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Implicated in numerous human diseases, intrinsically disor-
dered proteins (IDPs) are dynamic ensembles of interconverting
conformers that often contain many proline residues. Whether
and how proline conformation regulates the functional aspects
of IDPs remains an open question, however. Here, we studied
the disordered domain 2 of nonstructural protein 5A (NS5A-
D2) of hepatitis C virus (HCV). NS5A-D2 comprises a short
structural motif (PW-turn) embedded in a proline-rich se-
quence, whose interaction with the human prolyl isomerase
cyclophilin A (CypA) is essential for viral RNA replication.
Using NMR, we show here that the PW-turn motif exists in a
conformational equilibrium between folded and disordered
states. We found that the fraction of conformers in the
NS5A-D2 ensemble that adopt the structured motif is allosteri-
cally modulated both by the cis/trans isomerization of the sur-
rounding prolines that are CypA substrates and by substitutions
conferring resistance to cyclophilin inhibitor. Moreover, we
noted that this fraction is directly correlated with HCV RNA
replication efficiency. We conclude that CypA can fine-tune the

dynamic ensemble of the disordered NS5A-D2, thereby regulat-
ing viral RNA replication efficiency.

Hepatitis C virus (HCV)7 is a positive sense single-stranded
RNA (�9.6 kb) virus, belonging to the Flaviviridae family. It is
estimated that worldwide �71 million people have a chronic
HCV infection (www.who.int/mediacentre/factsheets/fs164/
en/). This can lead to progressive hepatic injuries, such as cir-
rhosis or even hepatocellular carcinoma (2). Each year, chronic
hepatitis C is responsible for the death of roughly 400,000 peo-
ple with �25% of all liver cancer cases being linked to HCV
infection.

The HCV genome has one large ORF, encoding a polyprotein
precursor that is proteolytically processed into 10 mature pro-
teins by both host and viral proteases. The structural proteins
(core, E1 and E2) constitute the viral particle, and the nonstruc-
tural (NS) proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, and
NS5B) are involved in virion formation and RNA replication (3,
4). NS3 to NS5B, bound to double-membrane vesicles (DMV)
derived from the host endoplasmic reticulum (ER), constitute
the viral replication machinery (5–7). This complex, by means
of the RNA-dependent RNA polymerase activity of NS5B, rep-
licates the viral genome (8, 9).

NS5A is a key multifunctional phosphoprotein (49 kDa) that
is essential for HCV genome replication (10, 11) and is also
involved in virion production (12). NS5A is known to interact
with numerous viral and host proteins (4, 13–15). NS5A, which
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is bound to the ER membrane via an N-terminal amphipathic
helix (16), is composed by a folded cytoplasmic domain (NS5A-
D1) (11) and two intrinsically disordered domains (NS5A-D2
and -D3) (17–19) (Fig. 1a). No enzymatic activity has been
identified for any of these domains. Different homodimeric
structures of NS5A-D1 (11, 20, 21) suggested it might be impli-
cated in RNA-binding (22). Importantly, this domain is the
molecular target for direct-acting antivirals (DAAs) against
NS5A (23, 24). NS5A-D2 and -D3 are intrinsically disordered,
and thus exist as a dynamic ensemble of conformers. NS5A-D2
is required for viral RNA replication (10), whereas NS5A-D3 is
involved in viral particle production and assembly (12). We and
others have shown that NS5A-D2 and -D3 interact with and are
substrates of human cyclophilin A (CypA) (25–27), a peptidyl-
prolyl cis/trans isomerase (PPIase) that is an essential host fac-
tor for HCV replication (28). Detailed analysis assigned the
main CypA-binding site to a small region (about 20 amino acid
residues) in NS5A-D2 that contains 5 strictly conserved resi-
dues across the seven HCV genotypes, among which are 3 pro-
line residues (25, 29). An even shorter peculiar structural motif,
called PW-turn (314PXWA317 in the Con1 strain, genotype 1b),
which is essential for HCV RNA replication was identified in
this region (30) (Fig. 1a). Disruption of the PW-turn weakens
the molecular interaction between NS5A-D2 and CypA, but is
required for efficient prolyl cis/trans isomerase activity of CypA
toward the 313Met–Pro314 bond, contrary to the other prolyl
bonds of the domain (30). The interaction between NS5A-D2
and CypA can be inhibited by cyclosporin A (CsA) or its non-
immunosuppressive analogs such as alisporivir, SCY-635, or
NIM-811, or by other small-molecule cyclophilin inhibitors
(31–34). These compounds thereby act as host-targeted antivi-
rals (HTAs). NS5A hence can be equally targeted by DAAs (via
NS5A-D1) or HTAs (via NS5A-D2 through its interaction with
CypA). Of note, studies of HCV NS5A and CypA paved the way
for the use of CypI for other viral infections such as human
coronaviruses (e.g. MERS or SARS) that also require CypA for
their replication (35).

The role(s) of CypA in HCV replication and the mechanism
of action of cyclophilin inhibitors (CypIs) are complex and still
not completely understood. CypIs bind host CypA in a single
hydrophobic pocket that contains both its enzymatic PPIase
and binding activities, and thereby disrupt both the molecular
interaction between CypA and NS5A-D2 as well as the putative
CypA PPIase activity toward selected prolyl bonds in NS5A-D2
(25, 36, 37). Therefore, all CypA catalytic mutants are also
impaired in their binding properties. Several laboratories have
demonstrated that CypIs inhibit the de novo formation of the
DMVs, the HCV-induced membrane structures that hold
the replication complex (38, 39). A remodeling of the ER in the
presence of CypIs has also been observed in HCV-infected cells
(40). Most of the identified CypI-resistance mutations, such as
D320E, D320E,Y321N, and Y321H (28, 41, 42), are located in
the immediate proximity of the PW-turn in NS5A-D2. These
mutations confer a moderate resistance (�2– 4 –fold) to CypIs
and hence a partial CypA independence, but do not abolish the
interaction between CypA and NS5A-D2 (27, 43, 44). A better
understanding of the functional role(s) of both CypA and
NS5A, and specifically of the disordered domains of the latter,

in the HCV life cycle could shed light on the underlying molec-
ular mechanisms of this resistance.

Intrinsically disordered proteins (or regions) (IDPs/IDRs) are
functional despite not having a stable 3D structure (45, 46).
They are best described as dynamic ensembles of interconvert-
ing conformers. Their biological functions are usually related to
their capacity to interact with numerous partners, with a high
specificity often related to low affinity (even if subnanomolar
affinities have been reported (47)). As a consequence, they are
often described as molecular hubs. IDPs/IDRs, despite any
enzymatic activity, are nonetheless involved in cell signaling
and regulatory processes, which can be physiological or patho-
logical. Indeed, their implication has been demonstrated in
numerous human diseases, including cancer, neurodegenera-
tion, diabetes, and viral infections (48). IDPs/IDRs can interact
with a biological partner while remaining disordered and form
fuzzy complexes (49), but they can also establish interactions
using short peptide motifs, including short linear motifs (50),
molecular recognition features (51), or pre-structured motifs
(52), and then fold upon binding. The biological functions of
IDPs/IDRs are further regulated by alternative splicing and
post-translational modifications (PTMs), including phosphor-
ylation, ubiquitination, and glycosylation (53). These PTMs can
modulate the structural and conformational properties of
IDPs/IDRs and thereby break or promote interactions. IDPs are
also enriched in proline residues (54), but whether these have
any functional role has not yet been described in a conclusive
manner. More recently, the concept of allostery has been
expanded from its original paradigm (55) and allosteric regula-
tions have been described in disordered protein (56, 57). It has
been shown that allosteric perturbations (ligand binding,
PTMs, mutations) can change the functional properties of
IDPs/IDRS by remodeling their energy landscape or conforma-
tional ensemble (i.e. population shift). This extreme complexity
allows IDPs/IDRs to exert a fine modulation of biological pro-
cesses (58).

Here, we combine nuclear magnetic resonance (NMR) spec-
troscopy with molecular dynamics (MD) simulations to deci-
pher the role of the proline residues on the structural disorder
in HCV NS5A-D2, and link it to its functional consequences.
The detailed conformational behavior of NS5A-D2 (JFH1
strain, genotype 2a) with its PW-turn structural motif centered
on 310PAWA313 confirms its pan-genotypic importance for
HCV. Using the Trp312 resonance as a probe, we show that the
NS5A-D2 region encompassing the PW-turn exhibits a pecu-
liar dynamic behavior whereby it may adopt, at least 2 confor-
mational states, one structured with the PW-turn conforma-
tion fully formed and one totally disordered. These two states
are in the fast-exchange NMR regime. Unexpectedly, we find
that the cis/trans isomerization state of the 5 surrounding pro-
line residues affects the ratio of conformers that adopt or not
the PW-turn motif in the NS5A-D2 ensemble. Hence, this
structural motif is allosterically regulated by proline cis/trans
equilibria. CypA, through catalyzing the interconversion for
distinct prolines, can thereby connect these different ensem-
bles on a subsecond time scale. Importantly, we find that
the CypI-resistance mutations in NS5A-D2 correspond to sim-
ilar allosteric perturbations as they favor ensembles with a
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decreased structured PW-turn population. Using a cell-based
assay, we show that the population of the structured PW-turn
motif in the ensemble directly correlates with HCV RNA repli-
cation efficiency. Our results reveal a complex mechanism in
which CypA modulates NS5A-D2’s function.

Results

NMR characterization of NS5A-D2 and its PW-turn motif

The 1H,15N-HSQC NMR spectrum of NS5A-D2 of the HCV
JFH1 strain (genotype 2a) (Fig. 1b) displays a narrow 1H chem-
ical shift dispersion that confirms the high level of intrinsic
disorder in this domain (Fig. S1a) (18). The secondary structure
propensity analysis, based on the 13C chemical shifts, indicates
the presence of several residual �-helices and extended regions
in the N-terminal half (Fig. 1c). This is similar to the observa-
tions made on NS5A-D2 from HCV strains HC-J4 and Con1
(both genotype 1b) (30, 59). Comparison of the experimental
1H and 15N chemical shifts of NS5A-D2 (JFH1) with those pre-
dicted for a truly disordered protein (60) highlights unexpected
values for the tryptophan 312 (Trp312) residue in the C-termi-
nal part of the domain (Fig. 1d and Figs. S1 and S2). A similar
observation was made for the equivalent Trp316 residue in
NS5A-D2 of the HCV Con1 strain and was attributed to the
presence of the PW-turn structural motif in the most conserved
region of NS5A-D2 (30). The primary sequence of the PW-turn
in the Con1 strain is 314PIWA317, whereas it is 310PAWA313 in
JFH1. In this motif, all positions but the second are strictly con-
served in all HCV genotypes. We used a 20-mer peptide
(pepD2-WT) to obtain an atomic description of this region in
NS5A-D2 (JFH1) (Fig. S3). All the NMR data (1H,15N,13C
chemical shifts, NOE contacts, as well 3JHN-H� couplings) were
used to calculate a NMR structural model of this PW-turn (Fig.
2 and Fig. S4a). The local r.m.s. deviation values suggest that
beyond the core of the PW-turn (i.e. 310PAWA313), where the
ring of Pro310 and the aromatic side chain of Trp312 are engaged
in a CH/� interaction (61), the residues at its C terminus also
adopt a certain degree of order (Fig. 2b). The interaction of the
PW-turn motif, and specifically the Trp312 residue, with the
Tyr317 side chain and the rings of Pro319 and Pro320 (Fig. 2c)
agree with a similar extension of the motif as described in the
peptide when bound to the MOBKL1B protein (62). Conforma-
tions of pepD2-WT, free in solution (this study), are closely
related to its structure in the crystallographic complex with
MOBKL1B (Fig. S4b).

The plot of the 1H,15N-HSQC peak intensity along the
NS5A-D2 sequence reveals that the resonances in the N-termi-
nal moiety are narrower than those in the C-terminal half (Fig.
1e). 15N spin relaxation data on the full-length domain con-
firmed this, with higher R2 values for the 304 –321 region of
NS5A-D2. Heteronuclear NOE values in this region are also
clearly positive, whereas they are negative or close to zero for
most residues in the N-terminal half of the fragment. We hence
conclude that this region, encompassing the PW-turn and cor-
responding to the host CypA-binding site (25), is characterized
by an increased rigidity while simultaneously experiencing
exchange broadening (63) (Fig. 1, f– h). We next measured the
residual dipolar couplings (RDCNH) of the individual HN vec-

tors in NS5A-D2 using a partially oriented sample (Fig. 1i). The
residues in the region 304 –321 display RDCNH values higher
than expected for an IDR (64). The highest value (32.8 Hz) was
observed for the Trp312 residue in the PW-turn motif. The
RDCNH values from the Trp312 and Trp325 side chains were 40
and 24 Hz, respectively (data not shown). Altogether, these data
confirm that the CypA-binding site contains a structured PW-
turn motif with nevertheless a peculiar structural dynamics.

We have previously reported that the I315G mutation in a
peptide derived from NS5A-D2 of the Con1 strain precludes
the presence of the PW-turn motif without making any change
on the conserved residues. To investigate the functional role of
the PW-turn motif in the JFH1 strain, we introduced the anal-
ogous mutation, A311G, in NS5A-D2. We found that this
mutation also efficiently disrupts the PW-turn in NS5A-D2
because in the different NMR spectra acquired on this
NS5A-D2 mutant, the proton amide and 13C� resonances of
Trp312 and Ala313 move toward their expected frequencies for a
fully disordered region (Figs. S1b and S5). The NS5A-D2
A311G mutant hence provides a way to assess the structural
and functional role(s) played by the PW-turn motif in the
CypA-binding site.

Proline conformations induced a linear chemical shift pattern
for Trp312

Upon closer examination of the 1H,15N-HSQC of NS5A-D2
WT, we identified up to six resonances that could be assigned to
the same Trp312 residue (Fig. 3a). Based on the peak intensity,
there are one major (W312_1) and five minor (W312_2 to
W312_6) Trp312 resonances. As the Trp312 residue is sur-
rounded by 5 different proline residues in NS5A-D2, we
hypothesized that this conformational heterogeneity with slow
exchange on the time scale imposed by the chemical shift dif-
ferences between the individual resonances could correspond
to the cis/trans equilibria of these individual proline residues.
Evidence was found in the 1H,15N,13C 3D experiments used for
the assignment of the fragment. Starting from the proton amide
W312_6 resonance and using the 13C chemical shifts (C�, C�,
and CO), we connected it, in a sequential fashion, to a minor
resonance of the Ala311 residue (A311_6), which is itself linked
to a residue with 13C chemical shifts typical of a cis-proline (62.4
and 34.3 ppm for C� and C�, respectively) (65) (Fig. S6). Thus,
the minor W312_6 resonance originates from the cis conforma-
tion of the Pro310 residue. Likewise, the other minor Trp312

resonances are also related to the cis conformation of proline
residues. Indeed, in a 1H,15N-heteronuclear zz-exchange
experiment (66) in the presence of a catalytic amount of CypA,
we identified exchange cross-peaks connecting each of the
minor Trp312 resonances (W312_2 to W312_6) to the major
one (W312_1) (Fig. 3b). To link each of the minor Trp312 reso-
nances to a particular proline residue, we compared the
1H,15N-HSQC spectra of NS5A-D2 Pro to Ala mutants
(NS5A-D2 P306A, P310A, P315A, P319A, and P320A) with
that of the WT construct (Figs. S7–S11) (67). In each mutant
spectrum, a minor Trp312 resonance is missing. We therefore
could unambiguously assign the minor Trp312 resonances in
the 1H,15N-HSQC of NS5A-D2 WT to subpopulations of the
peptide with a single prolyl bond in the cis conformation (Fig.
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3a). The W312_1 resonance thereby corresponds to the trans
conformation of Pro306, Pro310, Pro315, Pro319, and Pro320.

All of these Trp312 resonances fall along a line and form a
linear chemical shift pattern (Fig. 3). A similar spectral behavior
was observed for the residue Ala313 (Fig. S12), which is also part
of the PW-turn motif. A linear pattern of chemical shifts was
previously interpreted as a proof that this residue exists in (at
least) two conformational states with distinct chemical shift
environments in fast exchange on the NMR time scale (68).
Even if the W312_6 and W312_1 resonances do not exactly
match with the two pure states of this fast-exchange system,
these resonances can be used as proxies for the two conforma-

tional states at the extremity of the linear chemical shift pattern.
Considering the frequency difference between the W312_1 and
W312_6 resonances (��1H �420 Hz, ��15N �300 Hz), the
time scale of this exchange is faster than 1– 0.1 ms. Moreover,
the observed line broadening or equivalent enhanced R2 rates
for this residue suggest that the exchange is close to this micro-
second-millisecond time range.

Allosteric regulation of the PW-turn motif by proline cis/trans
equilibria

To further characterize the PW-turn in each of these distinct
conformers, we analyzed the same NMR parameters as for the
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major all-trans form for the distinct conformers: deviations
between experimental 1H,15N-combined chemical shift or
13C� chemical shift values and their expected neighbor-cor-
rected random coil values, the RDCNH for each of the Trp312

resonances and the difference between the proton chemical
shift values of Trp312 H�2 and H�3, respectively. As a result, we
firmly established a linear correlation between each of these
structural NMR parameters and either the 1H or 15N experi-
mental chemical shift values of the Trp312 resonances (Fig. 4
and Fig. S13). The left-most point (W312_6) on the linear
chemical shift pattern, corresponding to the cis conformer of
Pro310, is close to both the Trp312 resonance in the A311G
mutant and to the expected position for random-coil region,
whereas the experimental parameters used to derive the atomic
structure of the structured PW-turn (Fig. 2) correspond to the
all-trans right-most point (W312_1). The position of the Trp312

resonance along the linear chemical shift pattern corresponds
to the population-weighted average between these two states.
The folding-unfolding of the PW-turn structural motif in the
disordered NS5A-D2 thus is allosterically regulated by the cis/
trans conformation of 5 different proline residues, i.e. Pro306,
Pro310, Pro315, Pro319, and Pro320. Adopting a cis conformation
for any single proline residue reduces the structured population
in the conformational ensemble. The impact of these cis-pro-
lines on the PW-turn is not directly proportional to the distance
to Trp312 in the primary sequence. The cis-Pro319 and cis-
Pro320, which are at a distance of 7 and 8 residues, respectively,
have for example a more pronounced effect on the PW-turn
than the cis-P306 that is at a distance of 6 residues (Fig. S14).
Interestingly, the three proline residues having a major effect
on the structured PW-turn content, i.e. Pro310, Pro315, and

Pro319, respectively (Fig. 3 and Fig. S14), correspond to the ones
having the most pronounced functional impact on HCV RNA
replication (28).

CypA-inhibitor resistance mutations correspond to allosteric
perturbations

The model of NS5A-D2 with a population-weighted average
between a structured PW-turn motif and its disordered coun-
terpart is further strengthened by the analysis of the NMR spec-
tra of NS5A-D2 mutants. We examined the position of the
major Trp312 resonance (i.e. W312_1) in the 1H,15N-HSQC
spectra of two NS5A-D2 mutants with CypA-inhibitor resis-
tance mutations (D316E or D316E/Y317N (DEYN), respec-
tively). These mutations confer to HCV a moderate resistance
(�2– 4 –fold) to CypIs and a reduced CypA dependence (27, 41,
43, 44). Comparing them to the position of Trp312 in NS5A-D2
Pro to Ala mutants (P306A, P310A, P315A, P319A, and P320A)
(Fig. 5) and the A311G mutant, in which the PW-turn motif is
absent (see Fig. S1b), we find that the Trp312 peak in all these
mutants displays a colinear chemical shift perturbation pattern
(68) (Fig. 5a), which coincides with the one previously defined
by the cis forms of individual prolines in NS5A-D2 WT (Fig.
4a). This further confirms the PW-turn as a dynamic, rapidly
inter-converting ensemble wherein individual mutations
directly influence the population of folded and unfolded con-
formers. The 1H and 15N chemical shift values of the Trp312

resonance from the mutants correlate linearly with several
structural NMR parameters (13C�, ��NH) (Fig. 5, b and c, and
Fig. S15), and indicate that all but the P320A mutation reduce
the population of the structured PW-turn motif in the dynamic
ensemble (Fig. 5a). To verify whether the effect of the CypI-
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Figure 2. Structure of the PW-turn. a, superimposition of the 23 final NMR conformers of pepD2-WT (JFH1) (residues 304 –323, GFPRALPAWARPDYNPPLVE),
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prepared using PyMOL (PyMOL Molecular Graphics System, version 1.8, Schrödinger, LLC).
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resistant mutants was direct rather than indirectly mediated
through an altered proline cis/trans ratio, we explicitly mea-
sured the cis/trans ratio of each proline in the pepD2-WT or its
D316E counterpart (Fig. 5d and Fig. S16). Only minor increases
of the cis content was measured for Pro315 and Pro319, but the
all-trans form remained the dominant fraction.

Our combined results demonstrate that the short structural
PW-turn motif (310PAWA313) identified in NS5A-D2 is struc-
turally coupled to a larger region encompassing the 304 –323
residues, whereby this larger peptide can adopt a structured
motif (the PW-turn) in equilibrium with a disordered con-
former. Any perturbation in this region has its impact on this
equilibrium (Fig. S17). The different amino acid substitutions
(A311G, D316E, DEYN, P306A, P310A, P315A, P319A, and
P320A) and the cis-proline conformation of Pro306, Pro310,
Pro315, Pro319, and Pro320, all constitute a library of allosteric
perturbations. We used the chemical shift projection analysis
(CHESPA) method (69, 70) on the two linear chemical shift
patterns described in Figs. 4a and 5a, respectively (Fig. 5e). To
this end, W312_6 (disordered) and W312_1 (structured) have
been considered as the extremities of the linear pattern. The
projection angle (cos�) defines the direction of the perturbation
and also shows if the observed residue (here Trp312) is affected
by the perturbation through nearest-neighbor effects. All per-
turbations resulted in a cos� value of �1, which is expected for
a linear pattern. The only exception is for the A311G mutation
that has a stronger nearest-neighbor effect on the Trp312 reso-
nance. The fractional shift (X) allows the quantification of the
two states (here disordered/structured) in the presence of one
of the perturbations (here, cis-Pro or mutations). The D316E
and DEYN mutations, the cis-Pro315 conformation, or the
A311G mutation thereby correspond to ensembles wherein 82,
61, 55, or 7% of the conformers, respectively, adopt the struc-
tured PW-turn motif.

Molecular dynamics of the PW-turn

To validate our NMR-based conclusions by an independent
approach, we performed Gaussian accelerated molecular
dynamics (MD) simulations (�280 ns, 140,000 frames) on five

20-mer peptides (pepD2-WT, -D316E, -DEYN, -A311G, and
-P315cis). For each simulation, a dihedral principal component
analysis (dPCA) (71, 72) was performed on the backbone dihe-
dral angles (� and 	) of residues 309 to 316, and a clustering of
the structures was performed using the two first vectors of the
dPCA (Fig. S18a). The percent of the time that each cluster is
present was determined. Then, using our NMR structure as a
reference, we probed the presence of the PW-turn motif in
every cluster of each calculation. In the MD simulations, the
PW-turn motif was found in 90, 73, 66, 65, and 2% of the con-
formers (called the PW_fraction) for pepD2-WT, pepD2-
D316E, pepD2-DEYN, pepD2-P315cis, and pepD2-A311G,
respectively (Fig. 6a). Ensemble average proton amide (1H and
15N) chemical shift predictions, performed with ShiftX2 (73) on
the MD structures, showed linear patterns for Trp312 and
Ala313, confirming the experimental observations (Fig. S18, b
and c). There is a strong linear correlation between the
PW_fractions from the MD simulations and the experimental
1H or 15N chemical shifts of Trp312 in the HSQC spectra of
NS5A-D2 (Fig. 6, b and c). We also found a linear correlation
(R2 � 0.94) between the MD PW_fractions and the fractional
shift (X) from the CHESPA analysis (Fig. 6d), illustrating the
validity of the model.

The interaction with CypA is modulated by the fraction of the
structured PW-turn in NS5A-D2

We have previously shown that the disruption of the struc-
tured PW-turn motif weakens 3-fold the molecular interaction
between CypA and NS5A-D2 (in the context of the Con1 strain)
(30). As the CypA-inhibitor resistance mutation D316E reduces
the fraction of the NS5A-D2 conformers that retain this struc-
tural element (Fig. 6), the molecular interaction between
NS5A-D2 D316E and CypA was assessed. Using 15N-labeled
CypA, NMR titration experiments were acquired with increas-
ing amounts of unlabeled PepD2-WT, PepD2-D316E, or
PepD2-A311G peptides (Fig. 7 and Fig. S19, a– c). The dissoci-
ation constants (KD) were determined from the chemical shift
perturbations of CypA induced by the addition of the peptides.
The affinity between CypA and PepD2-WT (KD � 0.74 mM),
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Figure 3. A linear chemical shift pattern for Trp312 and proline cis/trans equilibria in NS5A-D2. a, zoomed-in view of the Trp312’s resonances in the
1H,15N-HSQC spectrum of NS5A-D2 WT (box shaded in light gray in the upper left panel). A major (W312_1) and 5 minor (W312_2 to W312_6) NMR resonances
were assigned to the Trp312 residue, which is surrounded by 5 proline residues in the NS5A-D2 sequence (see sequence at the top). Each minor Trp312 resonance
arises from the cis conformation of one of these proline residues (indicated in red) and is in slow-exchange (red arrows), on the NMR time scale, with the main
Trp312 resonance when all the surrounding proline residues are in trans. The linear chemical shift pattern is highlighted by a dashed gray line. b, 1H,15N-
heteronuclear exchange spectra, recorded at 600 MHz, on 15N-NS5A-D2 samples (400 
M) alone (mixing times of 200 ms) (in black) or in the presence of
catalytic amounts of unlabeled CypA (5 
M) (mixing time of 400ms) (in red). Exchange peaks connecting each minor Trp312 resonances (W312_2 to W312_6)
with the main one (W312_1) are highlighted by dashed gray boxes.
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which hold the structured PW-turn, is �2 times higher than the
one with the fully disordered PepD2-A311G peptide (KD � 1.37
mM). These affinities are similar to the ones that we have previ-
ously measured between CypA and similar peptides derived from
the HCV Con1 strain (0.53 and 1.38 mM, respectively) (30). With
respect to the interaction between CypA and the peptide pepD2-
D316E, an intermediate KD value of 1.18 mM was measured. The
affinities between CypA and the NS5A-D2–derived peptides,
even being in the same order of magnitude, are correlated with the

fraction of the conformers that own the structured PW-turn motif
in the NS5A-D2 ensemble, as determined by NMR spectroscopy
and MD simulations (Fig. S19, d and e).

The fraction of structured PW-turn motif in NS5A-D2 ensemble
tunes the HCV replication level

The PW-turn motif in NS5A-D2 is essential for HCV RNA
replication (10, 30), but has the dynamic equilibrium between
the structured and disordered states that we identified in this

Figure 4. Allosteric regulation of the PW-turn. a, the position (i.e. its 1H chemical shift) of each Trp312 resonances along the linear pattern (highlighted by a
dashed gray line) in the 1H,15N-HSQC spectrum correlates with: the differences between experimental 13C� chemical shift (b) values and their expected
neighbor-corrected random coil values; the differences (in 1H ppm) between the two H� resonances of W312 (c) in a 1H,1H-TOSCY experiment acquired on an
unlabeled pepD2-WT (Fig. S13c); and also with its experimental NH residual dipolar coupling (d). There is a two-states fast-exchange between the structured
PW-turn and its disorder counterpart (blue arrow in a). The position of the Trp312 resonance is the population-weighted average of the pure structured and
disordered states. The cis/trans conformation of each surrounding proline residues corresponds to an allosteric effector. The linear correlations with their
corresponding correlation coefficients (R2) are shown in gray.
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chemical shift values, or (c) experimental 13C� chemical shifts, respectively. The linear correlations with their corresponding correlation coefficients (R2) are shown in
grey. d, quantification of the cis conformation for each proline residues around Trp312, both in the pepD2-WT and pepD2-D316E peptides. The cis contents (in %) were
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15N,13C-doubly labeled peptides. Error bars were calculated based on the signal-to-noise ratio with uncertainties propagations. e, CHESPA analysis. Both the fractional
structuration (X, gray bars) and the projection angle (cos�, white bars) were calculated for the linear chemical shift patterns shown in Fig. 3 and in panel a, respectively.
In both cases, the W312_1 (All_trans) and W312_6 (P310cis) resonances of NS5A-D2 WT were taken as the extremities of the linear patterns.

Conformational regulation of NS5A-D2 by CypA

J. Biol. Chem. (2019) 294(35) 13171–13185 13177

 at C
N

R
S on O

ctober 11, 2019
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/cgi/content/full/RA119.009537/DC1
http://www.jbc.org/cgi/content/full/RA119.009537/DC1
http://www.jbc.org/


study have any functional relevance? To address this question,
we measured the replication of subgenomic HCV replicons
(JFH1 strain) encoding a firefly luciferase gene. These replicon
RNAs were transfected into Huh-7 cells and replication was
determined by quantifying luciferase in lysates of cells that were
harvested at different time points after transfection. We have
earlier shown that luciferase activity is a direct measure of viral
RNA replication with the 4-h value serving as baseline because
it reflects transfection efficiency. To study the importance of
the equilibrium shift of the PW-turn motif, we compared rep-
lication capacity of the wildtype (WT) replicon or replicon vari-
ants containing distinct mutations in NS5A-D2 (A311G,
P310A, DEYN, and A311I) (Fig. 8a). The A311G substitution in
NS5A reduced RNA replication to background levels as deter-
mined with the replication-dead replicon encoding an enzy-
matically inactive NS5B polymerase (mutant �GDD). By con-
trast, the replication efficiency of the A311I mutant was similar
to that of the NS5A-WT consistent with the notion that the
structural PW-turn motif in the disordered NS5A-D2 domain
is essential for viral RNA replication. Indeed, in the HCV Con1
strain, position 311 corresponds to an isoleucine residue (30).
Mutations P310A and DEYN in NS5A affected RNA replica-
tion, showing phenotypes intermediate between those of the
WT and A311G mutant. Of note, we found a striking correla-
tion between RNA replication efficiencies measured in cellulo
and the NMR data acquired on purified NS5A-D2 in vitro (Fig.
8, b and c, and Fig. S20). Indeed, RNA replication levels of NS5A
WT and its NS5A mutants correlate with the position (1H and
15N) of the Trp312 resonance in their corresponding 1H,15N-
HSQC spectra. This strong correlation suggests that the struc-
tured PW-turn motif in the NS5A-D2 ensemble is required for
robust HCV RNA replication, provided the CypA PPIase activ-
ity allows to reach, on a subsecond time scale, subensembles in
which the structured PW-turn population is reduced. It means
that the conformational equilibrium of the PW-turn motif in
NS5A-D2 has to be finely regulated to be fully functional.
Hence, our data also provide an explanation for the striking
antiviral potency of CypIs.

Discussion

RNA replication, a central step in the HCV life cycle, requires
the formation of a replication complex that includes the viral
NS5B and NS5A proteins associated to membrane structures

(DMVs) (7, 74). NS5B with its RNA-dependent RNA-polymer-
ase activity (8) is the catalytic core of this functional complex. In
contrast, the absence of measurable enzymatic activity and the
presence, alongside its first well-structured domain (11, 20, 21),
of two intrinsically disordered domains (NS5A-D2 and -D3)
(17–19), make the role of NS5A in the HCV replicase much less
obvious. Human CypA, as an essential cellular protein required
for the viral replication process (75), has been functionally
linked to NS5A-D2 by the accumulation of CypI-resistance
mutations in this disordered domain (41, 76), and by the iden-
tification of a physical interaction between these two proteins
(25, 37). However, the role(s) of these two proteins in the rep-
lication of HCV remains elusive, which is in part because the
PPIase activity and the binding properties of CypA cannot be
uncoupled.

The precise role of human cyclophilins in a viral life cycle has
been best studied in the context of HIV capsid (de)stabilization
(77). CypA is incorporated into newly produced HIV virions
through its interaction with a proline-rich loop (CypA-loop) in
the viral capsid protein (CA) (78 –80). Although the Pro90 res-
idue in CA is required for both the interaction with CypA and
viral replication, the importance of other surrounding proline
residues (Pro85, Pro93, and Pro99) in viral replication was also
pointed out (79). CypA displays in vitro catalytic PPIase activity
toward the Gly89–Pro90 peptidyl bond in the CypA-loop of the
CA protein in the intact HIV-1 virion (81), but the functional
role of this activity remains uncertain. CA mutations such as
A92E and G94D, obtained during HIV-1 passage in HeLa cells
under CypA inhibition (82), allow these HIV-1 mutants to
escape CypA dependence, without altering the interaction with
CypA (83). However, the infectivity of these mutants drops by
90% in HeLa cells, which could be fully recovered upon CypA
inhibition (83). Recently, it has been reported that the CypA-
loop of the A92E and G94D CA mutants in the assembled cap-
sid structures adopts comparable dynamics as the loop in the
WT CA when bound to CypA (84). Hence, both selected resis-
tance mutations and CypA binding seemingly lead to the same
dynamic effect on this CA loop, but cannot be combined with-
out the risk of overshooting the dynamical requirements for
optimal infectivity. Along these lines, the rhesus monkey
Trim5� induces global attenuation of the capsid dynamics even
beyond the CA loop and may ultimately promote its disassem-
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bly (85). From these data on HIV-1 CA-CypA interaction, one
can conclude that fine tuning of dynamical aspects of viral pro-
teins (here CA) is an additional mean used by viruses to opti-
mize infectivity.

Our present work on HCV NS5A-D2 and its relationship
with CypA points toward the same direction. We detect the
PW-turn structural motif in the mainly disordered NS5A-D2
domain from the HCV JFH-1 strain (Figs. 1 and 2), thereby
confirming our previous results in the Con1 strain (30). More-
over, we show that the structural motif extends beyond the
310PAWA313 sequence to include at least 4 more proline resi-
dues (Pro306, Pro315, Pro319, and Pro320) (Fig. 3 and Fig. S17).
However, this motif is not static. Using NMR chemical shifts as
atomic resolution sensors, we demonstrate that the PW-turn
motif exists as an equilibrium between two states, a structured
state and a disordered state, which interconvert in fast
exchange on the NMR time scale (Fig. 4). This equilibrium,
probed via the Trp312 resonance, is modulated by the cis/trans
equilibria of the 5 surrounding prolines (Pro306, Pro310, Pro315,
Pro319, and Pro320). This translates into one major and 5 minor
resonances for the Trp312 amide function that make a linear
chemical shift pattern in the 1H,15N-HSQC of NS5A-D2 WT
(Figs. 4 and 5). The linear pattern is bordered on the structured
side by the all-trans form used to derive the structure of the
PW-turn (Fig. 3), and by the cis-Pro310 form on the almost com-
pletely disordered side (Figs. 3 and 4). As these different equi-
libria are separated by the conformation (trans or cis) of distinct
prolyl bonds, they are separated by the slow time scale of the
spontaneous cis/trans isomerization of each of these bonds.
CypA can lower this barrier through its PPIase activity, and
thereby connect these different ensembles at a subsecond time
scale (Fig. 3b) (25, 30). As such, the PPIase activity of CypA do
not alter the folded and unfolded states of the PW-turn but
rather allows fast reach to the NS5A-D2 subensembles in which
the structured PW-turn population is reduced (Fig. S21). The
CypI resistance mutations in NS5A-D2, D316E, or DEYN lead
to a similar effect as they reduce the population of the struc-
tured PW-turn motif in the dynamic ensemble (Fig. 5 and Fig.
S21). The folded conformer population, with all prolines in
trans, drops from nearly �100% in NS5A-D2 WT to 82% in the
D316E mutant (i.e. the same population as in the cis-Pro319

subensemble in the WT), and to 62% in the DEYN mutant
(comparable with that of the cis-Pro315 subensemble in the
WT) (Figs. 3 and 5). Both mutations confer some CypA inde-

pendence, but lower the replication level when measured in cell
lines where CypA is present (27, 41, 43, 44). Moreover, in a
similar way to what was observed for the mutations in the
CypA-loop of HIV-1 CA, the replication capacity of the DEYN
HCV mutant has been shown to be higher when CypA was
silenced (28). As the Trp312 chemical shift (1H and 15N) of the
mutants correlates linearly with the RNA replication efficiency
(log10 scale) in a cell-based assay (Fig. 8), we conclude that
CypA is fine tuning the dynamics of the PW-turn motif in
NS5A-D2.

The relationships involving CypA/CA from HIV-1 or CypA/
NS5A-D2 from HCV are strikingly similar. A short sequence
involving a conserved proline residue constitutes the CypA-
binding site (Gly89–Pro90 or 310PAWA312, respectively); the
residues C-terminal to this binding site trigger peculiar confor-
mational properties and are involved in the replication effi-
ciency of the viruses; CypI-resistance mutations conferring
(partial) relief of the CypA-dependence are localized next to the
CypA-binding site; and finally, CypA exerts a fine modulation
of the dynamics of the viral proteins (the CypA-loop of CA or
the PW-turn motif in NS5A-D2). HIV-1 and HCV seem to have
evolved to use the host CypA as a fine-tuning rheostat, which
allows them to keep their functional systems in a rather sharp
optimal window. Finally, in the presence of the CypI-resistance
mutations, CypA is detrimental as it over-attenuates the
dynamics of the CypA-loop in HIV-1 CA or it over-reduces the
fraction of the PW-turn in HCV NS5A.

Whereas we show that the fraction of the structured PW-
turn motif in the NS5A-D2 conformational ensemble, which is
allosterically regulated by both the cis/trans isomerization of 5
prolines residues (Pro306, Pro310, Pro315, Pro319, and Pro320)
and by CypI-resistance mutations, correlates with the HCV
RNA replication efficiency (Fig. 8), the question of how a struc-
tured PW-turn motif in NS5A-D2 contributes to viral replica-
tion remains open. NS5A was shown to play a role in the for-
mation of DMVs and functional replication complexes
contained therein, through remodeling the ER membrane,
and CypI could interfere with this role for NS5A. Alterna-
tively, NS5A-D2 directly interacts with the dynamic molec-
ular machine that is the NS5B RNA polymerase (86), and
thereby might allosterically regulate its RNA binding (15)
and/or enzymatic activity (87). Different conformational
ensembles of the disordered NS5A-D2, with varying frac-
tions of (un)folded PW-turn motif, might be required for

CypA : pepD2-WT CypA : pepD2-A311G CypA : pepD2-D316E 

0.00

0.05

0.10

0.15

0 10 20 30

Peptide/CypA ratio

KD= 738±201 µM

0.00

0.05

0.10

0.15

0 10 20 30
Peptide/CypA ratio

KD=1180±214 µM

0.00

0.05

0.10

0.15

0 10 20 30

Peptide/CypA ratio

KD=1367±319 µM

a b c

����
 (p

pm
)

����
 (p

pm
)

����
 (p

pm
)

Figure 7. Interaction of CypA with NS5A-D2– derived peptides: pepD2-WT (a), pepD2-D316E (b), and pepD2-A311G (c). 1H,15N-HSQC spectra of 15N-
CypA (0.1 mM) were acquired in the presence of increasing amounts of unlabeled NS5A-D2 derived peptides (0, 0.2, 0.8, 1.5, and 2.5 mM). The CypA 1H,15N
combined chemical shift perturbations (��, ppm) are plotted as a function of the peptide/CypA ratios. The KD values correspond to the mean (�S.D.) calculated
over five CypA resonances (Ile56, Leu98, Met100, Ser110, and Gly124) (Fig. S19).
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these multiple functional roles. Our present data add further
complexity to this picture, whereby allosteric regulation of
the NS5A-D2 domain through its proline conformations
might be modulated by the enzymatic function of the host
factor CypA. Simultaneously, although, it shows that target-
ing the dynamical aspects of viral protein(s) can open new
avenues in the discovery of antivirals.

Experimental procedures

Expression and purification of NS5A-D2 and CypA

The synthetic sequence coding for domain 2 of the HCV
NS5A protein from JFH1 strain (GenBankTM accession num-
ber AB047639, genotype 2a) was introduced in the bacterial
expression vector pT7.7 with a His6 tag. The resulting recom-
binant domain 2 of HCV NS5A (NS5A-D2; residues 248 –341)
has extra M- and -LQHHHHHH extensions at the N and C
termini, respectively. The NS5A-D2 mutants (A311G, P306A,
P310A, P315A, P319A, P320A, C298S/C338S/M254C, C298S,
C338S, D316E, D316E/Y317N) were generated by site-directed
mutagenesis on the pT7-7-NS5A-D2 WT plasmid using the
forward and reverse primers listed in Table S1. The expression,
in Escherichia coli BL21(DE3), and purification of 15N (or
15N,13C)-labeled NS5A-D2 was performed as previously de-
scribed (25, 30). The production and purification of both unla-
beled and 15N-labeled CypA were performed as previously
described by Hanoulle and co-workers (25).

NS5A-D2– derived peptides
15N,13C-labeled peptides (PepD2-WT (GFPRALPAWARP-

DYNPPLVE), PepD2-A311G (GFPRALPGWARPDYNPPLVE),
and PepD2-D316E (GFPRALPAWARPEYNPPLVE)) corre-
sponding to residues 304 –323 of NS5A-D2 JFH1 were pro-
duced as fusion proteins in E. coli, cleaved, and then purified as
described previously (30). The resulting 15N,13C-labeled
PepD2-WT, PepD2-A311G, and PepD2-D316E peptides thus
contain an extra N-terminal proline residue resulting from the
DP chemical-cleavage site. The unlabeled peptides (PepD2-
WT, PepD2-A311G, and PepD2-D316E) were purchased from
Genecust (Luxembourg).

Conservation of NS5A-D2 sequence among HCV genotypes

The NS5A-D2 sequence from the HCV JFH1 strain
(AB047639, genotype 2a) is numbered as in the full-length
NS5A protein. The amino acid repertoire was deduced from the
ClustalW multiple alignments of 28 representative NS5A
sequences from all confirmed HCV genotypes and subtypes
(see the European HCV Database (88)) using the Network Pro-
tein Sequence Analysis webserver tools (89). Amino acids
observed at a given position in less than two distinct sequences
are not included. The degree of amino acid conservation at each
position can be inferred from the extent of variability (with the
observed amino acid listed in decreasing order of frequency
from top to bottom) together with the similarity index accord-
ing to ClustalW convention (asterisk, invariant; colon, highly
similar; dot, similar).

NMR spectroscopy

All NMR experiments were performed at 298 K using Bruker
Avance 600 MHz or 900 MHz NMR spectrometers, both
equipped with a cryogenic triple resonance probe (Bruker,
Karlsruhe, Germany). The proton chemical shifts were refer-
enced using the methyl signal of TMSP (sodium 3-trimethylsil-
lyl-[2,2,3,3-d4]propionate) at 0 ppm. Spectra were processed
and analyzed with the Bruker TopSpin software package 3.2.
Data analysis, peak picking, and calculation of peak volumes
were done with Sparky software (90).

Assignments of NS5A-D2 JFH1 (WT) backbone resonances
were taken from Ref. 25 (BMRB accession code 16165). Two
NMR datasets were acquired on each peptide (PepD2-WT,
PepD2-A311G, and PepD2-D316E). The first set, which con-
tains 1H-1H TOCSY, 1H-1H NOESY, and 1H-15N HSQC spec-
tra at 600 MHz were acquired on the unlabeled peptides at
natural abundance. The second dataset was acquired on uni-
formly 15N,13C-labeled peptide and comprises 1H-15N HSQC
and three-dimensional HNCACB, HN(CO)CACB, HNCO, and
HNHA spectra. Assignment of PepD2-WT, PepD2-A311G,
and PepD2-D316E were performed both manually and using
an in-house software based on the product plane approach
(91).
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Figure 8. Functional relevance of the PW-turn. a, subgenomic JFH1 replicons (Luc-NS3–5B) containing or not (WT) single mutations (A311G, P310A, DEYN,
or A311I) in NS5A or a defective polymerase inhibiting replication (�GDD) were electroporated into Huh-7 cells. The cells were lysed 4, 24, 48, and 72 h after
transfection and luciferase activity (representing RNA replication) was measured. The data were normalized to their respective 4-h value reflecting transfection
efficiency. Mean � S.E. of 3 independent experiments (n � 3) are shown (2 independent experiments for the A311I and DEYN mutants). The horizontal dashed
line corresponds to the background level as determined with the �GDD replicon. b and c, plots of the RNA replication efficiencies (i.e. luciferase activity values,
of the different subgenomic replicons in (a)) versus the experimental Trp312 1H chemical shift (b) or the fractional shift (X) from the NMR CHESPA analysis (c). The
exponential correlations with their respective coefficients (R2) are shown in gray.
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The 1H,15N-combined chemical shift perturbations were cal-
culated using Equation 1, whereby �� (1HN) and �� (15N) are
the chemical shift perturbations in the 1H and 15N dimensions,
respectively. The normalization factor of 0.08 for the nitrogen
frequency shift derives here from the ratio of the maximum
proton frequency shift over the maximum nitrogen frequency
shift.

�� � ����1HN�� � 0.08  ����15N�� (Eq. 1)

Residual dipolar couplings measurements

The RDCs were collected on a 100 
M sample of 15N
NS5A-D2 aligned in a liquid crystalline medium consisting of
6.6% (w/v) polyoxyethylene 5-lauryl ether (C12E5) and 3% (w/v)
1-hexanol (Sigma), yielding a D2O splitting of 35 Hz. 1DNH
dipolar couplings were measured on a Bruker Avance III 900
MHz spectrometer equipped with a cryogenic triple resonance
probe, using 2D 15N IPAP-HSQC experiments (92), which
allow the spin coupling measurements in the 15N dimension.
The difference between the couplings acquired either in isotro-
pic or anisotropic media were calculated to get the RDCs.

Spin relaxation experiments
15N R1, 15N R2, and 1H-15N NOE measurements were

acquired at 600 MHz 1H frequency. 15N R1 values were mea-
sured from spectra recorded with 10 different delays (T � 10,
100, 200, 400, 600, 800, 1000, 1200, 1500, and 2000 ms). 15N R2

values were determined from spectra recorded with 11 differ-
ent delays (T � 15.77, 31.54, 47.31, 63.08, 78.85, 94.62, 126.16,
157.7, 189.24, 220.78, and 252.32 ms). The spin echo consisted
of a train of 15N hard � pulses (82 
s) separated by a 900-
s
inter-pulse delay. In the 15N R1 and 15N R2 experiments, a relax-
ation delay of 1 s was applied. 1H-15N NOE values were deter-
mined from spectra recorded either in the presence or absence
of a proton pre-saturation period of 3 s, and a relaxation delay
of 5 s.

NMR structure calculation

The NMR structure calculation was performed as previously
described in Ref. 30. From the different NMR datasets acquired
both on unlabeled and 15N,13C-labeled peptide PepD2-WT
(residues 304 –323, JFH1), distance-based (NOEs) and back-
bone dihedral angle-based experimental restraints were
derived. NOE intensities used as input for structure calcula-
tions were obtained from the NOESY spectrum recorded with a
400-ms mixing time. According to their intensity NOEs were
classified in three categories, which were then converted into
distance restraints (1.8 –2.8 Å, 1.8 –3.9 Å, and 1.8 –5.0 Å). Pro-
tons without stereospecific assignments were treated as pseu-
do-atoms. From the 1H, 15N, and 13C chemical shifts, dihedral
angle constraints, calculated with Talos (93), were introduced.
Peptide structures were generated from the experimental NOE
distances and dihedral angles, using CNS (94) with the standard
torsion angle molecular dynamics protocol, the standard force
field and default parameter set. From the initial set of 100 struc-
tures that were calculated, with the dynamical annealing pro-
tocol to widely sample the conformational space, only struc-
tures with no distance restraint violations were retained. The 23

final selected structures, with the lowest energies, were com-
pared by pairwise root mean square deviation over the back-
bone atom coordinates (N, C�, and C	). Ramachandran analysis
performed on the final structures showed that 89, 11, and 0% of
the residues were in favored, allowed, and outliers regions,
respectively. The PyMOL software (PyMOL Molecular Graph-
ics System, version 1.8; Schrödinger) was used for molecular
graphics (95).

NMR PPIase assay

PPIase activity of CypA on NS5A-D2 WT was assessed using
1H,15N z-exchange spectra (66), where the exchange was mon-
itored on the basis of novel cross-peaks connecting a trans and
cis peak. 1H,15N z-exchange spectra, with a 200- or 400-ms
mixing time, were recorded on a 600 MHz spectrometer
equipped with a cryogenic triple resonance probe. Exchange
spectra were acquired on a 400 
M 15N-NS5A-D2 sample in the
presence or the absence of 5 
M CypA in 30 mM NaH2PO4/
Na2HPO4, pH 6.4, 30 mM NaCl, 1 mM DTT.

Chemical shift projection analysis (CHESPA)

The NMR chemical shift projection analysis was performed
as described in Refs. 69 and 70, from the 1H,15N-HSQC of
NS5A-D2. We calculated cos�, which represents the angle
between vectors A (defined by the W312_6 and W312_1 peaks)
and B (defined by the W312_6 peak and the Trp312 resonance
from a mutant or corresponding to a minor form). Next, we
calculated the fractional shift X, which corresponds to the pro-
jection of the vector B on the vector A. For the calculations, a
scaling factor of 0.1 was applied to the 15N chemical shift.

Molecular dynamics

Gaussian-accelerated molecular dynamics (GaMD) simula-
tions (�280 ns) were performed with AMBER17 (96, 97) on five
different peptides corresponding to the 304 –323 residues in
NS5A-D2 (pepD2-WT (WT), pepD2-D316E (D316E), pepD2-
DEYN (DEYN), pepD2-P315cis (P325c), and pepD2-A311G
(A311G)), and each trajectory was collected with �140,000
frames. The detailed molecular dynamics protocol is described
under the supporting information.

Briefly, the peptides were built using Tleap in AmberTools16
and all simulations were performed using pmemd.cuda of
AMBER17 on graphics processing units P100 (98). Amber
ff99SB*-ILDN force field (99, 100) was used in all simulations.
The peptides were then solvated in a cubic water box of 75.5 

75.5 
 75.5 Å3 pre-equilibrated TIP3P water molecules. The
simulations were performed with 40 mM NaCl at 298 K, as in the
experimental NMR studies. GaMD (101) simulations (�280 ns)
were used to explore the conformational space of the peptides
and the coordinates were saved every 2 ps. CPPTRAJ (1) was
used to analyze r.m.s. deviations, secondary structure, dihedral
torsions, and hydrogen bonds from the GaMD simulation tra-
jectories. The sampled conformations of the peptides were
analyzed using the dPCA method (71, 72) considering the back-
bone atoms of residues 309 to 316. The lowest energy confor-
mations were identified by projecting the trajectories of the first
two principal components onto a three-dimensional free
energy (�G) (see Equation 2 below), in which R is the universal
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gas constant, T is the temperature, x, y, and z, are the calculated
structural properties from the trajectory.

�G � �RT ln�Px,y,z

Pmax
� (Eq. 2)

Then, a clustering of the structures was performed using the
two first vectors (PC1 and PC2) of the dPCA. For each MD
simulation, the PyReweighting toolkit was used to reweight the
GaMD simulation to compute the free energy landscape from
PCA components PC1 and PC2. The percent of the time that a
particular cluster is present was determined. Next, using our
NMR PepD2-WT structure as a reference, the presence of the
structured PW-turn motif was probed in every cluster of each
simulation. For clusters of each simulations, the centroid struc-
tures were fitted on the NMR reference structure using all
atoms of residues 310 –313. Then, backbone dihedral angles (�
and 	) of residues 310 to 313 and �1 and �2 angles from Trp312

were measured using cpptraj in AMBER package. The presence
of the structured PW-turn motif was assessed from the sum of
squares of the differences between angles from the reference
and centroid structures. Chemical shift predictions (1H and
15N) were performed with SHIFTX2 (73) from the MD simula-
tions data. For each peptide, SHIFTX2 was used in the “ensem-
ble mode” on all structures of each cluster. Then, from these
predictions for a given peptide, a population-weighted average
chemical shift value (1H or 15N) was calculated. The error bars
represent the population-weighted standard deviations.

RNA replication assay

The protocol used for generation and electroporation of
HCV RNAs has been described elsewhere (38). For transient
replication assays, 400 
l of single cell suspensions of Huh-7
cells (107 cells/ml) were mixed with 5 
g in vitro transcribed
subgenomic replicon RNA and transfected by electroporation.
After transfection, cells were resuspended in 41 ml of complete
Dulbecco’s modified Eagle’s medium, and 1.5 ml of the cell
suspension was seeded in duplicate in each well of a 12-well
plate. To measure luciferase activity, cells were washed with
PBS 4, 24, 48, and 72 h after electroporation and lysed by addi-
tion of 350 
l of lysis buffer (0.1% Triton X-100, 25 mM glycyl-
glycine, pH 7.8, 15 mM MgSO4, 4 mM EGTA, and 1 mM DTT).
Lysates were immediately frozen at �70 °C, and after thawing,
100 
l of the lysate was mixed with 360 
l of assay buffer (25
mM glycylglycine, 15 mM MgSO4, 4 mM EGTA, 1 mM DTT, 2
mM ATP, and 15 mM K2PO4, pH 7.8). Luciferase activity was
measured for 20 s in a luminometer (Lumat LB9507; Berthold,
Freiburg, Germany) after addition of 200 
l of luciferin solution
(200 mM luciferin, 25 mM glycylglycine, pH 8.0). Replication
efficiency was calculated by normalizing values of the different
time points to the respective value obtained at 4 h, which
reflects transfection efficiency.

Interaction between CypA- and NS5A-D2– derived peptides

To study the interaction between CypA and PepD2-WT,
PepD2-A311G, or PepD2-D316E, 1H,15N-HSQC experiments
were acquired on 400 
M 15N-CypA with increasing amounts of
unlabeled peptides (the molar ratios CypA:PepD2 were 1:2; 1:8;

1:15, and 1:25). The combined chemical shift perturbations fol-
lowing peptide additions were calculated using Equation 3,
whereby �� (1HN) and �� (15N) are the chemical shift pertur-
bations in the 1H and 15N dimensions, respectively.

�� � ����1HN�� � 0.2  ����15N�� (Eq. 3)

For determination of dissociation constant (KD), the com-
bined chemical shift perturbations (��, ppm) were plotted as
a function of the molar ratio [PepD2]/[15N-CypA], and the
resulting curve was fitted to Equation 4, which describes a 1:1
biomolecular interaction, and where �� is the measured chem-
ical shift perturbation, ��max is the maximum value for this
parameter, X corresponds to the ratio [PepD2]/[15N-CypA],
and [CypA] is the 15N-CypA concentration.

�� �
��max

2
 (1 � X �

KD

�CypA

� ��1 � X �
KD

�CypA�
2

� 4  X (Eq. 4)

Accession numbers

NMR assignment of the peptide PepD2-WT (residues 304 –
323 of the domain 2 of NS5A, JFH1 strain) have been deposited
in the Biological Magnetic Resonance Data Bank under acces-
sion code 30037. The NMR structure of the pepD2-WT (strain
JFH-1) has been deposited in the Protein Data Bank (PDB) with
code 6HT4.
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