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Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

2I2M Laboratory, UMR CNRS 5295,

University of Bordeaux, 33405 Talence CEDEX, France

3Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France

4Department of Materials Science and Engineering,

Drexel University, Philadelphia, Pennsylvania-19104, United States

5CESAM-QMAT-nanomat, and European Theoretical Spectroscopy Facility,
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Abstract

The temperature dependences of both heat capacity and thermal conductivity in nano-lamellar

Cr2AlC single crystals are measured using modulated photothermal radiometry and compared to

first-principles calculations. The electronic contribution to the thermal conductivity of Cr2AlC sin-

gle crystals is computed ab initio by determining the electronic transport coefficients using density

functional theory and by solving the Bloch-Boltzmann transport equation with a temperature-

dependent relaxation time. The lattice thermal conductivity is predicted going beyond the quasi-

harmonic approximation and considering renormalized second and third order force constant ma-

trices, with anharmonic three-phonon scattering, isotopic scattering, and scattering by carbon

vacancies. Isotopic scattering does not modify the lattice thermal conductivity. In contrast, even

a small concentration of carbon vacancies induces a substantial decrease of the in-plane lattice

thermal conductivity. The anisotropy measured in the thermal conductivity, with a ratio of ∼ 2

over the whole temperature range, is confirmed theoretically. This anisotropy seems to mainly arise

from lattice contributions. A similar anisotropy is expected for other MAX phases with identical

layered structures.

Keywords: MAX single crystals, Thermal conductivity, Heat capacity, First-principles calculations, Modu-

lated Photothermal Radiometry
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I. INTRODUCTION

The MAX phases are layered, hexagonal, early transition metal carbides and nitrides,

with formula Mn+1AXn, where M represents an early transition metal, A an element from

groups 13 to 16, X either carbon or nitrogen, and n varies from 1 to 3. There are currently

more than 150 MAX phases known,1,2 including both quaternary in- and out-of-plane or-

dered phases,3–5 as well as the recently discovered rare-earth containing MAX phases.6–8

In contrast to graphite-like layered materials, the MAX phases combine strong intralayer

covalent/metallic MX bonds and weaker interlayer metallic MA bonds. In most cases, the

atomic masses are very different - C atoms are light in comparison with the M and the A

atoms - leading to a wide range of optical phonon energies.9 By now, it is well established

that at least a subset of MAX phases combine some of the best properties of metals and

ceramics,1,9,10 including high electrical and thermal conductivities, chemical, oxidation, and

thermal shock resistances, as well as reversible deformation,11 and bulk ripplocations.12–16

The growing interest of the scientific community results both from their own intrinsic

physical properties and from the possibility to exfoliate them to form a new family of two-

dimensional materials, called MXenes.17 Taken together, these characteristics give MAX

phases their anisotropic properties. Pure MAX phases were synthesized for the first time in

1996,18 but the lack of large single crystals has long prohibited a direct assessment of the

anisotropy of the physical properties expected from their crystal structure [see Fig. 1(a)].

As a consequence, most of the studies on the electrical and thermal transport in MAX

phases were performed on polycrystals.19,20 Since 2011, macroscopic single crystals have

been available,21–24 and their magneto-transport properties have been investigated,25,26 as

well as their electronic structure27 and elastic properties.16

Recently, the phonon dispersion branches of Cr2AlC MAX phase single crystals have been

obtained experimentally with neutron inelastic scattering and computed ab initio within the

density functional perturbation theory (DFPT).28 The anisotropy of the phonon branches

has been predicted with a very satisfactory accuracy when compared to experiment, thus

allowing for further investigation of the anisotropy of the thermal conductivity in these

MAX single crystals.
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FIG. 1. Atomic structure of Cr2AlC (P63/mmc space group, a = b = 0.286 nm, c = 1.282 nm).

In this work, the heat capacity and the anisotropic thermal conductivity of Cr2AlC sin-

gle crystals are measured from room temperature (RT) up to 600◦C. The experimental

techniques are described in sections II A and II B, and the results are discussed in sec-

tion III A. The measurements are compared to ab initio calculations and to fundamental

analytic models including the Wiedemann-Franz law and the Callaway and Klemens mod-

els. The electronic and lattice contributions to the thermal conductivity are computed

using the BoltzTraP2 code29,30 and the temperature dependent effective potential (TDEP)

code,31–33 respectively. Computational details can be found in section II C. The theoretical

predictions are presented in section III B, and all results are discussed in section IV. Finally,

conclusions are drawn in section V.

II. METHODS

A. Crystal growth

Single crystalline platelets of Cr2AlC are grown from a liquid solution of composition

xCr = 0.36, xAl = 0.57 and xC = 0.07. After a temperature plateau at Tmax = 1650◦C

for two hours to ensure carbon dissolution, the crystal growth is achieved by slowly cooling

the solution from Tmax down to T = 1200◦C during time periods ranging from 5 to 7 days

with an Ar pressure pAr = 1.5 bar. Slow cooling aims at limiting unwanted spontaneous

nucleation by putting to good use Ostwald ripening. The growth rate is much slower along

the c-axis, resulting in a morphology with a low aspect ratio. The largest platelet areas are

4



around 6-10 cm2 with thicknesses limited to 2 mm. Single crystals are cleaved and do not

include grain boundaries. The crystal quality is checked by x-ray Laue transmission and

through neutron diffraction. More details on the sample preparation and on their structure

can be found in Ref.28

B. Electrical and thermal conductivity measurements

The Cr2AlC single crystals are first cut with a diamond wire saw in order to obtain

square-shaped samples of about 1 − 2 cm2. They are then polished in order to obtain a

uniform thickness of about 100µm.

Four equidistant and parallel Cr/Au contact pads are deposited on the single crystals,

as illustrated in Fig. 2. The initial Cr layer is 10 nm thick followed by ∼ 150 nm thick gold

layer. Later, silica sheathed copper wires are attached to the gold pads using graphite glue

(Ted Pella, USA). The whole assembly is placed inside a furnace under flowing Ar and the

furnace is heated up to 700◦C at 5◦C per minute. The copper wire contacts coming out of

the furnace are passed through a rubber stopper to protect the inert atmosphere inside. A

100 mA current is passed through the outer wires using a constant current source (Hewlett-

Packard, DC current source, USA) and the voltage at the inner probes is recorded using

a voltmeter (Keithley Instruments, USA). The correction factor used to correct the raw

resistance data is a function of the sample geometry and is calculated according to Ref.34.

The temperature dependence of the heat capacity was obtained using the differential

scanning calorimetry (DSC) technique in the [RT-600]◦C temperature range, with a heating

rate of 10◦C/minute.

Both in-plane and out-of-plane thermal conductivities of the Cr2AlC samples are mea-

sured using the modulated photothermal radiometry (MPTR) within two distinct frequency

ranges.35 The characterization is performed in the [RT-600]◦C temperature range under Ar

flow. The MPTR method consists in submitting sample’s surface to a periodic heat flux

generated by a modulated laser. The increase in temperature leads to a modulated infrared

(IR) radiation that is monitored using a HgCdTe IR detector. The amplitude and the phase

are given using a lock-in amplifier. In addition, the in-plane thermal diffusivity at RT is

measured using the pulsed flying spot (PFS) with the logarithmic parabolas method.36 The

out-of-plane thermal diffusivity at RT is also measured using the periodic pulse radiometry
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FIG. 2. Schematic of the in-plane resistivity measurements in Cr2AlC using a four-probe configu-

ration with equidistant and parallel pads.

technique (PPRT),37 which consists of heating the front face of the sample using a periodic

laser pulse and measuring the transient average temperature on the rear face using an IR

detector. Similar to the MPTR method, the thermal diffusivity is identified by minimizing

the quadratic gap between the experimental relative change in temperature and the one

calculated from a model of the heat transfer within the PPRT experimental configuration.

The minimization is performed using the Levenberg-Marquardt algorithm.

C. First-principles computational modeling

The structural, electronic, and vibrational properties are computed ab initio using den-

sity functional theory (DFT)38,39 and density functional perturbation theory (DFPT),40–44

respectively, using the Abinit package45–47 which is based on plane-wave basis sets to rep-

resent the Kohn-Sham orbitals and charge density. The exchange-correlation functional is

approximated using the generalized gradient approximation as proposed by Perdew, Burke

and Ernzerhof.48 Optimized norm-conserving Vanderbilt pseudopotentials49 are used to de-

scribe core-valence interaction. A plane-wave kinetic energy cut-off of 40 Hartree is deter-

mined through a careful convergence investigation. The first Brillouin zone is sampled with

a 18 × 18 × 6 Monkhorst-Pack k-point grid, and a Gaussian smearing of 1 mHa is used to

accelerate the convergence. Both Fermi surface and Fermi velocities are obtained on a dense
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homogeneous 72× 72× 72 k-point grid and are visualzed using the Fermisurfer code.50 The

optimization of the cell parameters leads to an underestimation of the experimental values

and thus to an overestimation of the high-frequency phonon modes, which is problematic in

the study of transport properties. Following our previous work,28 the lattice parameters are

thus kept fixed at the experimental values for Cr2AlC a = 0.286 nm and c = 1.282 nm, and

the atomic positions inside the unit cell are fully optimized until the largest force is smaller

than 2.5× 10−4 eV/Å.

The thermal conductivity can be decomposed into its electronic and lattice contributions,

such that κ = κe +κl. The transport theory for electrons is implemented in the BoltzTraP2

code29,30 which computes the electronic transport coefficients assuming rigid bands (un-

changed either with doping or temperature) and usually a constant relaxation time τ0. The

estimation of the lattice contribution includes anharmonic processes and, hence, the com-

putation of the third-order force constant matrix. The effective second- and third-order

interatomic force constants (IFCs) are obtained at a given temperature from a fit of DFT

forces in supercells with thermally displaced atoms (based on initial DFPT harmonic esti-

mates) using the TDEP code.31–33 The lattice thermal conductivity tensor and cumulative

thermal conductivity are then obtained from the iterative solution of the phonon Bolzmann

transport equation (BTE). External scattering processes are also considered, i.e., vacancy,

isotope, and grain boundary scattering processes. The isotopic concentrations are chosen

to be as close as possible to the natural ones: carbon of 98.93% 12C, 1.07% 13C, aluminum

of 100% 27Al, and chromium of 4.35% 50Cr, 83.79% 52Cr, 9.50% 53Cr, 2.36% 54Cr. The

determination of the phonon scattering rates due to three-phonon collisions and to extrinsic

scattering processes using an ab initio approach is described in detail in Refs.31–33.

III. RESULTS

A. Measurements

1. Electrical resistivity

In order to gain insight into the transport properties of Cr2AlC single crystals, the in-

plane electrical resistivity ρ‖(T ) is measured experimentally, in the [50−750]◦C temperature

range, using a four-probe configuration as the one depicted in Fig. 2. The result is depicted

7



(a) (b)

FIG. 3. (a) Temperature-dependence measurements of the in-plane resistivity ρ‖ for Cr2AlC single

crystals (black line), compared to experimental data from Ref.52 for a polycrystalline sample (blue

line), and to the computed in-plane resistivity (orange line) using the relaxation time τ(T, ε) as

defined in Eq. 15. The dashed green line is a guide to the eye, highlighting the linear temperature

dependence of the resistivity. (b) Predicted out-of-plane resistivity (orange line) using τ(T, ε),

compared to experimental data from Ref.25.

in Fig. 3(a). Not surprisingly, a linear temperature-dependence is observed, as is usual in

metals, due to the linear increase of the phonon occupation with temperature. This ex-

perimental curve will be further used to investigate the thermal transport in Cr2AlC single

crystals in Section III B 2. A value of ∼ 0.7µΩm is obtained at 50◦C, which is about ten

times higher than the one previously measured by Ouisse et al.25 This might be due to the

configuration used to measured the resistivity where the contacts are all deposited on the

top surface. On the other hand, it appears that the curve is close to previous reports for

Cr2AlC polycrystals with electrical resistivities ranging from 0.6 to 0.74µΩm at 300 K.51–53

It can be noted here that the electrical resistivity of Cr2AlC is almost twice higher than the

one of other M2AlC systems.9 For example, the electrical resistivities of Ti2AlC,54 V2AlC,51

and Nb2AlC51 are 0.36, 0.25, 0.29µΩm, respectively, at 300 K.
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2. Heat capacity and thermal conductivity

Both in-plane and out-of-plane thermal conductivities are measured using the MPTR

technique with two distinct frequency ranges. At high (low) frequency, the measured phase

is sensitive to the in-plane (out-of-plane) thermal diffusivity a‖ (a⊥). Using the measured

density ρ = 5210 kg/m3 and the temperature-dependent heat capacity Cp(T ) [see Fig. 4(a)],

the temperature-dependent in-plane thermal conductivity κ‖(T ) and out-of-plane thermal

conductivity κ⊥(T ) are obtained. κ‖(T ) measured on several Cr2AlC samples using the

MPTR are depicted in gray in Fig. 4(b). A total of seven curves are reported among

which four are increasing with T at high temperature and three are decreasing with T at

high temperature. The deviations between the different gray curves may result from the

variable quality of the different samples and the sensitivity of the measurements. They still

provide results in the same order of magnitude, with an average thermal conductivity curve

depicted in blue in the same figure. The out-of-plane thermal conductivity κ⊥(T ) of a unique

sample is measured and depicted in orange in Fig. 4(b). Values of κ‖ = 41.3 Wm−1K−1 and

κ⊥ = 21.6 Wm−1K−1 are obtained at RT.

In addition, the in-plane thermal diffusivity at RT is measured using the PFS with the

logarithmic parabolas method.36 A value of a‖ = 11.4 mm2/s is measured, leading to a

κ‖ = 40.8 Wm−1K−1 at RT. This PFS measurement is useful to validate the MPTR values.

The temperature dependence of κ⊥ is also measured using the PPRT technique and the

results are reported in Fig. 4(b). These values confirm rather well those obtained with the

MPTR technique, although the slight increase at the highest temperatures is not observed

anymore. Given the high standard deviation on κ⊥ using the MPTR technique, we suspect

the increase is spurious. Comparisons with values of κ⊥ in the literature are also reported in

Fig. 4(b). The measurements obtained by Tian et al.53 in a more narrow temperature range

fit rather well with the present measurements. As a global observation, the in-plane thermal

conductivity is found to be almost constant in the whole temperature range, whereas the

out-of-plane thermal conductivity slightly decreases with increasing temperature and before

saturating above 200◦C. As importantly, an anisotropy ratio of about 2 is found over the

whole temperature range.
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(a) (b)

FIG. 4. (a) Heat capacity measurements of Cr2AlC single crystal measured experimentally (blue

dots), compared to experimental data from Ref.55 (orange squares) and theoretical values (black

solid line) obtained from electrons (Cep), acoustic and optical phonons [Cphp (AM), Cphp (OM)], and

anharmonic (Canp ) contributions. (b) Measured in-plane (κ‖) and out-of-plane (κ⊥) thermal con-

ductivities using various techniques, compared to values found in the literature.51–53 Error bars for

MPTR and PPRT measurements are represented by dark gray lines.

B. Theoretical simulations

1. Heat capacity

The total heat capacity Cp is composed of several contributions, including the electronic

part (from the metallic character of Cr2AlC), the lattice part, and the anharmonic scattering

that occurs at high temperature:61

Cp = Ce
p + Cph

p + Can
p (1)

where

Ce
p =

π2k2
BN(EF )

3qeNA

T (2)

is the electronic contribution with N(EF ) denoting the density of states (DOS) at the Fermi

energy EF . The phonon contribution Cph
p = Cph

p (AM) + Cph
p (OM) is accounted with both

the acoustic modes (AM) and the optical modes (OM). Assuming all the atoms are involved

equally within the AM, the contribution of AM is conventionally expressed from the phonon

10



TABLE I. Theoretical and experimental values used to model the heat capacity and the thermal

conductivity of the Cr2AlC MAX phase.

Cr2AlC Parameter description(s) Value(s) Refs.

M [g mol−1] Molar mass 52(Cr)/27(Al)/12(C)

a [Å] - c [Å] Lattice constants 2.863 - 12.814 Exp.56–58

V0 [Å3] Volume of the elementary cell 90.6 Exp.56,57

ρ [kg m−3] Density 5210 Exp.

L [cm] Grain size (@300 K) ∼ 1− 2 This work

αV [K−1] Thermal expansion coefficient 11.2× 10−6 Exp.58,59

B [GPa] Bulk modulus 226 Calc.56,57,59,60

ΘE [K] Einstein temperature 260, 320, 925 Exp.19

ΘD [K] Debye temperature 675 This work

γ [J mol−1 K−2] Temperature coeff. of Cep 17.15× 10−3 Exp.19

G Grüneisen parameter (= 3BαV /Cp) 1.5 Calc.58

vT1/vT2 [m s−1] Transverse sound velocities along

Γ−M 4820/5216 Calc.28

Γ−K 4820/5216 Calc.28

Γ−A 5056/5056 Calc.28

vL [m s−1] Longitudinal sound velocity along

Γ−M 7664 Calc.28

Γ−K 7664 Calc.28

Γ−A 9566 Calc.28

N(EF ) [(eV.unit cell)−1] Density of states at the Fermi level 6.46 Exp.60

EF [eV] Fermi energy 8.07 Calc.57

DOS Dp(ω) given, within the Debye approximation, by

Dp(ω) =
ω2

2π2v3
(3)

with

v = 31/3

(
1

v3
L

+
2

v3
T

)−1/3

(4)

11



the sound velocity, as:

Cph
p (AM) =

~2

kBT 2

∫ ωD

0

ω2e
~ω

kBT(
e

~ω
kBT − 1

)2Dp(ω)dω (5)

= 9NkB
T 3

Θ3
D

∫ ωD

0

~5ω4e
~ω

kBT

k5
BT

5
(
e

~ω
kBT − 1

)2dω. (6)

In this relationship, ~ is the reduced Planck constant, kB the Boltzmann constant, ΘD

the Debye temperature, and N =
∫∞

0
Dp(ω)dω. Assuming all the phonons are involved in

the high-temperature range, N = 4NA

M
where M = 2MCr + MAl + MC is the total molar

mass. Using the Debye approximation, it comes to N =
V0ω3

D

6π3v3 where V0 is the volume of the

elementary cell. In addition, the Debye temperature ΘD = ~ωD

kB
= ~(6Nπ2v3)1/3

kB
is found to be

675 K, which is the value frequently reported in the literature.60 The heat capacity related

to optical modes is estimated using the Einstein model as:

Cph
p (OM) =

3NkBΘ2
Ee

ΘE
T

T 2(e
ΘE
T − 1)2

(7)

where ΘE = ~ωE

kB
is the Einstein temperature. Finally, at high temperature, anharmonic

effects can also be taken into account as a contribution to the heat capacity using:

Can
p =

9NAα
2
VBV0T

M
(8)

where B is the bulk modulus, and αV the thermal expansion coefficient.

The total heat capacity distributed among its various contributions (electrons, phonons

and anharmonic processes - thermal expansion) and computed using the data reported in

Table I, is presented in Fig. 4(a) by a black line that overlaps the experimental results in

blue.

2. Electronic thermal conductivity

Wiedemann-Franz law. As a first approximation, the electronic contribution to the

thermal conductivity κe can be quickly estimated using the Wiedemann-Franz law as:

κe =
L0T

ρ(T )
(9)
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In this relationship, L0 = 2.45 × 10−8WΩK−2 is the Lorentz number and ρ(T ) is the

temperature-dependent electrical resistivity. The experimental in-plane electrical resistivity

ρ‖(T ) depicted in Fig. 3(a) is used to compute the in-plane electronic thermal conductivity

κ
‖
e. As expected from the quasi-linear temperature-dependence of the resistivity, an almost

temperature-independent electronic thermal conductivity is observed in Fig. 5(a).

Boltzmann transport equation. From first principles, the electronic contribution

to the thermal conductivity κe can be obtained by solving the BTE for electrons. The

BTE describes the statistical behavior of an out-of-equilibrium system in terms of various

scattering processes considering their specific scattering rates. The transport distribution

function is defined as:

σ(ε, T ) =

∫ ∑
b

vb,k × vb,kτb,kδ (ε− εb,k)
dk

8π3
(10)

where b is a band index, k the conserved wavevector, vb,k the carrier velocities, τb,k the

relaxation time, and εb,k the band energies. σ(ε, T ) can be used to compute the moments of

the generalized transport coefficients:

Lα = q2

∫
σ(ε, T ) (ε− µ)α

(
−∂fF (ε;µ, T )

∂ε

)
dε (11)

with fF the Fermi distribution and µ the chemical potential, that, in turn, are used to access

the electronic transport coefficients of interest, namely the electrical conductivity σ, and the

electronic thermal conductivity κe, as:

σ = L(0) (12)

κe =
1

q2T


(
L(1)

)2

L(0)
−L(2)

 . (13)

The integration of the BTE requires an accurate description of the electronic band struc-

ture. BoltzTraP2 code30 provides such a description using an interpolation method based

on a Fourier expansion that takes as input the electronic energies for different k-points,

previously calculated by a DFT code [see Fig. 6(a)]. The code then computes the Fermi

integrals for different temperatures and Fermi levels, and returns as output all the transport

coefficients.29,30 In this work, calculations are performed at zero-doping.
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(a)

(c)
(d)

(b)

(f)(e)

FIG. 5. (a) In-plane κe extracted from the Wiedemann-Franz law considering the experimental

electrical resistivity ρ‖(T ) from Fig. 3(a) and κe computed with τ(T, ε) defined in Eq. 15, (b)

κl computed with anharmonic phonon-phonon scattering processes, with the contribution from

optical and acoustic modes (OM and AM, respectively) at RT shown in the inset, (c) cumulative

lattice thermal conductivity at RT, (d) κl for various concentrations of C vacancies, (e) κ obtained

as the sum of κe and the predicted κl from Callaway and Klemens models, and (f) total computed

thermal conductivity compared to the experimental curves obtained in this work.
14
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FIG. 6. First-principles (a) electronic band structure of Cr2AlC, with the Fermi level fixed as the

reference of zero energy, and (b) and (c) Fermi surfaces computed using the Fermisurfer code50

and color-coded depending on Fermi velocities.

The relaxation time τb,k typically depends on the temperature T and on the charge

carrier energy ε. All scattering events that can influence the electron conduction such as

impurity scattering, phonon scattering, etc., are summed in this parameter according to

the Matthiessen law.62 In many cases, as a first approximation, the relaxation time is of-

ten assumed to be constant. Within the constant relaxation time approximation (CRTA),

quantities such as σ0 = σ/τ0 and κ0 = κ/τ0 are determined by the band structure where the

temperature dependence exclusively comes from the electronic occupation function. This

approach is quite efficient in terms of computational time and globally provides good quanti-

tative agreement with experimental measurements for lightly-doped semiconductors63 where

charge carriers are concentrated in specific bands and wave vectors. However, for highly-

doped semiconductors and metals, charge carriers are located at various places (various

bands b and wave vectors k) and the electronic relaxation time thus varies significantly on

the Fermi surface.64 In these particular cases, the CRTA has shown limitations and more-

advanced computational theories or models must be considered.

In order to obtain a good description of the electronic properties of metallic systems,

both the temperature- and energy-dependence of τb,k must be considered in Eq. 10. The

temperature and energy dependence is dictated by the scattering mechanisms. The most

important mechanisms of electron scattering in metals are (i) defects and charged impurity

scattering, dominant at low temperature (< 100 K), and (ii) electron-phonon scattering,

dominant at high-temperature. An analytical model expression for τ (T, ε), developed on
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the basis of known semi-classical theories can be formulated as:65,66

τ (T, ε) = τref

(
T

Tref

)γ (
ε

εref

)λ−1/2

(14)

where τref is a suitable reference value of τ at a temperature Tref and εref is the bottom of the

conduction band. At low temperature, γ and λ exponents in Eq. 14 are respectively 0 and 2

reflecting the effect of defects and impurities. At high temperature, γ and λ exponents are

respectively equal to −1 and 0 and the linear temperature dependence T−1 of the relaxation

time reflects the dominance of electron-phonon scattering mechanisms. Given that we are

interested in the [0 − 700]◦C temperature range for which the relaxation time is governed

by electron-phonon scattering processes, the expression of the relaxation time is given by:

τ (T, ε) = τref

(
T

Tref

)−1(
ε

εref

)−1/2

(15)

where εref is taken as the Fermi energy for a metallic system. The T−1 dependence in

the model relaxation time allows to recover the linear temperature dependence of ρ‖(T )

in Fig. 3(a). A value of τref = 5 fs at Tref = 273 K is chosen to fit the experimental in-

plane resistivity curve in Fig. 3(a), and is in good agreement with recently determined

electronic relaxation times in Cr2AlC single crystals.67 Similarly, a value of τref = 0.06 fs

at Tref = 273 K is chosen to match the out-of-plane resistivity value of 1.5 × 10−4 Ωm at

273 K [see Fig. 3(b)].25 Since no experimental data is available for ρ⊥ above 273 K, the

only indication used to extract a physical relaxation time is the anisotropy ratio of ∼ 300

observed for the resistivity at 273 K.25 The temperature- and energy-dependent relaxation

time has been implemented in the BoltzTraP2 code and is used to investigate the electrical

and thermal transport in Cr2AlC single crystals.

In Fig. 5(a), κ
‖
e and κ⊥e are reported using the temperature- and energy-dependent relax-

ation time defined in Eq. 15. A value of 13 Wm−1K−1 (0.04 Wm−1K−1) at RT for the in-plane

(out-of-plane) direction is obtained, and remains quasi-constant in the whole temperature

range.

3. Lattice thermal conductivity

The lattice thermal conductivity κl of a perfect harmonic crystal is infinite and not a

function of temperature. The lattice thermal resistance is dictated by phonon scattering
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processes that can be intrinsic, through anharmonic phonon-phonon scattering, or extrinsic,

induced by isotopic disorder, point defects, or edge effects. The treatment of these scattering

processes is mandatory in order to obtain a good description and temperature-dependence

of thermal and thermodynamic properties, especially at high temperature.

Phonon Boltzmann transport equation. When a material is at equilibrium at the

temperature T , the equilibrium phonon population nν describes the number of phonons for

each vibrational mode ν found at energy ~ων . If a gradient of temperature is applied, the

phonon population deviates from its equilibrium condition and reaches an out-of-equilibrium

condition.68

The first microscopic description of the lattice thermal conductivity was formulated in

1929 by Peierls,69 and is nowadays known as the phonon BTE. This equation describes how

the perturbation due to a gradient of temperature involves a change in the phonon population

due to all possible scattering mechanisms. In order to accurately predict thermal transport

properties, an accurate description of the equilibrium and perturbed phonon populations is

required, as well as of their interactions, and lifetimes.68 In practice, the harmonic quantities,

such as phonon frequencies, group velocities, and phonon populations, can be obtained ab

initio by computing the second-order IFC using DFPT. The challenge thus resides in the

determination of the anharmonic quantities, such as phonon scattering rates and linewidths.

The total out-of-equilibrium distribution nν in its linearized form is given by:

nν = nν (nν + 1)Fν∇T (16)

where Fν corresponds to the deviation of the phonon population with respect to the equilib-

rium condition. The computation of nν , which is the key quantity to be evaluated, requires

to solve the linearized BTE for phonons:

cν∇T
∂nν
∂T

=
∑
ν′

Ων,ν′nν′ (17)

where Ων,ν′ is a matrix of scattering rates acting on the phonon population. The lattice

thermal conductivity can be expressed as:

κl =
~2

ΩkBT 2

∑
ν

nν (nν + 1) cνωνFν (18)
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where Ω is the unit cell volume, ων the phonon frequencies, and cν the corresponding group

velocities. Additional information on the computation of the lattice thermal conductivity

can be found in Ref.68.

In most cases, phonons are treated individually through the single mode approximation

(SMA).70–72 This relies on the assumption that heat-current is dissipated every time a phonon

undergoes a scattering event,73 and approximates Fν with cνωντν where τν is the relaxation

time of the phonon mode ν. While the SMA properly describes the depopulation of a phonon

mode after any scattering process, the repopulation process is usually poorly described

due to a loss of memory of the initial phonon distribution (final states are repopulated

isothermally).73,74 In particular, the SMA has shown some limitations to accurately describe

the lattice thermal conductivity in layered compounds and two-dimensional systems.73

Recently, Hellman et al.31–33 proposed a formalism to obtain the third-order IFCs and

to accurately calculate the lattice thermal conductivity from the iterative solution of the

phonon BTE. The first step consists in computing the second- and third-order force constant

matrices that are both temperature- and volume-dependent. For this purpose, an ensemble

of 30 non-correlated configurations generated from a gaussian distribution of harmonic input

phonons is used to sample the Born-Oppenheimer potential energy surface at finite temper-

ature. Then, a minimization scheme between the forces model and the ab initio computed

forces is used, and leads to the direct determination of the force constant matrices. The

second step consists in iteratively solving the phonon Boltzmann equation in Eq. 18, starting

from an initial guess F 0
ν to obtain the non-equilibrium distribution.

Figure 5(b) presents the computed lattice thermal conductivities in-plane κ
‖
l and out-

of-plane κ⊥l for Cr2AlC single crystals, when only anharmonic phonon-phonon scattering

processes are considered. The inclusion of isotopic scattering processes does not modify

the lattice thermal conductivity, as expected from the small natural isotopic diversity of

Cr, Al, and C elements. Grain boundary scattering processes can play an important role

in phonon transport as polycrystallinity tends to drastically decrease the lattice thermal

conductivity.75 However, in the present work, there is no reason to include these scattering

processes since all measurements are performed on single crystals with a single grain of a

few cm2. Phonon scattering from point defects can also play an important role in limiting

the thermal conductivity. Since both experimental and theoretical works gave evidence for
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FIG. 7. First-principles phonon spectrum of Cr2AlC along major crystallographic directions with

the projected phonon density of states.28

significant amounts of vacancies in MAX phases,2,76 these defects are taken into account

in the computation of the lattice thermal conductivity. A vacancy can be regarded as a

perturbation of the crystal corresponding to the removal of the mass of one atom and the

force constants of two atoms.77 Hence, the energy associated to a vacancy can be treated

as equivalent to an isotopic defect corresponding to a change of mass ∆M = −3M where

M is the atomic mass of the missing atom,77 i.e., C atom in Cr2AlC.76 Concentrations of C

vacancies ranging from 0.1% to 1% are considered. The results are presented in Fig. 5(d).

While κ⊥l remains almost constant over the whole temperature range, κ
‖
l is reduced, espe-

cially in the [0 − 300]◦C temperature range by the inclusion of C vacancies. This can be

understood from the analysis of the high-energy phonon branches in Fig. 7 and detailed in

Ref.28. In fact, the presence or absence of C atoms only affects the in-plane phonon propa-

gation and lattice thermal conductivity since, for the high-energy C-related modes, there is

no phonon propagation feasible perpendicularly to the plane, due to the flatness of the bands.

Callaway and Klemens models. An efficient alternative to the phonon BTE to com-

pute the lattice thermal conductivity is the Debye-Callaway model (detailed in appendix 1).

Considering the optimized values for the parameters used in the model, both the in-plane

and the out-of-plane lattice thermal conductivities are computed and the total thermal con-
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ductivities, including the electronic contributions, are presented (dashed lines) in Fig. 5(e).

The agreement for both κ‖ and κ⊥ with the experimental curves is quite good.

Using the Klemens model (detailed in appendix 2) and optimizing at the same time both

the effects of umklapp processes and defects lead to the curves (solid lines) presented in

Fig. 5(e). The agreement with the experimental curves is good and is slightly improved

with respect to the Callaway model, especially around RT.

IV. DISCUSSION

In Fig. 4(a), the experimental measurements of the heat capacity of Cr2AlC are slightly

different from the values reported by Tian et al.53 However, the theoretical total heat capac-

ity reproduces the experimental data with very good accuracy, inducing a high confidence

in the measurement techniques used. In addition, such agreement allows us to state that

the AM contribution is clearly the dominant one, while the electronic, anharmonic, and OM

contributions are similar in magnitude and remain low compared to the AM contribution.

A linear temperature-dependence for the electrical resistivity is observed in Fig. 3(a), as

is usual in metals, due to the linear increase of the phonon occupation with temperature.

Not surprisingly, the Wiedemann-Franz law gives a good approximation of the electronic

thermal conductivity, and leads to results similar to those obtained with the BoltzTraP2

code using a temperature-dependent relaxation time [see Fig. 5(a)]. The large anisotropy

observed in the electrical resistivities,25 with an out-of-plane resistivity about 300 times

higher than the in-plane one, leads to a negligible electronic contribution to the out-of-plane

thermal conductivity. This anisotropy in the electronic transport can also be noticed from

the electronic band structure and Fermi surface in Fig. 6. The open tubular structure of the

Fermi surface depicted in Figs. 6(b) and 6(c) suggests a quasi two-dimensional character of

the Cr2AlC system, in agreement with results from Ito et al.27 Moreover, from Eq. 10, it

is clear that carrier velocities, which are linked to the band dispersion, play an important

role in the electronic transport. As a consequence, in Fig. 6(a), the dispersive bands along

directions parallel to the plane (i.e., A−H, Γ−K, Γ−M, L−H) will lead to high carrier

velocities and good electronic conductivity in the plane, while the almost flat bands along

directions perpendicular to the plane (i.e., Γ−A, H−K, M−L) explain the weak out-of-plane
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conductivity. This is confirmed by the evaluation of the carrier velocities at the Fermi surface

[see Figs. 6(b) and 6(c)] for which the in-plane component is higher than the out-of-plane

one (not shown).

The results for the lattice thermal conductivity computed with the TDEP code, con-

sidering anharmonic phonon-phonon scattering processes, are shown in Fig. 5(b). Both

in-plane and out-of-plane κl decrease with the temperature, which is a signature of umklapp-

dominated scattering processes. Although Cr2AlC has relatively isotropic sound velocities

[see Table I],28 it has a significantly anisotropic lattice thermal conductivity. This can be

explained from the cumulative κl depicted in Fig. 5(c) where the anisotropy clearly starts at

energies greater than 20 meV, mostly corresponding to optical modes. The low-lying optical

branches - with energy below 40 meV - in the phonon spectrum of Cr2AlC [see Fig. 7] are

very dispersive, with higher group velocities in the ab-plane (along Γ−K and Γ−M) than

along the c-axis (along Γ−A). Consequently, the optical modes significantly contribute to

κl, particularly for the in-plane direction as shown in the inset of Fig. 5(b). This decompo-

sition partly explains the intrinsic anisotropy present in the MAX phases, in general, and in

Cr2AlC, in particular. A good qualitative and quantitative agreement with the experimental

thermal conductivity can be reached by considering both Callaway and Klemens models for

the computation of κl, with optimized parameters, as highlighted in Fig. 5(e).

The computed total thermal conductivities are presented in Fig. 5(f) and both slightly

decrease with the temperature. An anisotropy ratio slightly higher than 2 is predicted over

the whole temperature range. A comparison with the experimental data is also provided in

Fig. 5(f). A qualitative agreement is found between experimental and computed thermal

conductivity curves, with an overestimation of the experimental κ‖ by 65% and an under-

estimation of the experimental κ⊥ by 4% at 50◦C. The overestimation of κ‖ can be due to

various electron/phonon scattering sources and intrinsic structural defects present in the

samples and not considered in the calculations. For example, it was shown in Fig. 5(d)

that the inclusion of C vacancies in our model reduces κ
‖
l in the [0 − 300]◦C temperature

range, while keeping κ⊥l constant. Consequently, the deviation between the calculated and

experimental in-plane thermal conductivities at 50◦C goes down to 55% and 19% considering

scattering processes with C vacancies, with a concentration of 0.1 and 1%, respectively. This

confirms that the overestimation of the in-plane thermal conductivity can be explained by

missing scattering processes in the calculations, which can play an important role especially
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around RT.

Interestingly, while the calculations predict a decreasing behavior for the thermal con-

ductivity with the temperature - as intuitively deduced from the decrease of the phonon

lifetimes with T - the experimental curves exhibit two different trends. For the in-plane

thermal conductivity, some curves are decreasing with T while others are increasing with T ,

leading to an average curve which is almost constant on the whole temperature range. For

the out-of-plane thermal conductivity, the curve slightly decreases before saturating above

200◦C. It seems that something, which is not caught by our simulations, is maintaining the

thermal current constant even at higher temperature. This could be linked to a possible

thermal expansion with increasing T or with a potential annealing of the sample at higher

T , reducing the number of defects in it. More work is needed to clarify this situation which

will be the scope of our future research.

In the present work, the main result is the quantitative analysis of the anisotropy in the

thermal conductivity of Cr2AlC single crystals confirmed by both experimental and theoret-

ical approaches. This anisotropy arises from both the electronic and lattice contributions;

the latter being the dominant term. At RT, the lattice contribution represents ∼ 81% of

the total in-plane thermal conductivity, and decreases with T to reach 63% at 600◦C. For

the out-of-plane thermal conductivity, the electronic contribution is almost zero and the

thermal transport is only feasible through lattice vibrations. Interestingly, the anisotropy

ratio of 300 observed in the electronic transport is now reduced down to ∼ 2 for the thermal

transport, as a consequence of lattice vibrations which play an important role along both

in-plane and out-of-plane directions.

V. CONCLUSIONS

In summary, the heat capacity of Cr2AlC single crystals is measured and accurately

reproduced using simple analytic models. The contribution from acoustic phonon modes is

clearly the dominant one, while the electronic, anharmonic and optical modes contributions

represent together at most 25% of the heat capacity.

The in-plane and out-of-plane thermal conductivities of Cr2AlC single crystals are mea-

sured using various experimental techniques and compared to ab initio calculations. An
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accurate microscopic description of heat transport is achieved and the electronic contribu-

tion to thermal conductivity is determined using a temperature-dependent electronic relax-

ation time. Solving iteratively the BTE for phonons, the lattice thermal conductivity is

estimated. Additionally, Callaway and Klemens models provide a qualitative and quantita-

tive description of the lattice thermal conductivity. Both in-plane and out-of-plane thermal

conductivities computed ab initio are in good agreement with present experiments and with

previously reported experimental data. For the out-of-plane thermal conductivity, the quan-

titative agreement is also correct in the entire temperature range. Regarding the in-plane

thermal conductivity, the computed data slightly overestimate the experimental ones below

400◦C, whereas they underestimate them at higher temperatures. The inclusion of scattering

processes by C vacancies improves the prediction of κ‖, especially between RT and 300◦C,

and leads to a good quantitative agreement with the experimental curve. The remaining

deviation between calculated and experimental thermal conductivities can possibly be as-

signed to additional scattering phenomena, present in real samples, and not considered in

this work. Besides, the saturating behavior of the experimental curves at high temperature

is not caught by our simulations. It could be linked to a possible thermal expansion or

annealing of the sample with increasing T . More investigation is needed to shed light on

this interesting point.

As a main conclusion, the anisotropy reported experimentally is accurately reproduced

theoretically and seems to mainly arise from the lattice contribution. A similar anisotropy in

the transport properties is expected for other MAX phases with identical layered structures.

Consequently, we believe that this first-principles approach can be effectively applied to

investigate thermal conductivities of other layered systems. From an applicative aspect,

accurately predicting and describing the anisotropic thermal conductivity in layered systems

is essential for device engineering, especially for energy dissipation in electronics and high-

temperature applications.
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APPENDIX: LATTICE THERMAL CONDUCTIVITY MODELS

1. Callaway model

In the Debye-Callaway model, the lattice thermal conductivity is composed of two terms

such that:71

κl = κ1 + κ2 (19)

with

κ1 =
k4
B

2π2v~3
T 3

∫ ΘD/T

0

x4ex

(ex − 1)2 τcdx (20)

and

κ2 =
k4
B

2π2v~3
T 3

[∫ ΘD/T

0
x4ex

(ex−1)2
τc
τN
dx
]2

∫ ΘD/T

0
x4ex

(ex−1)2
τc
τN τq

dx
(21)

with x = ~ω
kBT

, and τ−1
c = τ−1

N + τ−1
q = τ−1

N + τ−1
B + τ−1

I + τ−1
U the total relaxation time, where

τN , τB, τI , and τU respectively correspond to the relaxation times associated to normal

modes, grain boundary, point defect, and umklapp scattering processes. The relaxation

time associated to normal modes is defined as τ−1
N = Aω2T = A

x2k2
B

~2 T 3. The relaxation

time corresponding to the phonon scattering by grain boundary is defined as τ−1
B = v

L

with L the characteristic dimension of the crystal grain. The relaxation time for phonon

scattering by point defects is given by τ−1
I = Cω4 = C

x4k4
BT

4

~4 where the constant C = V0Γ
4πv3

depends on the sound velocity v, the volume of the elementary cell V0, and the mass defect

parameter Γ =
∑

i fi
(
1− Mi

M

)2
, with fi the mass fraction of impurity for atom i with

mass Mi. Eventually, the relaxation time associated to umklapp processes is defined by

τ−1
U = Bω2Te−

ΘD
3T = B

x2k2
B

~2 T 3e−
ΘD
3T , where B = G2~

Mav2ΘD
is a constant, with G the Grüneisen

parameter, Ma the mass per atom, and v the sound velocity. At high temperature, for

a significant level of impurities, all phonon modes are scattered by resistive processes and,

hence, τN � τq and τc ≈ τq. As a consequence, κ1 � κ2 and the lattice thermal conductivity

is given by the expression in Eq. 20.

Considering that phonons are mostly scattered by umklapp processes (τU) and point

defects (τI) in the temperature range of interest, and using the computed values for both

parameters B and C reported in Table II, an estimation of the in-plane and out-of-plane

lattice thermal conductivities is obtained and reported in Figs. 8(a) and 8(b). Since both

parameters cannot be identified independently, only the B parameter related to umklapp
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TABLE II. Theoretical and optimized values of the parameters involved in Callaway and Klemens

models.

Callaway model Klemens model

C B Bopt K Kopt

κ‖
1.584× 10−41 3.011× 10−19

1.372× 10−20

151
620

κ⊥ 3.061× 10−20 412

(a) (b)

FIG. 8. (a) In-plane and (b) out-of-plane κ predicted from Callaway and Klemens models, compared

to experimental measurements obtained in this work.

processes is optimized using the Levenberg-Marquardt algorithm. The values for Bopt in-

plane and out-of-plane are reported in Table II and used to compute κ
‖
l and κ⊥l , respectively.

2. Klemens model

The Klemens model assumes that both umklapp processes and defects play an important

role in the high-temperature range. The lattice thermal conductivity is given by:

κ∞,U,D =
kbπ

4π2v
√
CB

1√
T

= K
1√
T

(22)
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with the parameters B and C defined previously. The theoretical value of K is reported

in Table II and is initally considered equal for both the in-plane and out-of-plane lattice

thermal conductivities. Using the identical minimization process, optimized values for K

are obtained. The results for the thermal conductivity in the Klemens approximation are

shown in Figs. 8(a) and 8(b).
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30 Georg K.H. Madsen, Jesús Carrete, and Matthieu J. Verstraete, “BoltzTraP2, a program for

interpolating band structures and calculating semi-classical transport coefficients,” Computer

Physics Communications 231, 140–145 (2018).

31 O. Hellman, I. A. Abrikosov, and S. I. Simak, “Lattice dynamics of anharmonic solids from

first principles,” Phys. Rev. B 84, 180301 (2011).

32 Olle Hellman, Peter Steneteg, I. A. Abrikosov, and S. I. Simak, “Temperature dependent

effective potential method for accurate free energy calculations of solids,” Phys. Rev. B 87,

104111 (2013).

33 Olle Hellman and I. A. Abrikosov, “Temperature-dependent effective third-order interatomic

force constants from first principles,” Phys. Rev. B 88, 144301 (2013).

34 L. J. Swartzendruber, “Correction factor tables for four-point probe resistivity measurements

on thin, circular semiconductor samples,” Technical note 6, 43 (1964).

35 Andrzej Kusiak, Jiri Martan, Jean-Luc Battaglia, and Rostislav Daniel, “Using pulsed and

modulated photothermal radiometry to measure the thermal conductivity of thin films,” Ther-

29

http://dx.doi.org/10.1016/j.jcrysgro.2013.09.021
http://dx.doi.org/10.1016/j.jcrysgro.2013.09.021
http://dx.doi.org/10.1016/j.actamat.2014.10.018
http://dx.doi.org/10.1103/PhysRevB.92.045133
http://dx.doi.org/10.1080/21663831.2017.1333537
http://dx.doi.org/10.1103/PhysRevB.96.195168
http://dx.doi.org/ 10.1080/21663831.2018.1463298
http://dx.doi.org/ 10.1080/21663831.2018.1463298
http://dx.doi.org/10.1016/j.cpc.2006.03.007
http://dx.doi.org/ 10.1016/j.cpc.2018.05.010
http://dx.doi.org/ 10.1016/j.cpc.2018.05.010
http://dx.doi.org/ 10.1103/PhysRevB.84.180301
http://dx.doi.org/10.1103/PhysRevB.87.104111
http://dx.doi.org/10.1103/PhysRevB.87.104111
http://dx.doi.org/10.1103/PhysRevB.88.144301
http://dx.doi.org/10.1016/j.tca.2013.01.010
http://dx.doi.org/10.1016/j.tca.2013.01.010


mochimica Acta 556, 1 – 5 (2013).

36 L. Gaverina, J. C. Batsale, A. Sommier, and C. Pradere, “Pulsed flying spot with the logarith-

mic parabolas method for the estimation of in-plane thermal diffusivity fields on heterogeneous

and anisotropic materials,” Journal of Applied Physics 121, 115105 (2017).

37 Emmanuel Ruffio, Christophe Pradere, Alain Sommier, Jean-Christophe Batsale, Andrzej Ku-

siak, and Jean-Luc Battaglia, “Signal noise ratio improvement technique for bulk thermal

diffusivity measurement,” International Journal of Thermal Sciences 129, 385 – 395 (2018).

38 P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864–B871 (1964).

39 W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,”

Phys. Rev. 140, A1133–A1138 (1965).

40 Stefano Baroni, Paolo Giannozzi, and Andrea Testa, “Green’s-function approach to linear

response in solids,” Phys. Rev. Lett. 58, 1861–1864 (1987).

41 Xavier Gonze, “Perturbation expansion of variational principles at arbitrary order,” Phys. Rev.

A 52, 1086–1095 (1995).

42 Xavier Gonze, “First-principles responses of solids to atomic displacements and homogeneous

electric fields: Implementation of a conjugate-gradient algorithm,” Phys. Rev. B 55, 10337–

10354 (1997).

43 Xavier Gonze and Changyol Lee, “Dynamical matrices, born effective charges, dielectric per-

mittivity tensors, and interatomic force constants from density-functional perturbation theory,”

Phys. Rev. B 55, 10355–10368 (1997).

44 Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso, and Paolo Giannozzi, “Phonons and

related crystal properties from density-functional perturbation theory,” Rev. Mod. Phys. 73,

515–562 (2001).

45 X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Ver-

straete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D.C.

Allan, “First-principles computation of material properties: the {ABINIT} software project,”

Computational Materials Science 25, 478 – 492 (2002).

46 X Gonze, G Rignanese, M Verstraete, J Betiken, Y Pouillon, R Caracas, F Jollet, M Torrent,

G Zerah, M Mikami, P Ghosez, M Veithen, J-Y Raty, V Olevano, F Bruneval, L Reining,

R Godby, G Onida, D Hamann, and D Allan, “A brief introduction to the abinit software

package,” Zeitschrift für Kristallographie (Special number on Computational Crystallography)

30

http://dx.doi.org/10.1016/j.tca.2013.01.010
http://dx.doi.org/10.1016/j.tca.2013.01.010
http://dx.doi.org/10.1063/1.4978919
http://dx.doi.org/10.1016/j.ijthermalsci.2018.03.011
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/ 10.1103/PhysRev.140.A1133
http://dx.doi.org/ 10.1103/PhysRevLett.58.1861
http://dx.doi.org/ 10.1103/PhysRevA.52.1086
http://dx.doi.org/ 10.1103/PhysRevA.52.1086
http://dx.doi.org/ 10.1103/PhysRevB.55.10337
http://dx.doi.org/ 10.1103/PhysRevB.55.10337
http://dx.doi.org/10.1103/PhysRevB.55.10355
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/ 10.1016/S0927-0256(02)00325-7


220, 558–562 (2005).

47 X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,

D. Caliste, R. Caracas, M. Ct, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi,

S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini,

S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. San-

galli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, and J.W. Zwanziger, “Abinit: First-

principles approach to material and nanosystem properties,” Computer Physics Communica-

tions 180, 2582 – 2615 (2009).

48 John P. Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized gradient approximation

made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).

49 D. R. Hamann, “Optimized norm-conserving vanderbilt pseudopotentials,” Phys. Rev. B 88,

085117 (2013).

50 Mitsuaki Kawamura, “Fermisurfer: Fermi-surface viewer providing multiple representation

schemes,” Computer Physics Communications 239, 197 – 203 (2019).

51 J. D. Hettinger, S. E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell, S. Gupta, A. Gan-

guly, T. El-Raghy, and M. W. Barsoum, “Electrical transport, thermal transport, and elastic

properties of M2AlC (m = Ti, cr, nb, and v),” Phys. Rev. B 72, 115120 (2005).

52 Guobing Ying, Xiaodong He, Mingwei Li, Shanyi Du, Wenbo Han, and Fei He, “Effect of

cr7c3 on the mechanical, thermal, and electrical properties of cr2alc,” Journal of Alloys and

Compounds 509, 8022–8027 (2011).

53 Wubian Tian, Peiling Wang, Guojun Zhang, Yanmei Kan, Yongxiang Li, and Dongsheng Yan,

“Synthesis and thermal and electrical properties of bulk cr2alc,” Scripta Materialia 54, 841 –

846 (2006).

54 T. Scabarozi, A. Ganguly, J. D. Hettinger, S. E. Lofland, S. Amini, P. Finkel, T. El-Raghy, and

M. W. Barsoum, “Electronic and thermal properties of ti3al(c0.5,n0.5)2, ti2al(c0.5,n0.5) and

ti2aln,” Journal of Applied Physics 104, 073713 (2008).

55 Wubian Tian, Peiling Wang, Guojun Zhang, Yanmei Kan, Yongxiang Li, and Dongsheng Yan,

“Synthesis and thermal and electrical properties of bulk cr2alc,” Scripta Materialia 54, 841–846

(2006).

56 Bouchaib Manoun, R. P. Gulve, S. K. Saxena, S. Gupta, M. W. Barsoum, and C. S. Zha,

“Compression behavior of m2alc (m=ti, v, cr, nb, and ta) phases to above 50 gpa,” Phys. Rev.

31

http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/ 10.1103/PhysRevLett.77.3865
http://dx.doi.org/ 10.1103/PhysRevB.88.085117
http://dx.doi.org/ 10.1103/PhysRevB.88.085117
http://dx.doi.org/10.1016/j.cpc.2019.01.017
http://dx.doi.org/10.1103/PhysRevB.72.115120
http://dx.doi.org/10.1016/j.jallcom.2011.04.134
http://dx.doi.org/10.1016/j.jallcom.2011.04.134
http://dx.doi.org/10.1016/j.scriptamat.2005.11.009
http://dx.doi.org/10.1016/j.scriptamat.2005.11.009
http://dx.doi.org/10.1063/1.2979326
http://dx.doi.org/10.1016/j.scriptamat.2005.11.009
http://dx.doi.org/10.1016/j.scriptamat.2005.11.009
http://dx.doi.org/ 10.1103/PhysRevB.73.024110
http://dx.doi.org/ 10.1103/PhysRevB.73.024110


B 73, 024110 (2006).

57 Zhimei Sun, Rajeev Ahuja, Sa Li, and Jochen M. Schneider, “Structure and bulk modulus of

m2alc (m=ti, v, and cr),” Applied Physics Letters 83, 899–901 (2003).

58 Jiemin Wang, Jingyang Wang, Aijun Li, Jingjing Li, and Yanchun Zhou, “Theoretical study on

the mechanism of anisotropic thermal properties of ti2alc and cr2alc,” Journal of the American

Ceramic Society 97, 1202–1208 (2014).

59 Jochen M. Schneider, Darwin P. Sigumonrong, Denis Music, Claudia Walter, Jens Emmer-

lich, Riza Iskandar, and Joachim Mayer, “Elastic properties of cr2alc thin films probed by

nanoindentation and ab initio molecular dynamics,” Scripta Materialia 57, 1137 – 1140 (2007).

60 S. E. Lofland, J. D. Hettinger, K. Harrell, P. Finkel, S. Gupta, M. W. Barsoum, and G. Hug,

“Elastic and electronic properties of select m2ax phases,” Applied Physics Letters 84, 508–510

(2004).

61 Sankalp Kota, Matthias Agne, Eugenio Zapata-Solvas, Olivier Dezellus, Diego Lopez, Bruno

Gardiola, Miladin Radovic, and Michel W. Barsoum, “Elastic properties, thermal stability, and

thermodynamic parameters of moalb,” Phys. Rev. B 95, 144108 (2017).

62 J. S. Dugdale and Z. S. Basinski, “Mathiessen’s rule and anisotropic relaxation times,” Phys.

Rev. 157, 552–560 (1967).

63 Francesco Ricci, Wei Chen, Umut Aydemir, G Jeffrey Snyder, Gian-Marco Rignanese, Anubhav

Jain, and Geoffroy Hautier, “An ab initio electronic transport database for inorganic materials,”

Scientific Data 4, 170085 (2017).

64 Jamal I. Mustafa, Marco Bernardi, Jeffrey B. Neaton, and Steven G. Louie, “Ab initio electronic

relaxation times and transport in noble metals,” Phys. Rev. B 94, 155105 (2016).

65 P. Delugas, A. Filippetti, M. J. Verstraete, I. Pallecchi, D. Marré, and V. Fiorentini, “Doping-
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