ) with 𝑇 𝑚𝑒𝑠 (dash line) the measured temperature and 𝑇 𝑚𝑜𝑑𝑒𝑙 (solid line) the calculated temperature with estimated parameters , c) Recalculated total thickness from the estimated polycarbonate and resistive layers and d) relative error calculated for a thickness value of 1 mm measured after machining.

Conclusions

In this paper, a methodology for both quantitative thermal resistance and layer thickness imaging estimation is proposed. This method is based on the Bayesian inference probabilistic inverse method and the analytic quadrupole solution of the thermal response to front face flash excitation of a bilayer assembly using measured IRT temperatures. The main advantages of this method are as follows: (i) the possibility to handle any type of multilayer (high number of layers), (ii) the fast inverse processing that can be adapted for online monitoring (inverse processing in less than 2 min), and (iii) the ability of the method to overcome the knowledge of the initial excitation heat flux as well as the absolute measured temperature and the capacity to retrieve 3D mapping of the layer thickness. However, the main drawbacks of the proposed methods are as follows: (i) the 1D character of the model can cause blurring close to the interface, and (ii) the sensitivity to the sample parameters depends on the thermal contrast of the layers. Finally, comparing this study with a prior study [START_REF] Groz | Estimation of thermal resistance field in layered materials by analytical asymptotic method[END_REF] based on asymptotic method, we can conclude that in this sample case, the Bayesian approach allows for the estimation of more parameters (polycarbonate layer plus thermal resistance). Moreover, the two methods can be used together, especially the asymptotic one, to quickly retrieve the thermal resistive layer, which can be refined using the Bayesian inference method.
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 2 Fig. 2: a) Measured temperature field at 𝑡 = 5.12 s after the flash and b) dimensionless temperature response of the front face of the different ROIs (point located in figure 2.a). The measurements properties are a pulse of 1 ms duration. Whereas dimensionless analytical solution are calculated from the estimated value (solid line) of the table 1 and without thermal resistance (dash line)
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 345 Fig. 3: a) Calculated fields of Bayesian probability for the pixel located on 𝑥 = 3.5 cm and 𝑦 = 1 cm in figure 2.a and b) estimated probability field for all measurement data in figure 2.
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 7 Fig. 7: Reconstructed 3D fields of a) the polycarbonate thickness layer and b) thermal resistive layer assimilated to air thickness.

  .a. Then, the residual are reported in the figure 8.b. They are expressed according to the following expression 𝑟𝑒𝑠 = 100 * (1 -𝑇 𝑚𝑒𝑠 𝑇 𝑚𝑜𝑑𝑒𝑙
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 8 Fig. 8: a) Recalculated temperature by using the model of the equation 1 with the estimated value of the figure 6 for the measured temperature of the figure 2, b) Residual calculated between the measurement and the model according to the following formulation 100 * (1 -𝑇 𝑚𝑒𝑠 𝑇 𝑚𝑜𝑑𝑒𝑙

  

  

  Tab. 1: Calculation time comparison as function of the number of pixels and parameter base size.

		𝑒 𝑃 𝐶 * *	𝑒 𝑅𝑡ℎ * *	Pixel number Bayesian method	Database
		(𝜇𝑚)	(𝜇𝑚)	(-)	CPU time (𝑠)	CPU time (𝑠)
	Complete image [50:100:950] [50:100:950]	51012	66	0.32
	*ROI 0	[800:25:1000] [25:25:200]	44583	44	0.23
	*ROI 1	[700:25:900] [200:25:250]	1207	1.2	0.75
	*ROI 2	[600:25:800] [300:25:350]	1612	1.4	0.13
	*ROI 3	[400:25:600] [500:25:550]	1856	1.7	0.13
	*ROI 4	[100:25:300] [800:25:850]	1754	1.6	0.12
		*, The ROI order can be found in the figures 2.a and 5.a
	**, Systematic maximum machining uncertainty of +50 𝜇𝑚 given by the supplier; see section 2
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