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Abstract
The main goal of this paper is the estimation of thermal resistive fields in multilayer
samples using the classical front face flash method as excitation and InfRared Thermog-
raphy (IRT) as a monitoring sensor. The complete inverse processing of a multilayer
analytical model can be difficult due to a lack of sensitivity to certain parameters (layer
thickness, depth of thermal resistance, etc.) or processing time. For these reasons, our
present strategy proposes a Bayesian inference approach. Using the analytical quadrupole
method, a reference model can be calculated for a set of parameters. Then, the Bayesian
probabilistic method is used to determine the maximum likelihood probability between
the measured data and the reference model. To keep the processing method robust and
fast, an automatic selection of the calculation range is proposed. Finally, in the case of a
bilayer sample, both the thickness and resistive 3D layers are estimated in less than 2 min
for a space and time matrix of 50000 pixels by 4000 time steps with a reasonable relative
error of less than 5%.
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1 Introduction

1 Introduction
This work is a continuity study by our team on the development of quantitative methods
for thermal resistance field characterization. Thus, as presented in [1], in the field of
Quantitative InfraRed Thermography (QIRT), Non Destructive Testing (NDT) methods
are very widespread for the detection of defaults, whereas few techniques are completely
quantitative. In fact, many authors have developed techniques for qualitative in-depth
defect detection using flash thermography, the Thermal Signal Reconstruction (TSR)
technique [2, 3] or the lock-in technique [4]. Moreover, [5] and [6] linked the TSR method
with the quantitative estimation of defect depth. A similar study was performed by[7]
with a technique based on Pulsed Phase Transformation (PPT) and thermographic signal
reconstruction [8]. Similarly, these methods are often applied in techniques stemming from
measurements of monosensors and minimization by nonlinear methods. For example , the
Markov chain Monte Carlo method has been implemented within the picosecond time-
resolved technique to estimate the thermal resistance at the interface between thin films at
high temperatures [9, 10]. In addition, the Levenberg-Marquardt minimization technique
has been use to estimate the thermal resistance between thin films from measurements
collected using either the thermoreflectance technique [11] or modulated photothermal
radiometry within the infrared spectrum [12]. Adapting these inverse methods to field
methods becomes very time consuming. Thus, our main objective is to develop rapid and
quantitative methods. [1] was based on an asymptotic development with a quantitative
and fast computational approach that does not allow for the estimation of several resistive
layers. To extend the applicability of these approaches, we propose the implementation of
Bayesian-type methods. comparing this study with a prior study [1]based on asymptotic
method, we can highlight that in this sample case, the Bayesian approach allows for
the estimation of more parameters. In fact, the knowledge of delamination and more
particularly of Rth is of crucial interest for material health as well as the possibility of
calculating a heat balance on materials subjected to high flows such as composite materials
but more recently materials from additive manufacturing processes for example. In this
work, a flash setup is used, and then, the methods, including several components, are
developed to introduce the direct modeling of multilayer samples using a quadrupole
formulation. Then, in the inverse processing section, the Bayesian inference is presented,
and finally, in the results and discussion section, the method is validated on the same
sample used in [1] to compare both approaches.

2 Materials and Measurements
In this paper, the same classical front face flash method setup, as illustrated in [1], is
used for the measurements. To briefly describe the setup, the flash lamp comes from
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3 Principle of the proposed methods

Uniblitz and has an energy 𝐸 of 1600 J. The lamp is synchronized with the IR camera
by using an analogical TTL link to perform a pre-trigger mode before the flash. The
IR camera is an MCT long-wave (𝜆 = 9–11 μm) FLIR SC7600 with a matrix sensor of
320 × 256 pixels and a pitch of 30 × 30 μm2. With the used lenses and the sample
distance, the resulting spatial resolution is approximately 300 × 300 μm2 per pixel. A
homemade (as illustrated in figure 1) reference sample was used to calibrate the depth
and thickness of the thermal resistance represented by an air square hole. The geometrical
and thermal properties are reported in figure 1.a. In this case, only a bilayer was designed
to demonstrate the capacity of the proposed method. Moreover the polycarbonate front
face was black painted to guarantee a surfacic absorption of the flash lamp heat flux and
uniform temperature measurement of the IR camera. The goal of the Bayesian approach
is to estimate the fields of the two resistive layers as well as the thickness variation of the
polycarbonate layer located between these layers. For all reference samples in figure 1, it is
important to note that the minimum tolerance guarantee by the supplier is approximately
+50 𝜇m for the designed thickness.

Fig. 1: Schematic of the reference monoresistive layer sample used in [1]

3 Principle of the proposed methods

3.1 Direct Problem

Using the quadrupole formulation [13], the thermal response of any assembly can be
generalized according to equation 1. The quadrupole method enables many layers as
well as thermal resistances to be accounted for. A MatLab homemade application
(https://fr.mathworks.com/matlabcentral/fileexchange/74199-1dt-multilayer-thermal-
quadrupole-solver-and-builder) was developed to generate any assembly and also to
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3.2 Inverse processing method based on Bayesian inference

realize the sensitivity analysis [14, 15] to all parameters of the multilayer. The model can
be expressed as follows:

[ 𝜃0(𝑝)
𝜙0(𝑝) − ℎ𝜃0(𝑝)] = [∏𝑁

𝑖=1 𝑀1𝑅1...𝑅𝑖−1𝑀𝑖𝑅𝑖...𝑅𝑁−1𝑀𝑁] [ 𝜃𝑒(𝑝)
ℎ𝜃𝑒(𝑝)] (1)

where 𝜃0 (𝐾) and 𝜃𝑒 (𝐾) represent the Laplace transforms of the front (𝑧 = 0) and rear
(𝑧 = 𝑒) face temperature, respectively, in each pixel composing the temperature fields;
ℎ (𝑊.𝑚−2.𝐾−1) is the convective heat loss; and 𝜙0(𝑝) (𝑊.𝑚−2) is the Laplace transform
of the heat flux at the front face. The heat flux waveform can be represented by a Dirac
function, a Heaviside function or a pulse with a duration linked to the flash lamp discharge
time. Finally, 𝑀𝑖 is the matrix relative to layer 𝑖, and 𝑅𝑖 is associated with the thermal
resistance between layers 𝑖 and 𝑖 + 1, expressed as follows:
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where 𝑝 (𝑠−1) is the Laplace variable, 𝑒𝑖 (𝑚) is the thickness of layer 𝑖, 𝑎𝑖 (𝑚2.𝑠−1)
is the thermal diffusivity of layer 𝑖, 𝜆𝑖 (𝑊.𝑚−1.𝐾−1) is the thermal conductivity, and
𝑅𝑡ℎ𝑖 (𝑚2.𝐾.𝑊 −1) is the interfacial thermal resistance. All of these parameters are col-
lected in the variable 𝜷. Finally, from the solutions to equations 1 and 2 expressed in the
Laplace domain, the 1D transient analytical front face temperature 𝑇0(𝑡, 𝜷) can be cal-
culated using the Stehfest algorithm [16] for any assembly characterized by the variable 𝜷.

In the following, and without a loss of generality, a unique thermal resistance is considered
in the thickness of the sample. Then, the variable 𝜷 is reduced to the couple [𝑒, 𝑅𝑡ℎ].

3.2 Inverse processing method based on Bayesian inference

To reconstruct the sample, the inverse problem can now be defined in each pixel of the
image as follows: knowing the measured temperature evolution 𝑇𝑒(𝑡) at 𝑧 = 0 (front face),
we can determine the polycarbonate thickness 𝑒𝑃𝐶 and thermal resistance magnitude 𝑅𝑡ℎ,
i.e., the couple 𝛽 = [𝑒𝑃𝐶, 𝑅𝑡ℎ].
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3.2 Inverse processing method based on Bayesian inference

To do so, it is proposed to use Bayesian inference, a probabilistic method based on the
Bayes relations [17]:

𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜷|𝑇0(𝑡)) = 𝜋(𝑇0(𝑡)|𝜷) ⋅ 𝜋𝑝𝑟𝑖𝑜𝑟(𝜷)
𝜋(𝑇0(𝑡)) (3)

where 𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜷|𝑇0(𝑡)) is the posterior probability density, i.e., the conditional proba-
bility of 𝜷, given the measured front face temperature 𝑇0(𝑡); 𝜋𝑝𝑟𝑖𝑜𝑟(𝜷) is the prior density,
which is the a priori information about 𝜷 prior to the measurements; 𝜋(𝑇0(𝑡)|𝜷) is the
likelihood function, which expresses the likelihood of different temperature measurement
outcomes 𝑇0(𝑡) with 𝜷 given; and 𝜋(𝑇0(𝑡)) is the model evidence or the marginal proba-
bility density of the measurements, which plays the role of a normalizing constant.
Bayesian inference is then a stochastic approach that results in a probability density
function providing a probability weight to each possible variable 𝜷.

In the first stage, the evidence is not considered. Indeed, even if its computation does not
represent a tricky issue due to the analytical nature of the direct problem, the knowledge
of the more probable 𝜷 in each pixel, independent of the normalization, is sufficient to
reconstruct the thickness composition. For the prior, which allows us to account for
the a priori knowledge of 𝜷, only a limitation of the parametric space (𝑒𝑃𝐶, 𝑅𝑡ℎ) in
the variation range of the parameters is considered to be as general as possible. Then,
the prior is taken as a uniform probability of the variation range of each parameter
[𝑒𝑃𝐶𝑚𝑖𝑛, 𝑒𝑃𝐶𝑚𝑎𝑥] and [𝑅𝑡ℎ𝑚𝑖𝑛, 𝑅𝑡ℎ𝑚𝑎𝑥] with a null probability outside.

Then, finally, in our case, the posterior probability density is directly linked to the likeli-
hood function [18]:

𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜷|𝑇0(𝑡)) ∝ 𝜋(𝑇0(𝑡)|𝜷), 𝜷 ∈ [𝑒𝑃𝐶𝑚𝑖𝑛, 𝑒𝑃𝐶𝑚𝑎𝑥] × [𝑅𝑡ℎ𝑚𝑖𝑛, 𝑅𝑡ℎ𝑚𝑎𝑥] (4)

The likelihood function 𝜋(𝑇0(𝑡)|𝜷) is defined as follows:

𝜋(𝑇0(𝑡)|𝜷) ∝ exp(− 1
2Γ2 ||𝑇𝑀(𝑡) − 𝑇0(𝑡, 𝜷)||22) , (5)

where 𝑇0(𝑡, 𝜷) is the estimated front face temperature computed using the direct model
defined in Section 3.1 for 𝜷 ∈ [𝑒𝑃𝐶𝑚𝑖𝑛, 𝑒𝑃𝐶𝑚𝑎𝑥] × [𝑅𝑡ℎ𝑚𝑖𝑛, 𝑅𝑡ℎ𝑚𝑎𝑥], and 𝑇𝑀(𝑡) is the
measured front face temperature at each pixel.

In this case, as the forward problem is analytical and few parameters are considered,
the likelihood function is built by directly sampling the discretized parametric space
(𝑒𝑃𝐶, 𝑅𝑡ℎ). This allows us to not have to rely on Markov chain Monte Carlo meth-
ods, which are commonly used when the large computation time of the forward problem
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4 Results and Discussion

prevents the exploration of the entire parameter space [18, 19, 20, 21]. This also allows for
defining an iterative multiscale refinement of the parametric space function of the sample
parameter heterogeneity, as presented in Section 4.

4 Results and Discussion
In this section, the method presented in the previous section is detailed through the
following results based on the bilayer presented in figure 1. The main idea of the proposed
method is to obtain a complete automatic estimation of the sample properties. To do so,
the following steps are performed: (i) a coarse grid of the parameter space is defined, (ii)
the inverse processing 5 is performed, (iii) a segmentation process is performed to identify
the sample heterogeneity and segment it in several ROIs, (iv) a fine parameter grid is
defined, and (v) this is used to realize the final inverse processing.
First, by using the front face flash setup, the sample is measured according to the following
parameters: (i) flash duration of 1 ms, (ii) camera frequency acquisition of 200 Hz, and (iii)
4000 images corresponding to a final time of 20 s and a spatial resolution of 300×300 𝜇𝑚2

per pixel. The obtained results are plotted in figure 2.

a) b)

Fig. 2: a) Measured temperature field at 𝑡 = 5.12 s after the flash and b) dimensionless tem-
perature response of the front face of the different ROIs (point located in figure 2.a). The
measurements properties are a pulse of 1 ms duration. Whereas dimensionless analytical so-
lution are calculated from the estimated value (solid line) of the table 1 and without thermal
resistance (dash line)
.

In figure 2.b, the dimensionless temperature comes from the following formulation:

𝑇 ∗
0 (𝑡) = 𝑇 𝑐(𝑡 ≥ 𝑡𝑟𝑒𝑓)

𝑇 𝑐(𝑡𝑟𝑒𝑓) , with 𝑇 𝑐(𝑡) = 𝑇0(𝑡) − 𝑇0(𝑡 ≤ 𝑡0), 𝑡0(𝑠) being the starting time

of the flash, and 𝑡𝑟𝑒𝑓(𝑠) being the reference time for the normalization with a -1/2 slope.
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4 Results and Discussion

One can observed that depending on the thermal resistance depth and magnitude, the
temperature moves away from the -1/2 reference slope. Moreover in the figure 2.b, from
the final estimated interval data of each ROIs reported in the table 1, the exact dimension-
less analytical model was calculated and superposed with the experimental dimensionless
measurements.
From the measurements, a first estimation is performed for (i) variation range of layer
1 thickness (i.e., polycarbonate) 𝑒𝑃𝐶 = [50, 950] 𝜇𝑚 and (ii) corresponding thermal
resistance thickness 𝑒𝑅𝑡ℎ = [50, 950] 𝜇𝑚 with a thermal conductivity value of 𝜆𝑎𝑖𝑟 =
0.025 𝑊.𝑚−1.𝐾−1 to give the final generated thermal resistance variation range 𝑅𝑡ℎ𝑔 =
[0.0020, 0.038] 𝑚2.𝐾.𝑊 −1. Using these variation ranges, one can then build the 2D
parametric space needed for the Bayesian inference method by discretizing the variation
range of depth 𝑒𝑃𝐶 and thermal resistance 𝑅𝑡ℎ.
In the first attempt, a coarse discretization of 10 nodes per parameter is considered, which
corresponds to a discretization step of 100 𝜇m for the depth and 0.004 m2.K.W−1 for the
thermal resistance. The parametric space can then be filled by computing the temperature
𝑇0(𝑡, 𝜷) for the 11×11 possible combinations of the parameters defining 𝜷. The complete
calculation of such a base takes 0.6 s on a 2.3 GHz quad-core i5 laptop with 16 GHz of
RAM.
The likelihood is then computed from equation 5. For each couple of parameters, a
maximum probability corresponding to the minimum likelihood deviation is obtained for
each pixel (see figure 3.a). From this couple, the maximum can be reported for the entire
image, as depicted in figure 3.b.

a) b)

Fig. 3: a) Calculated fields of Bayesian probability for the pixel located on 𝑥 = 3.5 cm and 𝑦 =
1 cm in figure 2.a and b) estimated probability field for all measurement data in figure 2.
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4 Results and Discussion

From the location of this maximum probability, the corresponding couple of parameters
(see figure 3.a) can be extracted for each pixel giving the reconstructed images of figure 4.
In figure 3.b, the decreases in the probability around the resistive square hole are linked
to the 3D effects of the thermal diffusion that are not taken into account in the proposed
1D model. As a consequence, the probability can also indicate a model error.

a) b)

Fig. 4: Estimated fields for a coarse mesh of a) thermal resistance 𝑅𝑡ℎ (𝑚2.𝐾.𝑊 −1) and b)
polycarbonate layer thickness 𝑒𝑃𝐶 (𝑚).

This first calculation for the entire measurement matrix take 66 s on a 2.3 GHz quad-core
i5 laptop with 16 GHz of RAM. Due to the size of the measured images and acquisition
time, the space and time dimensions are (i) 51012 pixels corresponding to 218 x 234 pixels
along the x and y directions and (ii) 4000 time steps.
From the estimated field of thermal resistance in figure 4.a, the image is segmented into
several regions (see figure 5.a) using the [22] method. In the present case, 5 ROIs are
obtained relative to the 4 thermal resistances and one background (ROI0) linked with
the contact defect between the polycarbonate (as illustrated figures 2.a and 5.a) and
aluminum plate. From this ROI and using the probability level in figure 3.b, each area
can be optimized by keeping the values greater than 0.6 as presented in the figure 5.b
where the higher value are reported.
From this segmentation, a second refined grid in the parametric space can be defined,
as illustrated in figure 5.c. In this figure, the complete methodology is summarized. To
increase the visibility of figure 5.c, the background ROI behavior (0 in figure 5.a) is not
reported.
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4 Results and Discussion

a) b)

c)

Fig. 5: a) Labeling of the heterogeneity of the sample in terms of the ROI, b) selection of
the probability higher than 0.6 in each ROIs and c) synthesis of the mesh composed of several
parameters and estimated area as function of the different ROIs.

Furthermore, a parameter minimum step was chosen, i.e., 𝛿𝑅𝑡ℎ = 0.001 and 𝛿𝑒𝑃𝐶 =
25𝜇𝑚, to recalculate a new refined analytical database. The corresponding fine grid is
reported in table 1. In this database, Bayesian inference can be applied and the couple
of maximum probability linked with the fine mesh (or parameter space) of each ROI is
reported using the small dots. From the probabilistic processing, the complete parameters
are reported in figure 6 according to the fine grid of each ROI or sample heterogeneity.
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4 Results and Discussion

a) b)

Fig. 6: Estimated fields for a fine mesh of a) thermal resistance 𝑅𝑡ℎ(𝑚2.𝐾.𝑊 −1) and b) poly-
carbonate layer thickness 𝑒𝑃𝐶 (𝑚).

The exact CPU times are reported in table 1. It is important to note that the calculation
process of each ROI is approximately 0.2 s for the ROI database and 2 s for the Bayesian
processing, which is mainly linked to the number of pixels in the ROIs.

𝑒𝑃𝐶 ∗ ∗ 𝑒𝑅𝑡ℎ ∗ ∗ Pixel number Bayesian method Database
(𝜇𝑚) (𝜇𝑚) (-) CPU time (𝑠) CPU time (𝑠)

Complete image [50:100:950] [50:100:950] 51012 66 0.32
*ROI 0 [800:25:1000] [25:25:200] 44583 44 0.23
*ROI 1 [700:25:900] [200:25:250] 1207 1.2 0.75
*ROI 2 [600:25:800] [300:25:350] 1612 1.4 0.13
*ROI 3 [400:25:600] [500:25:550] 1856 1.7 0.13
*ROI 4 [100:25:300] [800:25:850] 1754 1.6 0.12

*, The ROI order can be found in the figures 2.a and 5.a
**, Systematic maximum machining uncertainty of +50 𝜇𝑚 given by the supplier; see section 2

Tab. 1: Calculation time comparison as function of the number of pixels and parameter base
size.

Finally, from the fine maps of both parameters (𝑅𝑡ℎ and 𝑒𝑃𝐶), the 3D topology of the
polycarbonate layer thickness and thermal resistance deepness are reported in figure 7.
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4 Results and Discussion

a) b)

Fig. 7: Reconstructed 3D fields of a) the polycarbonate thickness layer and b) thermal resistive
layer assimilated to air thickness.

One can observed that in figure 7.a, the polycarbonate layer is in very good agreement
with the machining sample shape shown in figure 1. The 3D map in figure 7.b represents
the shape of the air layer inside the complete assembly. This representation can be
assembled to form the complete 3D topology of the sample which demonstrates the use of
thermal tomography of the bilayer heterogeneous sample from IRT surface measurements
using flash excitation.

From the estimated parameters fields represented figure 6, the measured temperatures
(figure 2) are plotted and superposed with the model recalculated for the pixels of the
different ROIs (see figure 2) as illustrated in the figure 8.a. Then, the residual are
reported in the figure 8.b. They are expressed according to the following expression
𝑟𝑒𝑠 = 100 ∗ (1 − 𝑇𝑚𝑒𝑠

𝑇𝑚𝑜𝑑𝑒𝑙
) with 𝑇𝑚𝑒𝑠, the measured temperature and 𝑇𝑚𝑜𝑑𝑒𝑙, the calculated

temperature. It is interesting to notice that the error are very low excepted for the ROI4
where a bias appeared at the short time. This gap is mostly due to the normalisation that
cannot be correctly done due to the lack of short time measurements. As a consequence
a bias occurred, nevertheless the error is around 10%. Finally, to quantitatively analyse
the uncertainty of Bayesian approaches, the sum of the estimated thickness of the bilayer
is calculated and presented in figure 8.c. In figure 8.d, the relative error, based on the
theoretical well-known polycarbonate layer thickness of 1 mm, is calculated. The max-
imal uncertainty reaches 15% with an average value of 3.15%, which is very acceptable
for the complete measurement, inversion and reconstruction processing. This maximal
uncertainty is mainly located in the background ROI and close to the boundary of the
thermal resistance ROIs. For the background, the explanation comes from the depth,
which causes a decreases in the method sensitivity. However, close to the interface of the
resistive square hole, the explanation comes from the 1D model used as a direct model in
Bayesian inference, whereas 3D heat transfer is predominant close to the sample interface.
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5 Conclusions

a) b)

c) d)

Fig. 8: a) Recalculated temperature by using the model of the equation 1 with the estimated
value of the figure 6 for the measured temperature of the figure 2, b) Residual calculated between
the measurement and the model according to the following formulation 100 ∗ (1 − 𝑇𝑚𝑒𝑠

𝑇𝑚𝑜𝑑𝑒𝑙
) with

𝑇𝑚𝑒𝑠 (dash line) the measured temperature and 𝑇𝑚𝑜𝑑𝑒𝑙 (solid line) the calculated temperature
with estimated parameters , c) Recalculated total thickness from the estimated polycarbonate and
resistive layers and d) relative error calculated for a thickness value of 1 mm measured after
machining.

5 Conclusions
In this paper, a methodology for both quantitative thermal resistance and layer thickness
imaging estimation is proposed. This method is based on the Bayesian inference proba-
bilistic inverse method and the analytic quadrupole solution of the thermal response to
front face flash excitation of a bilayer assembly using measured IRT temperatures. The
main advantages of this method are as follows: (i) the possibility to handle any type of
multilayer (high number of layers), (ii) the fast inverse processing that can be adapted
for online monitoring (inverse processing in less than 2 min), and (iii) the ability of the
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method to overcome the knowledge of the initial excitation heat flux as well as the abso-
lute measured temperature and the capacity to retrieve 3D mapping of the layer thickness.
However, the main drawbacks of the proposed methods are as follows: (i) the 1D char-
acter of the model can cause blurring close to the interface, and (ii) the sensitivity to
the sample parameters depends on the thermal contrast of the layers. Finally, comparing
this study with a prior study [1] based on asymptotic method, we can conclude that in
this sample case, the Bayesian approach allows for the estimation of more parameters
(polycarbonate layer plus thermal resistance). Moreover, the two methods can be used
together, especially the asymptotic one, to quickly retrieve the thermal resistive layer,
which can be refined using the Bayesian inference method.
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