
HAL Id: hal-02997930
https://hal.science/hal-02997930

Submitted on 8 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Opposite Modulation of RAC1 by Mutations in TRIO Is
Associated with Distinct, Domain-Specific

Neurodevelopmental Disorders
Sónia Barbosa, Stephanie Greville-Heygate, Maxime Bonnet, Annie Godwin,
Christine Fagotto-Kaufmann, Andrey Kajava, Damien Laouteouet, Rebecca

Mawby, Htoo Aung Wai, Alexander J.M. Dingemans, et al.

To cite this version:
Sónia Barbosa, Stephanie Greville-Heygate, Maxime Bonnet, Annie Godwin, Christine Fagotto-
Kaufmann, et al.. Opposite Modulation of RAC1 by Mutations in TRIO Is Associated with Distinct,
Domain-Specific Neurodevelopmental Disorders. American Journal of Human Genetics, 2020, 106 (3),
pp.338-355. �10.1016/j.ajhg.2020.01.018�. �hal-02997930�

https://hal.science/hal-02997930
https://hal.archives-ouvertes.fr


ARTICLE

Opposite Modulation of RAC1 by Mutations in TRIO
Is Associated with Distinct, Domain-Specific
Neurodevelopmental Disorders

Sónia Barbosa,1,37 Stephanie Greville-Heygate,2,37 Maxime Bonnet,1 Annie Godwin,4

Christine Fagotto-Kaufmann,1 Andrey V. Kajava,1 Damien Laouteouet,1 Rebecca Mawby,5

Htoo Aung Wai,5 Alexander J.M. Dingemans,6 Jayne Hehir-Kwa,7 Marjorlaine Willems,8 Yline Capri,9

Sarju G. Mehta,10 Helen Cox,11 David Goudie,12 Fleur Vansenne,13 Peter Turnpenny,14 Marie Vincent,15

Benjamin Cogné,15 Gaëtan Lesca,16 Jozef Hertecant,17 Diana Rodriguez,18 Boris Keren,19

Lydie Burglen,20 Marion Gérard,21 Audrey Putoux,22 C4RCD Research Group,23 Vincent Cantagrel,24,25

Karine Siquier-Pernet,25,26 Marlene Rio,25,26 Siddharth Banka,27,28 Ajoy Sarkar,29 Marcie Steeves,30

Michael Parker,31 Emma Clement,32 Sébastien Moutton,33 Frédéric Tran Mau-Them,34 Amélie Piton,35,36

Bert B.A. de Vries,6 Matthew Guille,4 Anne Debant,1,38 Susanne Schmidt,1,38,* and Diana Baralle2,3,38,*

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon

guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in

TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD).

Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO.

The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes.

In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in

the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral pheno-

type, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do

most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1

variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1

activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model

X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular dis-

orders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1

signaling in neuronal development.
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Introduction

The Rho guanosine triphosphatases (GTPases) play an

essential role in many neurodevelopmental steps,

including neurogenesis, migration, and the formation of

synapses, by regulating actin cytoskeleton dynamics.1

They are activated by guanine nucleotide exchange fac-

tors (GEFs) that catalyze guanosine diphosphate (GDP)

dissociation and allow the binding of guanosine triphos-

phate (GTP). By facilitating this GDP-to-GTP exchange,

GEFs act as intermediaries between an external cue and

the activation of Rho GTPases.2 TRIO is a highly

conserved GEF that contains two GEF domains and

numerous accessory motifs, including spectrin repeats at

its N terminus.3 TRIO is a member of a small Rho-guanine

nucleotide exchange factor (RhoGEF) sub-family that

includes two functional GEF domains. The first GEF

domain (GEFD1) regulates RAC1 and RHOG activity,

and the second GEF domain (GEFD2) regulates RHOA ac-

tivity.4,5 It is recognized that through RAC1 activation

and actin cytoskeleton remodeling, TRIO acts as a major

regulator of cytokinesis, cell migration, axon outgrowth,

axon guidance, and dendritic arborization and plays a

role in synaptogenesis by modulating excitatory synaptic

transmission.6–10

The importance of TRIO in development is demon-

strated inmurinemodels. TRIO knockout inmice is embry-

onically lethal, and embryos show abnormalities in

skeletal muscle and neural-tissue development.11 Mice in

which TRIO has been specifically deleted in the nervous

system die perinatally, and the few mice that survive

display defects in the migration of cerebellar granule

cells.12 Heterozygous or homozygous deletion of TRIO in

the hippocampus and in the cortex during early embryo-

genesis results in progressive defects in learning ability, so-

ciability, and motor coordination of these mice.13–15

Whole-exome sequencing studies have identified several

deleterious de novo mutations in TRIO in different cohorts

of individuals with neurodevelopmental disorders,

including intellectual disability (ID) and/or autism spec-

trum disorders (ASD).16–19 In addition, TRIO has been re-

ported as intolerant to functional genetic variation.20

The reported clinical phenotypes of affected individuals

with TRIOmutations include intellectual disability, behav-

ioral difficulties such as hyperactivity or aggression, autism

or autistic behavioral tendencies, skeletal hand anomalies,

and microcephaly. Pathogenic variants include missense

mutations and nonsense mutations, the latter of which

generates premature stop codons leading to truncated pro-

teins or haploinsufficiency. Missense mutations in TRIO

often target TRIO’s RAC1-activating domain, GEFD1. For

the GEFD1 mutants on which there have been functional

studies, the majority show a reduction in TRIO-mediated

activation of RAC1,17–19 but some also affect glutamatergic

synaptic transmission, reinforcing the hypothesis that

TRIO mutations are causative of these neurodevelopmen-

tal disorders.18
The Ameri
In addition to this cluster of missense mutations target-

ing the GEFD1, we have previously described an individual

harboring a missense mutation in one of the spectrin

motifs.17 In comparison to the severe microcephaly seen

in individuals with mutations in the GEFD1, this person

had a head circumference in the 75th centile.17 This sug-

gests that the position of the mutation in the TRIO

sequence could differentially impact TRIO’s neuronal func-

tion and cause phenotypic heterogeneity.

Here, we report on an important set of individuals

harboring pathogenic TRIO (MIM: 601893) variants, in-

cluding nonsense and missense mutations. The nonsense

mutations are spread along the TRIO sequence, and indi-

viduals show variable neurodevelopmental phenotypes.

With regard to the missense mutations, we have identified

the seventh spectrin domain of TRIO as a second muta-

tional hotspot and describe how this gives rise to a distinct

phenotype of severe neurodevelopmental delay, macroce-

phaly, and TRIO-mediated RAC1 hyperactivity. This is in

contrast to the GEFD1 hotspot, which is mostly associated

with milder ID, microcephaly, and reduced TRIO activity.

In addition, expression of TRIO variants in the vertebrate

model X. tropicalis induces defects that are concordant

with the human phenotype, showing that TRIOmutations

are causative of these neuordevelopmental disorders. Alto-

gether, we propose that, depending on the domain tar-

geted, mutations affect TRIO’s function in opposite ways

and give rise to two seemingly diverse clinical syndromes:

severe developmental delay and macrocephaly (spectrin

variants) versus a milder developmental phenotype and

microcephaly (GEFD1 variants). These findings highlight

the importance of tight control of TRIO-RAC1 signaling

during neuronal development.
Material and Methods

Identification of Pathogenic TRIO Variants
Pathogenic variants in TRIO were identified by whole-exome

sequencing performed on whole blood DNA as part of the Deci-

phering Developmental Disorders (DDD) Research Study,21 as

part of a research study at TGenWIRB Protocol #20120789, Geno-

mics England 100,000 Genomes Project (see The National

Genomics Research and Healthcare Knowledgebase v5 in Web Re-

sources), or through diagnostic clinical practice. The DDD study

collated more than 12,000 affected individuals with undiagnosed

neurodevelopmental disorders. Variants were reported according

to standardized nomenclature defined by the reference human

genome GRCh37 (hg19) and TRIO transcript GenBank:

NM_007118. The minor-allele frequency of each variant was

determined from genomic sequencing data derived from the gno-

mAD, and the effect of each genomic variant on protein function

was predicted with the Ensembl Variant Effect Predictor.22 None of

the missense variants are listed in the gnomAD.

Aberrant Splicing Analysis
Blood was collected from individual 19, and RNA was extracted

from the blood sample with the PAXgene Blood RNA Kit

(PreAnalytiX). cDNA synthesis was performed with the High
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Capacity cDNA Reverse Transcription Kit (Thermo Fisher

Scientific). The TRIO variant (c. 4860�2A>G) is located on the in-

tronic splice acceptor site of exon 33 (GenBank: NM_007118.4),

and the primer pairs (pair 1 [forward] 50-AGTGGGAGAAGCA

AGTACCT-30/[reverse] 50-CTGTCGTCGGAGTCCTTCTG-30 and

pair 2 [forward] 50-AGAACGGCATCTCTTCCTTTT-0/[reverse]
50-CACTGTCGTCGGAGTCCTT-30) (Integrated DNA Technolo-

gies) were designed on the flanking exon 30 and exon 35. PCR

was performed with the GoTaq G2 Polymerase PCR system

(Promega). The amplicons were visualized under ChemiDoc

XRSþ (Bio-Rad). Amplicons for further analysis were cloned into

plasmids via a TA cloning kit with the pCR 2.1 vector (Thermo

Fisher Scientific). Plasmids carrying inserts were sequenced by

Sanger sequencing (Source Bioscience). Bioinformatic predictions

for aberrant splicing were performed with Human Splicing Finder

(version 3.1),23 MaxEntScan,24 and Splice Site Finder by Neural

Network (SSFNN).25
Patient Consent
Patient consent for participation and phenotyping was obtained

through the referring clinical team. Referring clinicians were re-

quested to complete a comprehensive phenotyping questionnaire

that was based upon our current understanding of the phenotypic

associations of TRIO. This included sections related to neurodeve-

lopmental screening; dysmorphology; and gastrointestinal, skel-

etal, and cardiac phenotypic features. Consent and collection of

information conformed to the recognized standards of the Decla-

ration of Helsinki.
Quantitative Facial Phenotyping
Clinical photographs of individuals’ faces were analyzed accord-

ing to the hybrid model reported previously.26,27 This model

combines two algorithms (OpenFace28 and Clinical Face Pheno-

type Space29) used for facial recognition to create a 468-dimen-

sional vector of the facial features of a given individual. These

vectors are used for calculating the clustering impact factor

(CIF) of a patient group. This is a measurement of how a

group of individuals cluster within a group of controls; these

controls are age-, ethnicity-, and gender-matched individuals

with intellectual disability (see van der Donk et al.26 for further

technical details). The Mann-Whitney U test is utilized for

determining whether the CIF is significantly higher than ex-

pected on the basis of random chance. This was done for all in-

dividuals, including the subset of individuals with mutations in

either of the domains (GEFD1 and spectrin), so that the facial fea-

tures of individuals with mutations in these different domains

could be assessed for differences. A p value smaller than 0.0125

(0.05/4) was considered significant, after correcting for multiple

testing.
Molecular Modeling of TRIO Domains
We modeled the structure of the seventh spectrin repeat of TRIO

on the basis of the crystal structures of human beta2-

spectrin (PDB ID 3EDV30) by using a sequence alignment ob-

tained from the generalized sequence profile.31 The model was

constructed by the SWISS-MODEL server.32 The structure of

the DH1 domain of TRIO in complex with the small GTPase

substrate RAC1 was modeled with the crystal structures of

DH1 (PDB: 1NTY) and the complex with substrate

(PDB: 1KZ7). Data for the protein structures were generated

with PyMOL.33
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Plasmids and DNA Constructs
The pbio-EGFP-TRIO and pbio-EGFP-TRIO GEF-dead constructs

have been described previously.7,34 All the missense and nonsense

mutants were generated with the QuikChange Site-directed muta-

genesis kit (Agilent Technologies) according to the manufacturer’s

instructions; appropriate primers were used. Primer sequences are

available upon request. All constructs were verified by sequencing.

pLXSN-myc-Rac1T17N has been described previously.35 The pRK5-

Myc-PAK1 construct was a kind gift from Nathalie Lamarche-Vane

(McGill Cancer Research Center, Montreal, Canada).

Cell Culture and Transfection
N1E-115 and HEK293T cells were cultured at 37�C in Dulbecco’s

modified Eagle’s medium (DMEM; Eurobio) supplemented with

10% fetal bovine serum, 2 mM L-glutamine (Invitrogen), and

penicillin and streptomycin (Invitrogen) under humidified condi-

tions with 5% CO2.

For the neurite outgrowth assays, N1E-115 cells were seeded in

35 mm dishes containing 12 mm glass coverslips coated with

laminin (25 mg/mL; Sigma Aldrich). HEK293T cells were seeded

in 100 mm dishes. Cells were transfected with TRIO constructs

as indicated with the JetPEI reagent (Polyplus) at 1:5 (for N1E-

115 cells) and 1:3 (for HEK293T cells) ratios, as described previ-

ously.36

RAC1N17 Binding Assay
HEK293T cells were co-transfected with the indicated biotinylated

pbioGFP-TRIO variants and a pLXSN-Myc-RAC1N17 plasmid. 48 h

after transfection, cells were lysed in lysis buffer [50 mM Tris HCl

(pH 7.5), 1 mM EGTA, 1 mM EDTA, 0.1% (w/v) Triton X-100,

1 mM sodium orthovanadate, 50 mM sodium fluoride, 5 mM

sodium pyrophosphate, 10% sucrose, 1 mM dithiothreitol,

0.5 mM 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride

(AEBSF)]. TRIO was pulled down with Streptavidin Dynabeads (In-

vitrogen), and the co-precipitating RAC1N17 was detected via

immunoblotting with a RAC1 antibody (BD Biosciences,

#610651). Total cell lysates were analyzed with the relevant anti-

RAC1 and anti-GFP antibody (Torrey Pines Biolabs, #TP401).

Neurite Outgrowth and Lamellipodia Analysis
More than 200 transfected N1E-115 cells were analyzed for each

condition. A neurite was defined as a process thatmeasured at least

twice the length of the cell body. Lamellipodia were defined as

sheet-like rhodamine-phalloidin-positive protrusions, occurring

along or at the tip of the neurite. The proportion of transfected

cells harboring a neurite or a lamellipodium was determined

manually in an experimenter-blinded procedure. Values obtained

from no less than five independent experiments were presented as

n-fold change over wild-type (WT) TRIO, which was arbitrarily set

to 1. A Student’s unpaired t test was used for statistical analysis.

Immunoblot Analysis of Phospho-PAK Amounts
HEK293T cells were co-transfected with the indicated pbioGFP-

TRIO variants and a pRK5-PAK1 plasmid. 48 h after transfection,

cells were lysed in lysis buffer, and amounts of phosphorylated

PAK1 were monitored by immunoblot analysis with a phospho-

Ser144 PAK antibody (# 2606S, Cell Signaling) and a monoclonal

PAK1 antibody (sc-166887). Total TRIO expression was detected

with a GFP antibody (Torrey Pines Biolabs, #TP401). Immunoblot

detections and band-intensity quantifications were made with the

Odyssey system from Li-COR Biosciences.
5, 2020
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Figure 1. Pathogenic TRIO Variants Found in Individuals with Neurodevelopmental Disorders
(A) Schematic representation of TRIO domains with annotated missense and nonsense mutations identified in affected individuals. Pa-
tient groups 1 and 2 are highlighted in green and orange, respectively. Missense mutation p.Pro1461Leu is in blue so that it is differen-
tiated from the other GEFD1mutants (see text for details). Nonsense variants are written in black. The numbers in brackets correspond to
the OFC of each affected individual (þ/�SD).
(B) Clinical photographs of individuals carrying an alteration in the seventh spectrin repeat domain of TRIO (group 1). Individuals 2
and 3 have the p.Arg1078Trp variant, individuals 7 and 8 have the p.Arg1078Gln variant, and individual 9 has the p.Asn1080Ile
variant.17

(legend continued on next page)
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Animal Maintenance and Embryo Generation at the

European Xenopus Resource Center
All work presented was conducted in accordance with the con-

ditions set out by the UK’s Home Office legislation under PPL

70/6450 (Professor Matthew Guille: European Xenopus Resource

Centre) and approved by the University of Portsmouth’s Animal

Welfare Ethical Review Body. Outbred Nigerian Xenopus tropica-

lis were maintained in recirculating systems with 15% daily wa-

ter changes and temperatures between 25�C–27�C and main-

tained on a 13–11 h light-dark cycle. Adult X. tropicalis were

fed thrice daily five days per week with Skretting Horizon 23 pel-

lets. Sexually mature female X. tropicalis were primed the eve-

ning before collection with 10 IU hCG and a boosting dose of

100 IU hCG the following morning. Egg clutches were obtained

via gentle abdominal massage and fertilized with cryopreserved

sperm.

Frozen X. tropicalis spermatozoa were generated from adult

male X. tropicalis exhibiting enhanced nuptial pads. Sperm cryo-

preservation followed an adapted protocol initially developed by

Sargent and Mohun37 and modified by Mansour38 with further

amendments implemented within the European Xenopus

Resource Centre.39 Cryopreserved spermatozoa were rapidly

thawed in a 37�C water bath. Two volumes of 0.1 3 Marc’s Modi-

fied Ringer’s Solution (MMR: 0.01 M NaCl, 0.2 mM KCl, 0.1 mM

MgSO4, 0.2 mM CaCl2, and 0.5 mM HEPES [pH 7.4]) was then

added to the thawed spermatozoa, and the solution was applied

directly to eggs manually spread to a monolayer. Embryos were

maintained in 0.05 3 MMR (containing penicillin [5 U/mL]

and streptomycin [5 mg/mL]) with 50% daily media changes at

25.5�C in 145 mm tissue-culture Petri dishes at a density of 50

embryos (or fewer) per dish.
Use of CRISPR-Cas for Generation of Knock-Out Animals
Xenopus tropicalis target regions of interest were identified through

Xenbase, and four single-stranded oligonucleotides (Table S2)

directed at multiple loci within TRIO were designed with

CRISPRscan. Subsequently, single-guide RNAs were generated

according to the PCR-based method described by Nakayama and

colleagues.40 X. tropicalis embryos were co-injected at the one-

cell-stage with 500 pg single-guide RNA and 2.5 mg Cas9 (spy

Cas9 NLS, NEB) with the microinjection apparatus and procedure

described in Guille.41 Genomic DNA was extracted from individ-

ual embryos with QIAGEN’s DNeasy Blood and Tissue Kit. Primers

(Table S2), designed in Primer3, were used for amplification of the

target regions of interest for analysis. T7 Endonuclease I (NEB),

which recognizes and cleaves mismatched DNA, was used for

identification of the most effective single-guide RNA for each

site.42 Sanger sequencing of PCR-amplified regions confirmed

these indels in mutant embryos. Tadpoles were imaged with a

ZEISS Axio Zoom.V16 Stereomicroscope. All analyses were imple-

mented with packages in R version 3.5.1. Differences in head

diameter between treatments were analyzed via a one-way analysis

of variance (ANOVA). A Tukey honestly significant difference

(HSD) post-hoc test was used.
(C) Clinical photographs of individuals carrying an alteration in the G
10–16 harbor the following variants: (10) p.Glu1299Lys, (11 and 12) p
p.Pro1461Leu.
(D) Clinical photographs of individuals carrying nonsense mutations
are related;17 patient 17a is the daughter of individual 17b. Individu
nonsense variants p.Gln768*, p.Arg1620Serfs*10, and p.Val2351Cys
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Results

Cohort of Individuals with Pathogenic Variants in TRIO

Here, we present the largest phenotypic cohort of individ-

uals who had confirmed pathogenic variants in TRIO and

who presented with neurodevelopmental delay. Through

a combination of DDD and internationally ascertained

participants, we recruited 24 individuals from 22 families.

Pathogenic TRIO variants were de novo in 21 families and

inherited in one family. The mechanism of inheritance

was not described in three families. Different variant types

were observed: 16 missense variants (nine within the

N-terminal spectrin repeat domain and seven within the

GEFD1), seven nonsense (protein-truncating) variants,

and one consensus splice-site variant (Figure 1A, Table 1).

Missense mutations were clustered into two main

groups: the seventh spectrin repeat domain of TRIO

(group 1) and the GEFD1 (group 2) (Figure 1 A). Individuals

1 to 9 harbor missense mutations in the seventh spectrin

repeat at the N terminus of TRIO (Figure 1A, Tables 1 and

S1). Interestingly, these variants cluster within only three

amino acids (Thr 1075, Arg 1078, and Asn 1080). Within

group 1, we demonstrate a consistent phenotype of severe

intellectual disability and macrocephaly (Figure 1B, Tables

1 and S1). Individuals 10 to 16 carry missense mutations in

residues within the RAC1-activating GEFD1; such residues

include two amino acids (Arg 1428 and Pro 1461) mutated

in several unrelated patients (Figure 1A). These individuals,

except individuals 15 and 16, define patient group 2 and

present with milder ID and microcephaly. Individuals 15

and 16 (harboring the p.Pro1461Leu mutation) were

excluded from group 2 in our analysis because they pre-

sented no microcephaly (Figure 1C, Tables 1 and S1).

A third group of persons, individuals 17 to 22, carry

nonsense mutations throughout the TRIO sequence but

have no specific mutational cluster and show a more

variable neurodevelopmental phenotype (Tables 1 and

S1, Figures 1A and 1D). These nonsense mutations

presumably lead to the formation of a truncated protein,

featuring only parts of the functional domains of TRIO.

Individuals 17a–17c carry an inherited nonsense GEFD1

mutation, p.Gln1489Argfs*12 (reported previously as

p.Gln1489Argfs*11),17 generating a truncated and thus

non-functional GEFD1. Interestingly, they present with a

phenotype similar to that of group 2 patients. Alterna-

tively, the frameshift mutants, and especially mutant

p.Gln768* at the N terminus of TRIO, could be subject to

nonsense-mediated decay of the truncated transcript;

such decay could result in negligible protein production

and haploinsufficiency. Of interest, individual 19 carries
EFD1 of TRIO (group 2 and the p.Pro1461Leu variant). Individuals
.Arg1428Gln, (13) p.Pro1461Thr,17 (14) p.His1469Arg, (15 and 16)

: individuals 17a–17c all carry the p.Gln1489Argfs*12 variant and
als 17b and 17c are brothers. Individuals 18, 19, and 21 carry the
fs*62, respectively.
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Table 1. Individual Clinical Phenotype

Group 1 Individuals Group 2 Individuals

Patient 1 2 3 4 5 6 7 8 9 10 11 12

TRIO variant

Coding change c.3224C>T c.3232C>T c.3232C>T c.3232C>T c.3232C>T c.3232C>G c.3233G>A c.3233G>A c.3239A>T c.3895G>A c.4283G>A c.4283G>A

Protein change p.Thr1075Ile p.Arg1078Trp p.Arg1078Trp p.Arg1078Trp p.Arg1078Trp p.Arg1078Gly p.Arg1078Gln p.Arg1078Gln p.Asn1080Ile p.Glu1299Lys p.Arg1428Gln p.Arg1428Gln

Domain spectrin spectrin spectrin spectrin spectrin spectrin spectrin spectrin spectrin GEFD1 GEFD1 GEFD1

Inheritance NR de novo de novo de novo de novo de novo de novo de novo de novo de novo de novo de novo

Sex M M M M M M F F F M F F

Age last
assessment

15 years 12 years 3 years 4 years 7 years 6 years 19 years 40 years 9 years 20 months 16 years 8 years

First smile NR NR <36 weeks 52 weeks NR normal NR 24 weeks NR 12 weeks 8 weeks 6 weeks

Sitting
unsupported

12 months NR NA 36 months 36 months 7 months 10.5 months 9 months 11 months 9 months 10 months 8 months

Walking
unaided

30 months 84 months NA, crawling NA NA 24 months 24 months 36 months 48–60 months NA 22 months 12 months

First words 66 months NR NA NA 36 months NA 48–60 months 52 months NR 24 months NR NR

Learning
Difficulties

yes; moderate yes; severe yes; severe yes; severe yes; severe yes; severe yes; moderate yes; severe yes; severe yes; moderate missing level
in charts

yes; moderate

Language delay:
Expression

yes; dysarthria,
short sentences

yes; 50 words
at 7 years

yes; babble
only

yes; babble
only

yes; <10 words yes; severe,
sounds only

yes; impaired
articulation

yes; short
sentences only

yes; non-verbal,
uses Makaton

yes; only a few
two- syllable
words

yes; very
talkative

yes; talkative

Language delay:
Comprehension

yes yes yes yes yes yes;
comprehension
better

yes yes yes yes yes; unable
to read or write

yes

OFC þ0.7 SD þ2.9 SD þ2.2 SD þ2.7 SD þ2.8 SD þ3 SD þ2.4 SD þ4.7 SD þ1.8 SD �3.8 SD �5.9 SD ‘‘microcephaly’’

Other genetic
variants

NR 14q21.1
microdeletion

no no no NR no NR no no no maternally
inherited 4p
microdeletion

Reference
(patient)

this study this study this study this study this study this study this study this study 17 this study 17 this study

Variant
described in

- - - - - - - - 17 - 17, 18 17, 18

(Continued on next page)
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Table 1. Continued

Group 2 Individuals Truncation Individuals

Patient 13 14 15 16 17a (proband) 17b (father) 17c (uncle) 18 19 20 21 22

TRIO Variant

Coding change c.4381C>A c.4406A>G c.4382C>T c.4382C>T c.4466delA c.4466delA c.4466delA c.2302C>T c.4860�2A>G c.6092dup c.7050del c.7461del

Protein change p.Pro1461Thr p.His1469Arg p.Pro1461Leu p.Pro1461Leu p.Gln1489Argfs*
12

p.Gln1489Argfs*
12

p.Gln1489Argfs*
12

p.Gln768* p.Arg1620Serfs*
10

p.Leu2031Phefs*9 p.Val2351Cysfs*
62

p.Phe2473Serfs*
54

Domain GEFD1 GEFD1 GEFD1 GEFD1 truncating truncating truncating truncating truncating truncating truncating truncating

Inheritance de novo de novo de novo de novo inherited inherited inherited NR de novo de novo de novo NR

Sex F M F F F M M F F M M M

Age last
assessment

8 years 14 years 19 years 11 years 17 months 36 years 10 years 14 years 8 years 16 years 9 years 21 months

First smile 36 weeks NR 8 weeks 28 weeks NR NR NR NR NR 6 weeks >8 weeks 21 months

Sitting
unsupported

11 months 9 months 11 months 13 months 9 months NR NR NR 8 months 6 months NR NA

Walking
unaided

30–36 months 17 months 21 months 24 months 17 months NR NR 14 months 12 months 12 months >24 months NA

First words 48–60 months 60 months NR 24–36 months 17 months NR NR 24 months 10 months Delayed >18 months NA

Learning
difficulties

yes; global yes; mild yes; mild yes; moderate yes; mild yes; mild yes; mild yes yes; mild yes; severe yes; moderate yes; severe

Language
delay:
expression

yes yes; first
sentences
at 9 years

yes yes; literal
speech

yes NR NR yes yes yes; short
sentences

yes yes; no
language
development

Language
delay:
comprehension

yes no yes yes yes NR NR yes yes no yes yes

OFC �3.8 SD �4 SD þ1.5 SD 0.3 SD �3.3 SD �2.1 SD �3.9 SD �3.5 SD �4.4 SD �1.4 SD þ1.4 SD �4.6 SD

Other genetic
variants

- - no bi-allelic FAT4
variants
regarded
as VUS

no 15q11.2
microdeletion
and maternal
DM

15q11.2
microdeletion

no no no 5p15.31 VUS
paternally
inherited, father
phenotypically
normal

no

Reference
(patient)

17 this study this study this study 17 17 17 this study this study this study this study this study

Variant
described in

17, 18 - 18 18 - - - - - - - -

Description of the clinical phenotype observed among TRIO mutation carriers, grouped on the basis of variant location or protein effect: spectrin repeat (group 1), GEFD1 (group 2 and p.Pro1461Leu individuals 15 and 16)
and protein truncating. Abbreviations are as follows: M, male; F, Female; NR, not recorded; SD, standard deviation; OFC, occipitofrontal circumference; GORD, gastro-esophageal reflux disease; NG, nasogastric; and NA, not
achieved.
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Figure 2. Individuals Harboring Variants
in Either GEFD1 or Spectrin Domains
Show Distinct Neurodevelopmental Phe-
notypes
(A) Percentage of affected individuals with
different levels of learning difficulties in
either spectrin domain (group 1) or
GEFD1 (group 2) mutation cases. 75% of
group 2 individuals have mild-moderate
learning difficulties. 78% of group 1 indi-
viduals have severe learning difficulties.
(B) Early developmental milestones
(sitting unsupported, walking, and first
words) are delayed in both group 1 and
group 2 individuals, but group 1 individ-
uals are affected more severely. For
statistical analysis, refer to Table S3.
Walking: *p ¼ 0.035.
(C) Height and weight standard deviations
frommean in either group 1 or group 2 in-
dividuals. The median height for group 1
individuals with spectrin mutations was
�1.69 SD, and for group 2 individuals
with GEFD1 mutations it was �1.34 SD.
33% of the individuals in group 1 and
14% of individuals in group 2 had a height
SD of greater than �2 SD, which is often
considered as short stature. Weight SD
was also reduced in both groups.
(D) Microcephaly was seen in 100% of
group 2 individuals, who had a mean
OFC of �3.82 SD (median OFC of �3.8
SD). Individuals within group 1 present
with macrocephaly. 78% had an OFC
greater than 2 SD from the mean; mean
OFC was þ2.6 SD, median OFC was þ
2.7 SD, and OFC range was between þ0.7
SD and þ4.7 SD. **p < 0.001 (Table S3)
(E) A neurobehavioral phenotype was
observed in 19 out of the 24 (79%) individ-
uals described in this study.
(F) Recurrent behavioral features include
stereotypies (6/24 patients), poor atten-
tion (14/24 individuals), obsessive-
compulsive traits (9/24 individuals), and
aggression (8/24 individuals). In total,
2/24 were identified as social or friendly.
(G and H) Quantitative facial phenotyp-
ing. t-distributed stochastic neighbor

embedding (t-SNE) plot of the vectors of individuals with alterations in GEFD1 and the seventh spectrin domain and the matched con-
trols with intellectual disability. The statistically significant clustering of individuals with mutations in the spectrin domain indicates a
recognizable facial phenotype.
a splice variant, c.4860�2A>G. We confirmed pathoge-

nicity by validating the aberrant splicing by PCR and

found an extra amplicon in the PCR product of variant

c.4860�2A>G (Figure S1). Sanger sequencing results

show that the mutation caused disruption to the

splice acceptor site and activation of a new splice

acceptor site that is 51 base pairs upstream of exon 33;

the result was an abnormal intron inclusion transcript

(p.Arg1620Serfs*10).

Distinct Neurodevelopmental Phenotypes for

Individuals with Either Spectrin or GEFD1 Mutations

Affected individuals of the cohort were born at term with

no described antenatal or perinatal complications. All indi-
The Ameri
viduals presented with neurodevelopmental delay, but

strikingly, the level of intellectual disability was more se-

vere among individuals with a pathogenic variant within

the spectrin repeat domain (group 1) than in individuals

with a variant in GEFD1 (group 2). Indeed, for group 1,

the most frequently observed level of intellectual disability

was moderate to severe (22% moderate and 78% severe),

whereas individuals within group 2 presented with mild

to moderate intellectual disability (50% mild and 25%

moderate) (Figure 2A).

Early developmental milestones, including sitting

without support, walking, and first words, were delayed

in both patient groups, but again, individuals with spectrin

mutations were affected more severely (Figure 2B). In
can Journal of Human Genetics 106, 338–355, March 5, 2020 345



addition, within group 1 there was a greater incidence of

individuals’ being unable to attain these developmental

milestones. For instance, individual 3 (3 years old) was un-

able to sit unsupported, walk, or talk; individual 4 (4 years

old) was unable to walk or talk; and individual 6 (6 years

old) was unable to talk (Tables 1 and S1).

Height and weight were reduced in individuals with

both spectrin and GEFD1 mutations. The median height

for individuals within group 1 was �1.69 SD, while for in-

dividuals in group 2 it was �1.34 SD (Figure 2C). In addi-

tion, 33% of the group 1 individuals and 14% of group 2

individuals had a height SD that was greater than �2 SD,

which is often considered as indicating short stature. Inter-

estingly, weight SD was also reduced to a greater extent in

individuals with spectrin variants; there was a mean

weight SD of �2.36 in group 1 individuals and a mean

weight SD of �2 in group 2 individuals (Figure 2C).

Most strikingly, we noticed a remarkable difference in

the occipitofrontal head circumference between individ-

uals with spectrin mutations and those with GEFD1 vari-

ants (Figure 2D). Microcephaly, which is defined by a

head circumference two SD below the mean, was seen in

100% of group 2 patients, with a mean occipitofrontal

circumference (OFC) of �3.82 SD (median OFC of �3.8

SD). In contrast, individuals in group 1 presented with

macrocephaly. In the spectrin cohort, 78% had an OFC

greater than two SD from the mean; mean OFC was þ2.6

SD, median OFC was þ 2.7 SD, and the OFC range was be-

tween þ0.7 SD and þ4.7 SD (Figure 2D).

A neurobehavioral phenotype was observed in 19/24

(79%) individuals with a TRIO variant, irrespective of the

mutated domain. Recurrent behavioral features seen across

all individuals included stereotypies (27%), poor attention

(70%), obsessive compulsive traits (45%), autistic traits

(31%), and aggression (36%) (Figures 2E and 2F). Three in-

dividuals (3/18, 17%) were reported to have pain insensi-

tivity or a higher tolerance of pain. There was a diagnosis

of epilepsy or evidence of seizure activity in five individ-

uals (24%). Interestingly, seizures were only reported in in-

dividuals with mutations in the spectrin domain (3/9) or

with truncating mutations (2/5) (Figure S2). Additional

symptoms were seen across all mutational domains,

including gastrointestinal problems, infantile feeding diffi-

culties, and constipation (Figure S2). Skeletal features,

including scoliosis, short tapering fingers, and delayed

dental eruption, were also noted in a number of affected

individuals. Interestingly, delayed dental eruption was

only seen in the individuals with GEFD1 or truncating mu-

tations, and one individual in the spectrin group was re-

ported to have opposing early primary dental eruption.

Structural cardiac and brain abnormalities were not

observed at a high frequency (Figure S2).

To determine whether individuals had a recognizable

facial phenotype, we used quantitative facial phenotyping

to analyze photos of the face by using the so-called hybrid

model as reported previously26 (Figures 2G and 2H). 13 in-

dividuals had photos, age, ethnicity, and gender available
346 The American Journal of Human Genetics 106, 338–355, March
and qualified for analysis. Four of these individuals had

mutations in the spectrin domain, and nine hadmutations

in the GEFD1. No significant difference in CIF was seen be-

tween controls and all individuals with TRIO mutations,

between controls and individuals with mutations in

GEFD1, or between individuals with GEFD1 mutations

and those with spectrin mutations. However, persons

with mutations in the spectrin domain did cluster signifi-

cantly when compared to the matched controls (Figures

2G and 2H). This indicates that these individuals have a

distinctive facial gestalt.

Taken together, these detailed phenotypic studies of in-

dividuals harboring a TRIO variant highlight two seem-

ingly distinct clinical syndromes. Individuals with spectrin

variants show a more severe developmental phenotype,

macrocephaly, and statistically significant clustering of

facial dysmorphism, whereas individuals with GEFD1 var-

iants have a less severe developmental phenotype and

microcephaly.

The Identified Mutations Target Crucial and Highly

Conserved Residues in TRIO

In order to gain insights into the mechanisms by which

the mutations identified in the two hotspots could affect

TRIO function, we set out to map the position of the mu-

tations on TRIO structure. For the cluster of variants in

the seventh spectrin repeat domain, we found that the

three residues Thr 1075, Arg 1078, and Asn 1080 are highly

conserved across evolution (Figure 3A). Of note, the argi-

nine residue at position 1078 is the most frequently

mutated: four unrelated individuals carry a tryptophan,

two carry a glutamine, and one carries a glycine residue

instead (Table 1). We modeled this seventh spectrin repeat

of TRIO on the crystal structures of human b2-spectrin and

found that it is composed of three a helices, the second of

which carries the cluster of residues 1075 to 1080

(Figure 3B). Axial views of these helices indicate how the

changed amino acids might perturb the global arrange-

ment of the helices (Figure 3C). In particular, being larger

than the original arginine residue and pointing toward

the inside of the domain structure, the mutated Trp 1078

causes an important steric hindrance.

For the GEFD1 cluster of variants, all the mutated amino

acids are conserved across evolution and lie within a heli-

ces that are also highly conserved among RhoGEFs. These

helices (helices a1, a5, and a6) are important for making

direct contact with the target GTPase and, hence, for acti-

vating the GTPase (Figures 3D and 3E).43 Given the poten-

tially crucial position of the mutated residues, we asked

whether these mutants would be impaired in the binding

of the GEFD1 to RAC1. We included the nonsense mutant

p.Gln1489Argfs*12 because it also targets a conserved res-

idue in the GEFD1 and thus leads to an incomplete and

potentially non-functional GEFD1. To address this ques-

tion, we performed pulldown assays in HEK293T cells

that were co-transfected with a TRIO cDNA carrying the

indicated mutations and a RAC1N17 construct, which is a
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Figure 3. Mapping of the Mutation Sites on the 3D Structure of the TRIO Spectrin 7 Repeat Domain and GEFD1
(A) Species conservation of the residues in TRIO’s seventh spectrin repeat, which is mutated in neurodevelopmental diseases. Identical
residues are labeled in red, and similar residues are in blue. The positions of the residues p.Thr1075, p.Arg1078, and p.Asn1080 are boxed
in black and indicated on top of the sequence, which encompasses amino acids 1053 to 1091, corresponding to the second a helix of the
spectrin repeat. Represented species are Homo sapiens (h), Mus musculus (m), Rattus norvegicus (r), Xenopus laevis (x), Danio rerio (z),
Drosophila melanogaster (d), and Caenorhabditis elegans (ce).
(B) Lateral view of the structural model of the seventh spectrin repeat of TRIO. The spectrin domain was modeled based on the crystal
structures of human beta2-spectrin (PDB ID 3EDV30) with our sequence alignment and SWISS-MODEL server.32 Parts of the structure

(legend continued on next page)
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dominant-negative form of RAC1 that mimics the GDP-

bound form of the GTPase and that binds the GEF with

higher affinity than WT RAC1 (Figure 3F). Bio-GFP TRIO

constructs were purified from the lysates with Streptavidin

beads, and the co-purifying RAC1N17 was revealed by

immunoblotting. As shown in Figure 3F, all the GEFD1

missense mutants and the nonsense p.Gln1489* mutant

were unable to bind RAC1N17, except that mutant

p.Pro1461Leu bound RAC1N17 to a similar extent as did

WT TRIO. These data confirm the crucial nature of the

GEFD1 residues found mutated in individuals with

microcephaly.
Spectrin and GEFD1 TRIO Variants Cause Opposite

Modulation of RAC1 Activity

We next analyzed whether the mutations identified in in-

dividuals affected known functions of TRIO and could thus

contribute to the phenotypes observed in these persons.

We tested the effects of the variants on TRIO-mediated

activation of the RAC1 signaling pathway. Once in the

GTP-bound form, RAC1 is able to bind to the PAK1 kinase

and thereby to induce a conformational change that al-

lows for PAK1 auto-phosphorylation. We thus monitored,

as a readout for TRIO-mediated RAC1 activation, the levels

of PAK1 phosphorylation in HEK293T cells expressing the

different TRIO mutants (Figure 4A). All the missense

variants in the GEFD1 and the p.Gln1489* nonsense

variant led to decreased levels of phosphorylated PAK1

(on Ser 144), except for mutations p.Pro1461Thr and

p.Pro1461Leu, which respectively had no effect on or

slightly increased phospho-PAK1 levels. In contrast, and

surprisingly, all the variants in the seventh spectrin repeat

led to a strong increase in PAK1 phosphorylation, most

likely reflecting increased RAC1 activation (Figures 4A

and 4B). The truncation mutants p.Leu2031* and

p.Phe2473* had only a mild and non-significant effect,

respectively, on RAC1 activation.

By regulating the remodeling of the actin cytoskeleton,

TRIO plays a major role in neurite outgrowth and in the

formation of lamellipodia, which are sheet-like actin-rich

structures at the leading edge of the cell.44 To determine

whether the GEFD1 and spectrin variants affected these
that were modeled with high and low confidence are in blue and c
affected individuals are indicated in red.
(C) Axial view of the cross section of the structure at the site of the m
(D) Sequence alignment of the RAC1-specific DH1 domain of TRIO (a
and similar residues are labeled in blue. The a helices are depicted sch
alterations p.Glu1299Lys, p.Arg1428Gln, p.Pro1461Leu, p.Pro1461T
mutation affects a highly conserved residue within helices a-1, a-5, a
sented species are Homo sapiens (h), Mus musculus (m), Rattus norvegic
and Caenorhabditis elegans (ce).
(E) Structure of the DH1 domain of TRIO (cyan) in complex with the
domain seen in affected individuals are indicated in red and can be
modeled with the crystal structures of DH1 (PDB: 1NTY) and the com
were generated with PyMol.33

(F) Most of the GEFD1 mutants are affected in their ability to bind to
assay of biotinylated TRIO variants. HEK293T cells were transfected
TRIO was pulled down with Streptavidin beads, and the co-precipita
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processes, we transfected N1E-115 neuroblastoma cells

with the different TRIO mutants and quantified neurite

outgrowth (Figures 4C and 4E) and lamellipodia formation

both along the shaft and at the tip of the neurite (Figures

4D and 4E). As shown in Figures 4C–4E, the spectrin vari-

ants all led to enhanced neurite outgrowth and lamellipo-

dia formation, reflecting almost perfectly the enhanced

RAC1 activation induced by these mutants (Figure 4B).

In contrast, the GEFD1 and the p.Gln1489* mutants

were impaired in forming neurites and lamellipodia,

although the p.Pro1461Thr and p.Pro1461Leu mutants

were notable exceptions. The truncation mutants

Leu2031* and Phe2473* had no effect on these processes.
Truncation in the GEFD1 of TRIO CausesMicrocephaly in

X. tropicalis

Because technical limitations currently prevent us from

introducingmissensemutations inX. tropicalis, we assessed

the effect of TRIO truncation variants in this in vivomodel.

The target regions show>97% identity across the surround-

ing 200 residues between X. tropicalis and humans.

X. tropicalis embryos treated with CRISPR Cas produce tar-

geted indels at such high frequency that the resulting phe-

notypes can be analyzed in founder embryos.45–48 In this

study, CRISPR Cas targeting the different TRIO domains

was injected into fertilized eggs, and its effectiveness at pro-

ducing indels at the target sitewas assessed (Figure S3A).The

resulting tadpoles were raised to swimming tadpole stages,

at which point gross morphology, brain structure, and

head diameter were compared and examined. Two single-

guide RNAs were tested for each target locus, and each

pair produced the same phenotype (A.G. andM.G., unpub-

lished data), strongly suggesting that their effects were

target specific. Truncation of GEFD1 (hs: Glu 1489, xt: Glu

1450) had a clear effect on craniofacial development in

that it induced microcephaly in the affected tadpoles,

whereas minimal changes were observed in tadpoles with

truncation of GEFD2 (hs: Leu 2031, xt: Leu 1994) (Figures

5A and S3C).Measurement showed that therewasnodiffer-

ence in the head diameters of control individuals versus

those with the Leu 1994 truncation. The head diameters

of individuals with theGln 1450 truncationwere, however,
yan, respectively. Mutations within the spectrin domain seen in

utations. Mutations are indicated in magenta.
nd KALIRIN) across evolution. Identical residues are labeled in red
ematically on top of the sequence alignment. The positions of the
hr, and p.His1469Arg are indicated in bold and boxed in red. Each
nd a-6, which make contact with the target GTPase RAC1. Repre-
us (r), Xenopus laevis (x), Danio rerio (z), Drosophila melanogaster (d),

small GTPase substrate RAC1 (green). Mutations within the DH1
seen to occur at the protein-substrate interface. The complex was
plex with substrate (PDB: 1KZ7). Figures of the protein structures

RAC1N17 (DN). Immunoblot analysis of a Streptavidin pulldown
with the indicated biotinylated GFP-TRIO variants and RAC1N17.
ting RAC1N17 was detected with a RAC1 antibody.
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Figure 4. The Spectrin Mutants of TRIO Enhance RAC1 Signaling, Neurite Outgrowth, and Lamellipodia Formation in N1E-115 Cells,
Whereas the GEFD1 Mutants Are Mostly Impaired in These Processes
(A) Immunoblot analysis of HEK293T cell lysates transfected with the indicated GFP-TRIO variants and detected with an anti-GFP anti-
body (lower panel). PAK1 phosphorylation amounts are detected with a phospho-Ser144 PAK1 antibody (upper panel) and compared to
total PAK1 amounts detected with a PAK1 antibody (middle panel).

(legend continued on next page)
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Figure 5. Truncation in the TRIO GEFD1
Reduces Head Size in X. tropicalis
(A) X. tropicalis eggs from a single female
for each of two biological replicates (with
parents from different genetic back-
grounds) were fertilized with frozen sperm
and injected at the one-cell stage with
CRISPR-Cas targeting the genome as
shown. Representative micrographs for
each condition are shown (black and
white photos) (all tadpoles are shown in
Figure S3). Performing the GEFD1 and
GEFD2 frameshift in a tubb2B.GFP
X. tropicalis showed that forebrain defor-
mities had occurred in 6/8 GEFD1 trunca-
tion tadpoles, which was not the case for
GEFD2 frameshift. Representative micro-
graphs for each condition are shown (color
photos) (all tadpoles are shown in
Figure S4).
(B) Comparing the head diameter of the
tadpoles carrying truncations in the
GEFD1 (hs: Gln 1489* ¼ xt Gln 1450)
and GEFD2 (hs: Leu 2031* ¼ xt Leu 1994)
domains showed that GEFD1 truncations
caused microcephaly, whereas GEFD2
truncations had no effect. Quantification
is shown for eight individuals measured
(all tadpoles are shown in Figure S3).
smaller than those of both the control group (ANOVA,

d.f ¼ 2, F ¼ 9.835, p ¼ 0.0027153) and individuals

with the Leu 1994 truncation (ANOVA, d.f ¼ 2, F ¼ 9.835,

p ¼ 0.0025286) (Figures 5B and S3B). This was despite the

fact that similar levels of indels were detected in the two

groups (Figure S3A). Gross structural abnormalities of the

brain were examined within the transgenic line NBT-GFP

[Xtr.Tg(tubb2b:GFP) Amaya], which labels differentiated

neurons. Embryos with an interruption in GEFD1 showed

clear deformation of the forebrain structures, whereas em-

bryos with truncation of GEFD2 (Leu 1994*) were unre-

markable (Figures 5A and S4).
Discussion

Here, we report on an important set of individuals

harboring pathogenic TRIO variants resulting from a vari-

ety of nonsense or missense mutations.

We describe various nonsense mutations that are spread

along the TRIO sequence. We do not know whether these
(B) Quantification of the ratio of phospho-PAK1 amounts over total P
activation of the RAC1 signaling cascade. Data are presented as the m
(C) Quantification of the neurite outgrowth induced byWTormutan
of cells harboring an extension of at least twice the length of the som
arbitrarily set to 1. Data are presented as the mean 5 SEM of at leas
(D) Quantification of lamellipodia formation induced byWTor muta
was arbitrarily set to 1. Data are presented as the mean 5 SEM of at
Statistical analysis in (B), (C), and (D) were made by one-way ANOVA
different from WT (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
(E) Micrographs of N1E-115 cells transfected with the indicated GFP-
the actin (red) and nuclei (blue), respectively. Representative images
mellipodia. Scale bar: 20 mm.
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nonsense mutations generate truncated products of

different size or haploinsufficiency after nonsense-medi-

ated decay of the aberrant transcripts. It is likely that all

these nonsense mutations will have different functional

consequences if they are expressed. For example, the

p.Gln1489Argfs*12 variant potentially generates a trun-

cated and, thus, a non-functional GEFD1. Interestingly,

the individuals harboring this mutation present with a

phenotype similar to that of the patients harboring

missense mutations in the GEFD1, suggesting that in this

case, the effect of the truncating variant is comparable to

the effect of the missense variants in the GEFD1. In

contrast, the two truncations p.Leu2031Phefs*9 and

p.Phe2473Serfs*54 supposedly produce large proteins

with a functional GEFD1, and we show that TRIO-induced

RAC1 activation is not affected by these variants. If these

truncated variants are expressed, their functional conse-

quences will probably be different from the missense mu-

tations in the GEFD1. Finally, we speculate that the

Gln768* variant is probably subject to nonsense-mediated

decay, thus generating haploinsufficiency. Characterizing
AK1 expression. PAK1 phosphorylation is used as a readout for the
ean 5 SEM of at least five independent experiments.

t TRIO. Neurite outgrowth is monitored on the basis of the number
a. Data are presented as n-fold change over WT TRIO, which was

t five independent experiments.
nt TRIO. Data are presented as n-fold change overWT TRIO, which
least five independent experiments.
followed by Dunnett’s test. Asterisks indicate datasets significantly
0.0001).
TRIO variants (green); rhodamine-phalloidin and Hoechst stained
for each variant type are presented. White arrowheads point to la-
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the contribution of these variants to the individuals’ phe-

notypes will require further research.

Concerning the missense mutations, we show here that

these segregate into two domain-specific hotspots that are

associated with differing and distinct clinical phenotypes.

We therefore propose that TRIO-associated pathologies

cover different neurological disorders depending on the

mutation location.

Missense mutations that cluster in the GEFD1 of TRIO

and affect the activation of RAC1 by TRIO have previously

been described.17–19 Here we describe a second mutational

cluster that targets three adjacent residues in the spectrin

repeat 7 of TRIO. Compared to the individuals harboring

mutations in GEFD1, individuals with missense mutations

within the spectrin cluster have more severe intellectual

disability, opposing macrocephaly, and statistically signifi-

cant clustering of facial dysmorphism. It is notable that

mutations within the same gene give rise to these strik-

ingly opposite effects on head size, ranging from a median

OFC of – 3.8 SD in the GEFD1-mutated individuals toþ 2.7

SD in the spectrin-mutated individuals. Interestingly, this

important difference in the magnitude of head size has

also been described for individuals harboring distinct mu-

tations in RAC1 (MIM: 602048), the main downstream

target of TRIO.49

To better understand how mutations in TRIO could

cause such different clinical spectra, we investigated the

consequences of these mutations on TRIO activity. The res-

idues mutated in the GEFD1, including the newly identi-

fied residues Glu 1299 and His 1469, lie in the a1, a5,

and a6 helices and are predicted to be in contact with

the Rho GTPases and to thereby catalyze the GDP-to-GTP

exchange.43 Indeed, all the mutants except Pro1461Leu

impair RAC1 binding and, consequently, TRIO-mediated

RAC1 activation, as measured by PAK1 phosphorylation.

In addition, these mutants are impaired in TRIO-mediated

neurite outgrowth and lamellipodia formation, which also

reflect RAC1 activation.50 One notable exception is the

Pro1461Leu variant, which does not lead to a reduction

in RAC1 activation. In contrast, this variant binds

RAC1 to a similar extent as WT TRIO and leads to a

modest increase in RAC1 activation, as measured by

TRIO-induced lamellipodia formation. Interestingly, the

two unrelated individuals (individuals 15 and 16) bearing

the Pro1461Leu variant are the only two persons who do

not present withmicrocephaly in the GEFD1 cohort. These

observations support a correlation between the level of

RAC1 activation by TRIO variants and head size. How

this variant contributes to the individuals’ phenotype

will need further investigation.

Interestingly, all the variants we identified in the TRIO

spectrin repeat (Thr1075Ile, Arg1078Trp/Gly/Gln, and

Asn1080Ile) have a strong TRIO-activating effect, inducing

hyperactivation of RAC1. This was measured both by PAK1

phosphorylation and by the formation of actin-rich lamel-

lipodia in N1E-115 cells. Because TRIO-mediated neurite

outgrowth is dependent on RAC1 activation, it is not sur-
The Ameri
prising that this process is consistently enhanced by these

variants. Contrary to the GEFD1, the spectrin repeats of

TRIO are not implicated in the direct activation of RAC1,

suggesting that this observed enhanced activity is due to

an indirect mechanism. Interestingly, the double TRIO

Arg1078Trp/GEFD1-defective mutant is unable to activate

RAC1, showing that the hyperactivation of RAC1 by TRIO

Arg1078Trp is strictly dependent on the activity of GEFD1

(M.B. and D.L., unpublished data). Based on these data, we

propose that mutations in the spectrin cluster perturb

mutual arrangement of a helices in the seventh spectrin

repeat and affect overall TRIO fold and/or signaling, lead-

ing to hyperactivation of RAC1 by TRIO. The spectrin

domains within TRIO are known to bind different TRIO

regulators, such as Kidins220, DISC1, and NAV1.34,51,52 It

has also been proposed that spectrin repeats inhibit

TRIO-mediated RAC1 activation by intramolecular bind-

ing to the GEFD1 and thus prevent TRIO-RAC1 binding

and that the binding of DISC1 releases this intramolecular

inhibition.52 Whether the mutations found in affected in-

dividuals perturb this intramolecular binding or the bind-

ing to different partners will be the subject of further

investigation.

This hypothesis is also supported by our molecular

modeling studies based on the crystal structure of the hu-

man b2 spectrin.We observed that the cluster of mutations

identified in affected individuals lies in the second a helix

of the spectrin repeat. The Arg 1078 residue faces another a

helix, whereas the Thr 1075 and Asn 1080 residues are

exposed on the external side of the helix. Interestingly, in-

dividuals harboring TRIO Arg 1078 variants display the

most severe phenotype. In addition, among the TRIO Arg

1078 variants, Arg1078Trp is the most frequent and gives

rise to the strongest phenotype. The tryptophan brings

an important steric constraint as a result of its large size,

suggesting that mutations of the Arg 1078 residue prob-

ably affect the structural organization of the three a helices

of spectrin repeat 7, leading to perturbed TRIO folding

and/or binding to its partners and ultimately altering

TRIO activity.

Combined, our data show that mutations in two

different hotspots negatively or positively affect RAC1 acti-

vation by TRIO and indicate that these mutations repre-

sent loss- or gain-of-function mutations that give rise to

distinct developmental defects. Our data show that the

different RAC1 activation levels dependent on the muta-

tion are well correlated to the head size of the affected in-

dividuals. In line with this, TRIO depletion in mice causes

neurodevelopmental deficits associated with a decrease in

brain size.13,14 This was also supported by our experiments

in Xenopus expressing different TRIO variants that resulted

in phenotypes concordant with those of affected humans.

This finding adds to the evidence that F0 X. tropicalis

embryos produced by gene editing can be used effectively

in the study of human gene variants. Indeed, mimicking a

GEFD1 variant in Xenopus produces microcephaly as

in humans, whereas making a variant with a truncated
can Journal of Human Genetics 106, 338–355, March 5, 2020 351



GEFD2 has little effect in either humans or frogs. Unfortu-

nately, technical limitations currently prevent us from

introducing missense mutations in X. tropicalis, and there-

fore, we could not directly test whether a missense muta-

tion overactivating RAC1 in group 1 would induce macro-

cephaly in the frog. Nonetheless, our data provide strong

evidence that missense TRIO mutations inducing RAC1

overactivation are associated with macrocephaly. Indeed,

in our study we describe seven independent individuals

who have the same targeted residue (Arg1078Trp/Gly/

Gln) and all present with macrocephaly. This important

number of independent individuals with a similar pheno-

type reduces the potential contribution of other variants to

the phenotype and strongly suggests that hyperactivation

of RAC1 by TRIO is associated with macrocephaly.

Perturbation of head size often results from dysregula-

tion of early developmental pathways, such as prolifera-

tion and/or apoptosis or neural migration of the cortex,

in neural progenitor cells (NPCs). Interestingly, RAC1 defi-

ciency in the forebrain of mice leads to a smaller forebrain

resembling the microcephaly phenotype.53 It has been

proposed that this microcephaly results from a reduction

of NPCs as a result of an accelerated cell-cycle exit, com-

bined with increased apoptosis of nascent neurons and dis-

rupted differentiation of post-mitotic neurons.54 Of note,

we have previously shown that TRIO is important for cyto-

kinesis,7 suggesting that perturbation of TRIO activity

could affect the cell cycle of NPCs.

Given the large body of evidence implicating TRIO in

different aspects of brain development, we speculate that

TRIO mutations might affect other neuronal processes,

including axon guidance and the formation of synapses.

This hypothesis is reinforced by previous data showing

that conditional deletion of RAC1 and RAC3 in mouse neu-

rons leads tomigration, differentiation, andconnectivity de-

fects.55–57 Perturbation of synapses by TRIO depletion or by

missense mutations has already been described in vitro and

in vivo.10,16,18 TRIO is an important component of the ne-

trin-1-dependent pathway, which is important for axon

guidance, and TRIO depletion in mice results in defects in

the corpus callosum’s axonal projections, which are netrin-

1 dependent.58 Interestingly, we describe here numerous

structural brain anomalies in two affected individuals, one

of whomhas partial corpus callosum agenesis with an inter-

hemispheric cyst and the other of whom has loss of white

matter volume, asymmetric enlargement of the ventricles,

and a thin corpus callosum. These data suggest that TRIO-

affected individuals might also exhibit defects in the axonal

guidance process during early development.

Our data also highlight the importance of strict control

of the level of RAC1 activation for proper neuronal devel-

opment. In conjunction with this, distinct RAC1 variants

have been shown to have a positive or negative effect on

RAC1 function and to cause diverse phenotypes.49 Distinct

phenotypes that correlate to activating or inactivating mu-

tations at different locations in the gene have also been

described in PAK1 and PAK3 (MIM: 618158).59–61 Together,
352 The American Journal of Human Genetics 106, 338–355, March
our data reinforce the hypothesis that the TRIO/RAC1/PAK

axis is a major pathway for neuronal development that is

perturbed in neurodevelopmental diseases. Interestingly,

PAK1 inhibition has been used to reverse behavior defects

in mice.59,62 These observations suggest an avenue for

therapeutic intervention for TRIO disorders associated

with a hyperactivation of RAC1 via a pharmacological

strategy targeting PAK1 activation.

In conclusion, we have identified two clusters of TRIO

mutations associated with distinct clinical and neurodeve-

lopmental phenotypes attributable to differing levels of

RAC1 activation. We suggest a genotype-phenotype corre-

lation based on the location of the mutation; this correla-

tion will serve as a useful adjunct for clinical evaluation

and the interpretation of variant pathogenicity. In addi-

tion, and by using the previously reported hybrid model

for quantitative facial phenotyping, we see that the spec-

trin-mutated group has a distinctive facial gestalt assess-

able through the algorithms.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.01.018.
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H.G., Kemmeren, P., Nellåker, C., Vissers, L.E.L.M., et al.

(2019). Next-generation phenotyping using computer vision
can Journal of Human Genetics 106, 338–355, March 5, 2020 353

https://www.crisprscan.org/
https://www.ddduk.org/access.html
https://decipher.sanger.ac.uk/
https://www.genomicsengland.co.uk/the-national-genomics-research-and-healthcare-knowledgebase/
https://www.genomicsengland.co.uk/the-national-genomics-research-and-healthcare-knowledgebase/
https://www.omim.org/
https://www.omim.org/
http://primer3.ut.ee
http://www.xenbase.org/entry
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref1
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref1
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref1
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref2
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref2
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref2
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref3
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref3
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref3
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref3
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref3
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref3
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref3
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref4
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref4
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref4
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref4
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref5
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref5
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref5
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref5
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref6
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref6
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref6
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref7
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref7
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref7
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref7
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref8
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref8
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref8
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref8
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref8
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref9
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref9
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref9
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref10
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref10
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref10
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref11
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref11
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref11
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref11
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref12
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref12
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref12
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref12
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref12
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref12
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref13
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref13
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref13
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref14
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref14
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref14
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref14
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref14
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref15
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref15
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref15
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref15
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref16
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref16
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref16
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref16
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref16
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref16
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref17
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref17
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref17
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref17
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref17
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref18
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref18
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref18
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref18
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref19
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref19
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref19
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref19
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref19
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref20
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref20
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref20
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref20
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref21
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref21
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref21
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref22
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref22
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref22
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref23
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref23
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref23
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref23
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref24
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref24
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref24
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref25
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref25
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref25
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref26
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref26
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref26
http://refhub.elsevier.com/S0002-9297(20)30018-5/sref26


algorithms in rare genomic neurodevelopmental disorders.

Genet. Med. 21, 1719–1725.

27. Diets, I.J., van der Donk, R., Baltrunaite, K., Waanders, E., Re-

ijnders, M.R.F., Dingemans, A.J.M., Pfundt, R., Vulto-van

Silfhout, A.T., Wiel, L., Gilissen, C., et al. (2019). De Novo

and Inherited Pathogenic Variants in KDM3B Cause Intellec-

tual Disability, Short Stature, and Facial Dysmorphism. Am.

J. Hum. Genet. 104, 758–766.

28. Amos, B., Ludwiczuk, B., and Satyanarayanan, M. (2016).

OpenFace: A general-purpose face recognition library with

mobile applications. (Carnegie Mellon School of Computer

Science), CMU–CD–16–188.

29. Ferry, Q., Steinberg, J., Webber, C., FitzPatrick, D.R., Ponting,

C.P., Zisserman, A., and Nellåker, C. (2014). Diagnostically
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Figure S1
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Figure S1: Impact of splice acceptor site variant in TRIO (c.4860-2A>G) on aberrant splicing. A.

c.4860-2A>G is located in splice acceptor motif site of Exon 33. B. Human Splice Site Finder (HSF 

Version 3.1) and MaxEntScan predicted splice acceptor site broken. C. Gel electrophoresis shows 

an extra band in c.4860-2A>G PCR. D. Sanger sequencing shows an extra 51 nucleotides between 

Exon 32 and Exon 33.



Figure S2
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Figure S2: Expanded phenotype characteristics across the cohort. Gastrointestinal features

including infantile feeding difficulties and constipation where frequently observed. Skeletal

manifestations included short tapering digits, scoliosis and delayed dental eruption were also

noted. Classified as: present, dark grey; absent, middle grey; missing, light grey and

uncertain, very light grey.



Un-injected
Control

100bp hs:Q1489
xt:1450

Un-injected
Control

100bp hs:2031
xt:1993

Head diameter (mm)

Control Q1450 L1994

1 1.712 1.018 1.533

2 1.619 1.189 1.674

3 1.553 1.302 1.753

4 1.581 1.258 1.743

5 1.864 0.79 1.793

6 1.551 1.479 1.357

7 1.6 0.283 1.683

8 1.68 1.688 1.657

Control – Wild-type Xenopus tropicalis

hs:Q1489, xt:Q1450 truncation

hs:L2031, xt:L1994 truncation

Figure S3
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Figure S3: Truncation in the GEFD1 domain reduces head size in X.tropicalis.

A. Amplification of the target region followed by T7 endonuclease assay and Sanger sequencing

confirmed that indels had been made at the target sites creating the truncations shown. B.

Measurement of the head diameter of the injected tadpoles, 8 individuals per condition. C.

Micrographs of all tadpoles used in the experiment.



Control – Wild-type Xenopus tropicalis

hs:Q1489, xt:Q1450 truncation

hs:L2031, xt:L1993 truncation

Figure S4

Figure S4: Truncation in the GEFD1 domain shows forebrain deformities in X.tropicalis.

GEFD1 and GEFD2 frameshifts were performed in a tubb2B.GFP transgenic X. tropicalis line, in order to

examine gross structural abnormalities of the brain. This transgenic line labels differentiated neurons,

and revealed forebrain deformities in the GEFD1 truncation.



trio single guide RNAs (Human, Xenopus tropicalis) Genotyping PCR primers

Q1489*, Q1450

taatacgactcactataGGTGAGAACATTGAATCTCAgttttagagctagaa FWD: acaaacaactttaaaacccagaaaca

taatacgactcactataGGAAGAGTCTTTTCAAGTGTgttttagagctagaa REV: ctgaaagcagctgagccagt

L2031*, L1993*

taatacgactcactataGGTGAACTGGAAAGGTGCCgttttagagctagaa FWD: atgctgcagaactgggattg

taatacgactcactataGGGTGAACTGGAAAGGTGCCgttttagagctagaa REV: cctactcagcagggtcacag

Table S2

Table S2: Oligonucleotides used to synthesise single guide RNAs and to amplify target

regions of TRIO. Single guide RNA sequences were chosen using CRISPRscan; the target

region itself is in uppercase and the oligonucleotides include a T7 RNA polymerase

promoter in lowercase at the 5’ end and part of the conserved region that binds Cas9 in

lowercase at the 3’ end. For the experiments shown here the upper sequence of each pair

was used for both the GEFD1 and the GEFD2 truncating mutants.



Table S3

Table S3: Statistical analysis of the developmental milestones of sitting, walking and

speech, and ages achieved in either patient Group 1 of Group 2 mutation cases.

Pearson's Chi-squared test was applied. Walking and OFC show a statistically

significant difference between Group 1 and Group 2 individuals.

Age in Months
Domain Min 1st Qu Median Mean 3rd Qu Max P value

First Words Group 1 36 48 53 52 57 66 0.561
Group 2 17 22.25 39 38.75 55.5 60

Walking Group 1 24 25.5 33 42 49.5 84 0.035
Group 2 12 17 17 20.2 22 33

Sitting Group 1 7 9.75 11 17.36 24 36 0.168
Group 2 8 9 9 9.33 9.75 11

OFC Group 1 53 54.3 56 55.98 57 59.5 <0.001
Group 2 42 45 48 46.93 48.25 52
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