
HAL Id: hal-02997890
https://hal.science/hal-02997890

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Temporal Twins in Time Logarithmic in
History Length

Binh-Minh Bui-Xuan, Hugo Hourcade, Cédric Miachon

To cite this version:
Binh-Minh Bui-Xuan, Hugo Hourcade, Cédric Miachon. Computing Temporal Twins in Time Loga-
rithmic in History Length. Complex Networks 2020, Dec 2020, Madrid, Spain. �hal-02997890�

https://hal.science/hal-02997890
https://hal.archives-ouvertes.fr

Computing Temporal Twins in Time
Logarithmic in History Length ?

Binh-Minh Bui-Xuan1, Hugo Hourcade1,2, and Cédric Miachon2

1 LIP6 (CNRS – Sorbonne Université), [buixuan,hugo.hourcade]@lip6.fr
2 Courtanet, [hugo.hourcade,cedric.miachon]@lesfurets.com

Abstract. A temporal graph G is a sequence of static graphs indexed by
a set of integers T representing time instants. For ∆ an integer, a pair of
∆-twins is a pair of vertices u 6= v which, starting at some time instant,
have exactly the same neighbourhood outside {u, v} for ∆ consecutive
instants. We address the enumeration problem of all pairs of ∆-twins in
G, such that the overall runtime depends the least on the history length,
namely max{t : Gt ∈ G not empty } −min{t : Gt ∈ G not empty }. We
give logarithmic solutions, using red-black tree data structure. Numerical
analysis of our implementation on graphs collected from real world data
scales up to 108 history length3.

Keywords: graph theory, historical data, modular decomposition

1 Introduction

Graph data from historical databases are well captured in the formalism of a link
stream [13], a time varying [3], temporal [7] or evolving graph [2]. These notions
occur in as various use cases as transportation timetables [5,8,11], navigation
programs [4,14], email exchanges [12], proximity interactions [16], and many
other types of dataset [17]. Therein, duplicated data rather correspond to twin
vertices, in the sense of [15]: a pair of true twins are vertices u 6= v sharing
the same neighbourhood; else, they are still false twins if their neighbourhoods
outside {u, v} are the same. In a static graph, removing redundant twin vertices
helps in reducing both space and time complexity of graph problems via modular
decomposition, see e.g. [6,9,15] for a broad survey.

The notion of twin vertices in a temporal graph is ambivalent on the time
dimension: shall twins be eternally or just temporary so, then for how long? We
formally define two versions of such a notion in the subsequent section. Infor-
mally, in the EternalTwins version, we address the problem of enumerating all
pairs of vertices which are twins ubiquitously in a historical dataset of graphs; we
refer to ∆-Twins, with ∆ an integer, as the problem of enumerating all pairs of
vertices which are twins in at least ∆ consecutive time instants, at some moment
in the dataset.
? Supported by Courtanet – Sorbonne Université convention C19.0665 and ANRT

grant 2019.0485.
3 Source code at https://github.com/DaemonFire/deltatwinsMEI.

https://github.com/DaemonFire/deltatwinsMEI

2 B.-M. Bui-Xuan, H. Hourcade, and C. Miachon

Data duplicates are well modeled by EternalTwins. Two vertices in this
case would have exactly the same behaviour at any time in the link stream.
∆-Twins on the other hand could represent a temporary likeliness between two
agents who are not duplicates per se. Indeed, outside the corresponding ∆ time
window, they are prone to have different behaviours. ∆-Twins could therefore
help in detecting behavioural patterns on a specific time period which would
characterize populations of a same group.

Previous works. In a static graph, standard approaches for finding twin ver-
tices include modular decomposition [15], partition refinement [10], and the
following bucket sort for finding true twins. The idea is to stream the neigh-
bourhood N(v) of every vertex v into the corresponding entry T[N(v)] of an
array T in linear time in the vertex number n using the following function:

v 7→ T[N(v)]==null? T[N(v)]=v: print(v,T[N(v)]),
where N(v) is encoded as an n-bit array of 1 and 0 representing the line of the
adjacency matrix corresponding to vertex v. This does not enumerate (print)
all possible pairs of true twins as (a, b) and (a, c) can thus be found but then
not (b, c). Besides, buckets come with a costly space complexity as the machine
representation of N(v) can be a very big integer, forcing table T to have a lot
of entries. However, this latter inconvenience can be circumvented by replac-
ing T[N(v)] by T[hash(N(v))], accepting some very low probability of false
positives. Consider now a temporal graph as a sequence G = (Gt)t∈T of static
graphs. Likewise, the true twins case of EternalTwins can be solved by re-
placing T[hash(N(v))] with T[hash(N1(v)×N2(v)× . . .)], where Nt(v) is the
neighbourhood of vertex v in graph Gt. The main crux here is that the pair
of vertices must be twins at any time instant. Hence, we “only” need to check
the property everywhere, e.g. in the Cartesian product of all neighbourhoods.
If we consider that applying the hash function to an array already present in
RAM memory (reading Nt(v)’s from adjacency matrices) is in constant time,
then the previous bucket streaming is very fast. The problem is much less simple
with ∆-Twins, where we do not know when the ∆ time window starts. Note
that problems with a sliding ∆ time window have recently been widely studied,
e.g. with vertex cover [1] and cliques [18], and the extensive references therein.
However, up to our knowledge, twin vertices have not been considered before.

Basically, for the specific case of true twins of EternalTwins, the above
described bucket sort could be considered a solution linear in O(n + τ), where
n is the number of vertices and τ is the history length τ = max{t : Gt ∈
G not empty} − min{t : Gt ∈ G not empty}. More generally, EternalTwins
can be solved by calling modular decomposition algorithms [9,15] on every graph
Gt for t ∈ T , for a global time complexity in O((n+m)× τ), where m = m1 +
m2 + . . . is the total number of all recorded edges in (Gt)t∈T . As for ∆-Twins,
partition refinement techniques such as in [10] can be deployed consecutively ∆
times at every instant graph Gt for a global polynomial time complexity with
a factor in τ × ∆. In settings where the history length τ is important, a new
algorithm with time logarithmic in τ is desirable. Note that we can have τ >> m
if there are many instants t where Gt is an empty graph. If we only consider

Computing Temporal Twins 3

T as the set of time instants with at least one recorded edge, then computing
∆-twins which are defined on ∆ consecutive instants, would require additional
arithmetic operations to take into account those deleted instants.

Our paper addresses the following question: Would there be instantaneous
response to ∆-Twins on historical graph data collected from human activities?
Can it be numerically confirmed by implementation of those algorithms? In par-
ticular, the foci in this paper are: long history (big τ), few vertices (small n)
and good number of recorded edges (medium m). We revisit red-black tree data
structure and devise a computation with runtime logarithmic in the history
length of the input, and confront its implementation to one generated dataset
and three datasets collected from real world data.

Theoretical contribution. We revisit matrix-based implementation of partition
refinement and use red-black tree data structure in order to devise two variants
of an algorithm for ∆-Twins. The two variants differ in the use of a large matrix
in memory, the matrix-less version being the key to avoid out of RAM problems.
Furthermore, the use of red-black trees allows our algorithm to compute even in
the case where input graphs Gt for t ∈ T are given unordered, mixing parts of
one graph to another. This feature is fault tolerant for batched data which come
asynchronously. All in all, the computation time is O(m × n log τ + N) with a
O(n2 × τ) size adjacency matrix in memory and O(m2 × n log τ + N) without
it, where N represents the size of the output.

Numerical experiments. We confront our implementations to generated data
in order to confirm that the implementation is sound and its runtime is loga-
rithmic in history length τ . We then confront it to real world datasets, with two
collections from previous experiments [12,16] and a new one called LesFurets.
The runtime of our algorithm averages at 12 seconds for all but one dataset,
where it averages at 70 seconds.

The formal framework of ∆-Twins is defined in next Section 2. In Section 3,
we use red-black tree data structure in order to achieve logarithmic runtime in
the history length of the input data. All numerical analysis of our implementation
are presented in Section 4, before we close the paper with concluding remarks.

2 Twin vertices in a historical recording of graphs

Graphs in this paper are simple, undirected, and unweighted. A temporal graph is
a sequence of graphs indexed by integers representing time instants. For practical
use, it can also be formalized as a link stream L = (T, V,E) such that T ⊆ N
is an interval, V is a finite set, and E ⊆ T ×

(
V
2

)
. The elements of V are

called vertices and the elements of E are called (recorded) edges. For t ∈ T ,
the subgraph Gt of L induced by t is a graph over the same vertex set V , with
edge set Et = {{u, v} : (t, {u, v}) ∈ E}. In this paper, we indifferently refer to
temporal graphs as link streams. The adjacency matrix sequence (Mt)t∈T is the
sequence of adjacency matrices of graphs (Gt)t∈T .

4 B.-M. Bui-Xuan, H. Hourcade, and C. Miachon

0

1

2

3

0

•
•
•
•

1

•
•
•
•

2

•
•
•
•

3

•
•
•
•

4

•
•
•
•

5

•
•
•
•

Fig. 1. In this link stream, vertices 1
and 2 (represented by rows with the cor-
responding identifiers) have exactly the
same links to other vertices at every in-
stants from 0 to 5 = τ − 1. They form a
pair of eternal-twins.

0

1

2

3

0

•
•
•
•

1

•
•
•
•

2

•
•
•
•

3

•
•
•
•

4

•
•
•
•

5

•
•
•
•

Fig. 2. In this link stream, vertices 1
and 2 (represented by rows with the cor-
responding identifiers) have exactly the
same links to other vertices for instants
1, 2 and 3. They form a pair of ∆-twins
for any ∆ ≤ 3.

Temporal twin vertices have two variants. A pair of eternal twins {u, v} ∈
(
V
2

)
is a pair of vertices for which the neighbourhoods Nt(u) and Nt(v) are strictly
equal in V \ {u, v} for every instant t ∈ T . For an integer ∆, a pair of ∆-twins
{u, v} ∈

(
V
2

)
is a pair of vertices for which the neighbourhoods Nt(u) and Nt(v)

are strictly equal in V \ {u, v} for ∆ consecutive instants t0 ≤ t < t0 + ∆ with
Jt0, t0 + ∆J⊆ T . Our paper addresses the following problems, which both have
polynomial time solutions.

EternalTwins
Input : A link stream L.
Output : A list of all pairs of eternal twins in L.

∆-Twins
Input : A link stream L and an integer ∆.
Output : A list of all pairs of ∆-twins in L.

The matrix based technique for partition refinement is defined as follows.
Assume initially that all pair of vertices are eternal twins: Tw(u, v) = true for
all u 6= v. For every pair of vertices u 6= v, time instant t ∈ T , and vertex
w ∈ V \ {u, v}, if Mt(w, u) 6= Mt(w, v), then Tw(u, v) = false. Such a vertex w
is called a splitter of {u, v}. At the end of the process, output every entry u 6= v
of table Tw where Tw(u, v) = true. This results in a naive O(n3× τ) solution for
EternalTwins. A similar process repeated ∆ times using ∆ different tables Tw
allows to solve ∆-Twins in time O(n3 × τ ×∆).

3 Temporal twins in time logarithmic in history length

In many cases, an input link stream L = (T, V,E) is not given by its adjacency
matrix sequence (Mt)t∈T , but rather by a list of its recorded edges E. Then,
computing EternalTwins in time independent from history length τ can be
done by using the triangular structure of splitters, as in Algorithm 1.

The overall complexity is O(m×n+n2) if (Mt)t∈T is also given as input, for a
constant time (t, {u,w}) /∈ E testing. This is the matrix version or Matrix Edge

Computing Temporal Twins 5

Data: Linkstream L : (T, V,E)
Result: List of all eternal-twins of L
for vertex u do

for vertex v 6= u do
Initialize Tw(u, v) = true;

end

end
for recorded edge (t, {u, v}) ∈ E do

for vertex w ∈ V \ {u, v} do
if (t, {u,w}) /∈ E then

Tw(v, w) = false; // u is a splitter of {v, w}
end

end

end
return every entry u 6= v of table Tw where Tw(u, v) = true.

Algorithm 1: Edge Iteration algorithm for eternal-twins listing

Iteration algorithm (MEI). When (Mt)t∈T is part of the input, O(n2 × τ) space
complexity at runtime is required, which usually causes out of RAM problems
for big τ . It is in O(m2×n+n2) otherwise, since scanning (t, {u,w}) /∈ E could
take O(m) especially if E is given unordered by t ∈ T . This is the matrix-less
version or Matrix-less Edge Iteration algorithm (MLEI). We note that in practice
the latter O(m) factor is small, especially when E is chronologically ordered, by
dichotomy search. We have proved the following property.

Property 1. EternalTwins can be solved in time independent from history
length.

In order to address ∆-Twins, we will use a tree-based data structure inspired
from red-black trees. Each node represents a time range P ⊆ T and contains a
time range D ⊆ P of consecutive instants having been removed from T . The 2
sons of this node represents time ranges Q ⊆ P and R ⊆ P with Q the time
range preceding D and R the time range following D. Removing an instant t
from T will result in trying to remove it from the node at the root of this tree
which represents T . If this node contains no time range of time deleted, the
range of time deleted becomes [t, t] and we create both sons of this node, which
represent {a ∈ T, a < t} and {a ∈ T, a > t}. If the node contains a time range
of deleted instants D = {a ∈ T, t0 ≤ a ≤ t1}, if t = t0 − 1 or t = t1 + 1 we add t
to D. If not, we try to remove t in the adequate son of this node.

After an update of a node, we check if time ranges erased contained in
nodes are colliding. If D(left son) = [t0, t1] and D(father) = [t1 + 1, t2],
we fuse the son in the father, D(father) ← [t0, t2] and left son(father) ←
left son(left son(father)) This data structure allows us to store a discontinued
time range. We can then extract from it all time spans of at least ∆ consecutive
instants by exploring the tree and looking up time ranges represented by leaves
of this tree.

6 B.-M. Bui-Xuan, H. Hourcade, and C. Miachon

0 6 9 16

0 3 3 510 12 13 16

Fig. 3. Representation of [0, 16] where
3, 6, 7, 8, 9, 12, 14 are removed. The two
leaves respectively represent time ranges
preceding and following [6, 9]. All remain-
ing intervals can be enumerated from the
intervals in blue contained in the leaves.

0 3 3 16

0 24 12 13 16

4 6 911 14 16

Fig. 4. This tree represents the same time
partitioning as the one in Fig. 3 but is
one level deeper and therefore requires
more operations and a greater computa-
tion time to delete a new instant.

Complexity of the deletion of an instant and computation of the time ranges
of ∆ consecutive instants in such a structure is at worst case in O(d) with d
the depth of the tree, this depth being lesser or equal to the number of non-
colliding time range deleted. Some optimizations can be accomplished using this
data structure. For instance, using it to solve ∆-twins listing problem, when an
instant t is removed, if either tf − t < ∆ with tf the last instant in the node in
which t is being removed or t−ti < ∆ with ti the first instant in the node, we can
consider that the interval [t, tf] (respectively [ti, t]) is removed, thus diminishing
computation time by avoiding useless computations.

This type of trees can be balanced in order to minimize computation time
of deletion. But this balancing comes at a price. It requires computation of the
depth of each sub-tree and to recursively balance each node. If we proceed to this
balancing operation at each deletion of an instant, we only need to balance the
node on which we deleted the instant and all the parent nodes, root included.
We therefore proceed to O(d) operations, where d is the depth of the tree. The
balancing operation in itself is in constant time, providing the depth of a sub-tree
is saved in its root node and updated accordingly.

Balancing operation of a node: if depth(left son) − depth(right son) > 2,
then we can rotate left:

tf (father)← ti(right son)− 1;
ti(right son)← ti(father);
(right son(father))← left son(right son);
left son(right son)← father;
father ← right son;

A rotation of a node loses no information, which means that sub-trees rooted
on each of the sons of one node will have a depth at most one level distant. We
can therefore ensure a depth in log(p) where p is the number of non-colliding
time ranges deleted from the tree. That means that the depth of those trees
would be inferior at all time to log(τ) where τ is the history length of the input
link stream. Therefore, deletion and balancing operations’ complexity would be
at worst case in O(log(τ)) .

∆-twins listing algorithm based on edges iteration (MEI and MLEI). We now
adapt the algorithm solving the eternal-twins problem to our ∆-twins listing
problem, as in Algorithm 2.

Computing Temporal Twins 7

Data: A linkstream L : (T, V,E) and an integer δ
Result: A list of all ∆-twins of L
We initialize for each pair of vertices Tw(u, v) = Tree(T);
Initialize a list R of all entries in Tw;
for recorded edge (t, {u, v}) of E do

for vertex w do
if (t, {u,w}) /∈ E then

Remove instant t in Tw(v, w);
if a removal exhausts the time instants in Tw(v, w) then

remove entry (v, w) from R;
end

end

end

end
for (u, v) left in R do

scan all time ranges of at least ∆ consecutive instants in Tw(u, v) and add
all ranges to output

end
return output

Algorithm 2: Edge Iteration Algorithm for ∆-twins listing

The overall complexity of this Matrix Edge Iteration algorithm (MEI) is
O(m × n log τ + N) with n the number of vertices, m the number of recorded
edges, τ the history length and N the number of pairs of ∆-twins if (Mt)t∈T

was given. The space complexity is O(n2 × τ), due to the use of (Mt)t∈T . If
(Mt)t∈T is not given, scanning E to ascertain that (t, {u,w}) /∈ E adds to
the complexity. If E is chronologically ordered, the scanning can be fast, by
dichotomy search. However, for a worst case complexity this step requires O(m)
time. Complexity for this version of the algorithm is therefore O(m2 × n log τ +
N). This is the Matrix-less Edge Iteration algorithm (MLEI). The overall space
complexity of algorithm MLEI is O(n2 log τ), due to the use of Tw. This space
complexity remains reasonable as our focus is for graphs with small n. Due to
space restriction, we omit the proof of the following theorem.

Theorem 1. On input a link stream with n vertices, m recorded edges, τ history
length, and N pairs of ∆-twins, ∆-twins can be solved in time O(m×n log τ+N)
with O(n2×τ) space complexity, or in time O(m2×n log τ+N) with O(n2 log τ)
space complexity.

4 Numerical Analysis

All the algorithms listed in the previous sections have been implemented in
Java4 and run on a standard laptop clocking at 2.7 Ghz. Since the use of
EternalTwins is practically somewhat limited, plus the fact the algorithms is
independent from history length, we only present numerical results for ∆-Twins.

4 Source code at https://github.com/DaemonFire/deltatwinsMEI.

https://github.com/DaemonFire/deltatwinsMEI

8 B.-M. Bui-Xuan, H. Hourcade, and C. Miachon

Fig. 5. Computation time of MLEI algorithms solving the ∆-Twins listing problem in
function of history length on the Timeprogression datasets. We do not have consistent
results for MEI due to out of RAM.

Basically, for the correctness of the various implementations, our method-
ology is unit-testing. The control groups are obtained from running an imple-
mentation of the naive computations in O(n3 × τ ×∆) described in Section 2.
Due to the high time complexity of the naive computations, we do unit-testing
uniquely for instances where the naive computations do not exceed 45 minutes.
This covers ≈ 33% instances of all our experiments in both below Section 4.1
and Section 4.2. Results are positive on all these samples. In what follow we
will totally skip the discussion about correctness, and only focus on computa-
tion time. We first stress-test the implementation on big values of history length
with a generated dataset, in Section 4.1. Then, we confront our implementation
to three different datasets collected from real world data, in Section 4.2. Our
overall experiments run for more than 3000 (three thousand) hours CPU time.

4.1 Logarithmic dependency in history length on runtime

Theoretically, our algorithms compute twin vertices in time logarithmic in the
history length of the input temporal graph. We would like to confirm this on
runtime of their implementation.

Hypothesis 1. The runtime computation is logarithmic in the history length
of the input temporal graph.

Dataset and experiment result. Our methodology is to generate an artificial
dataset called Timeprogression in order to monitor history length’s influence
on computation time while maintaining constant numbers of vertices and edges.
Number of vertices was set to 50 and number of edges to 105, ascertaining
that both dimensions are small enough so that history length’s influence on
algorithm’s computation time would not be prone to be negligible. There are
199 instances, with history length varying from 5000 to 106 time instants. This
dataset is not ordered by time instants. Results are presented in Figure 5.

Computing Temporal Twins 9

Fig. 6. Overview of computation time of all experiments.

Discussion: confirmation of Hypothesis 1. Progression of computing time is
logarithmic, with few jumps (2 cases) probably due to some noisy use of the PC
during computation.

4.2 Runtime on real world datasets

We confront our implementations on real world datasets, and would like to ex-
periment both hypothesis below.

Hypothesis 2. ∆-twins can be enumerated in reasonable time.

Hypothesis 3. Algorithm MLEI is able to compute link streams that cause
exhaustion of memory for the MEI version.

Datasets and experiment result. Our methodology is to confront the imple-
mentations on three different datasets collected from real world data. We focus
on ∆-Twins with ∆ = 102. In the sequel, we describe our sampling method
over the three datasets. Then, a global view of all computation time is captured
in Figure 6. We develop with detailed views on each of the three datasets, in
Figures 7, 8, and 9, respectively. We leave all discussions for the corresponding
paragraph at the end of this section.

Rollernet dataset [16] has been collected from rollerbladers touring Paris.
Links will be recorded at instant t whenever two rollerbladers are close enough
during a given period. This is a dense linkstream. This dataset is more likely
to present a relatively greater number of ∆-twins than the two other datasets.
We run our experiments on the following seven batches of extracts, each batches
containing 100 extracts. Two first batches contain link streams induced by n1 =
40, resp. n2 = 50, vertices of the raw Rollernet dataset. Three batches contain
link streams induced by m1 = 105, m2 = 2 ·105, and m3 = 3 ·105, recorded edges
of the raw dataset. Two last batches contain link streams induced by τ1 = 5000,
resp. τ2 = 8000, successive time instants of the raw dataset.

Enron dataset [12] is parsed from the log of e-mail exchanges between em-
ployees of a same company over a period of 3 years. ∆-twins would emerge from
this link stream as people from the same service are sent the same e-mails for
a certain period of time. This link stream is very sparse. We do the following

10 B.-M. Bui-Xuan, H. Hourcade, and C. Miachon

Fig. 7. Computation time of MLEI and MEI algorithms solving the ∆-twins listing
problem in function of the number of edges in the link stream on the Rollernet datasets.

Fig. 8. Computation time of MLEI algorithms solving the ∆-twins listing problem in
function of the number of edges in the link stream on the Enron datasets.

seven batches of 100 extracts each, similarly as for Rollernet, with n1 = 50,
n2 = 100, m1 = 5000, m2 = 10000, m3 = 20000, τ1 = 107, and τ2 = 5 · 107.

LesFurets dataset is parsed from the log of user behaviour on the lesfurets’s
funnel, some vertices representing the various users and the others representing
events on the funnel. This link stream is therefore a bipartite link stream. This
dataset is not ordered by time instants. The latter feature also provides a way
to test the robustness of our approach, in the sense of fault tolerance. We do
the following seven batches of 100 extracts each, similarly as the other datasets,
with n1 = 300, n2 = 600, m1 = 3000, m2 = 6000, m3 = 8000, τ1 = 10000, and
τ2 = 13000.

Discussion: slight confirmation of Hypothesis 2; confirmation of Hypothesis 3.
Our experiments on the Rollernet datasets are where naive algorithm computes
in reasonable computation time, allowing us to ascertain that MEI and MLEI
algorithms compute ∆-twins correctly, cf. Figure 7. It is also the only dataset we
treated on which MEI doesn’t encounter out of RAM issues, where we observe
that MEI tends to be a bit more quicker to compute than MLEI. According to
the heat-map, |T | seems to have a minor impact on computation time as many
datasets with large |T | compute faster than datasets with small |T |. The overall
tendency towards greater computation time being due to the increase of the
number of vertices and of edges more than history length.

As soon as we reach Enron and LesFurets datasets, |V | gets too big and
naive algorithm computation time grows unreasonably. |T | also grows to a large
number and MEI, as expected, starts to face memory issues. Hypothesis 2 seems

Computing Temporal Twins 11

Fig. 9. Computation time of MLEI algorithms solving the ∆-twins listing problem in
function of the number of edges in the link stream on the Lesfurets datasets.

to be strained on Enron dataset. But we can still use those datasets to experiment
on MLEI algorithm. For Enron, the left hand side of Figure 8 allows us to
confirm our theoretical complexity regarding |E| as our experimental curve of
computation time in function of number of edges seems to describe a second
degree polynomial function. The heat-map once again allows us to picture that
history lenght’s influence on complexity seems not to be so clear, indicating that
number of edges has a greater impact on computation time than history length
of the link stream. On the other hand, the right hand side of Figure 8, where the
heat-map correspond to number of vertices shows us what can be expected of a
heat-map about an important complexity factor as darker points correspond to
greater computation time than lighter ones. We proceed similarly for the results
on LesFurets datasets, cf. Figure 9. They confirm the same tendencies as with
Enron.

We conclude from our experiments that Hypothesis 2 is strained on Enron
dataset, whereas Hypothesis 3 is confirmed. All in all, twin vertices can be com-
puted within some minutes, even on Enron dataset.

5 Conclusion and perspectives

We introduced two variants of twin vertices in a historical collection of graphs.
The corresponding algorithmic problems of enumerating all such twin vertices
are polynomial. We address the problem of solving them in time depending the
least in the history length. Revisiting partition refinement techniques along with
red-black tree data structures, we devise a logarithmic solution. Our solution is
subject to two sub-variants: with or without the use of adjacency matrices in
runtime memory. Confronting to datasets collected from real world data, our
solutions scales up to 108 history length. An interesting development of this
work could be the replacement of all matrix data by hash-maps or sorted arrays.
Then, extensive numerical analysis should be made in order to compare these
three approaches (matrix, hash-maps and sorted arrays).

Acknowledgements: We are grateful to Emmanuel Chailloux for helpful dis-
cussion and pointers. We are grateful to the anonymous reviewers for their helpful
comments which greatly improved the paper.

12 B.-M. Bui-Xuan, H. Hourcade, and C. Miachon

References

1. Akrida, E., Mertzios, G., Spirakis, P., Zamaraev, V.: Temporal vertex cover with
a sliding time window. Journal of Computer and System Sciences 107, 108–123
(2020)

2. Bui-Xuan, B.M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. International Journal of Foundations of Computer
Science 14(2), 267–285 (2003)

3. Casteigts, A., Flocchini, P., Godard, E., Santoro, N., Yamashita, M.: Expressivity
of time-varying graphs. In: 19th International Symposium on Fundamentals of
Computation Theory. pp. 95–106 (2013)

4. Dean, B.: Continuous-Time Dynamic Shortest Path Algorithms. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1999)

5. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Connection scan algorithm. ACM
Journal of Experimental Algorithmics 23 (2018)

6. Ehrenfeucht, A., Harju, T., Rozenberg, G.: The Theory of 2-Structures: A Frame-
work for Decomposition and Transformation of Graphs. World Scientific (1999)

7. Erlebach, T., Hoffmann, M., Kammer, F.: On Temporal Graph Exploration.
In: 42nd International Colloquium on Automata, Languages, and Programming.
LNCS, vol. 9134, pp. 444–455 (2015)

8. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent short-
est paths. Algorithmica 68(4), 1075–1097 (2014)

9. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Computer Science Review 4(1), 41–59 (2010)

10. Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: an interesting
algorithmic tool kit. International Journal of Foundations of Computer Science
10(2), 147–170 (1999)

11. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for tem-
poral networks. Journal of Computer and System Sciences 64(4), 820–842 (2002)

12. Klimt, B., Yang, Y.: Introducing the Enron Corpus. In: CEAS (2004)
13. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the mod-

eling of interactions over time. Social Network Analysis and Mining 8(61) (2018)
14. Ros, F., Ruiz, P., Stojmenovic, I.: Acknowledgment-based broadcast protocol for

reliable and efficient data dissemination in vehicular ad-hoc networks. IEEE Trans-
actions on Mobile Computing 11(1), 33–46 (2012)

15. Spinrad, J.: Efficient Graph Representations. Field Institute Monographs, vol. 19.
American Mathematical Society (2003)

16. Tournoux, P.U., Leguay, J., Benbadis, F., Conan, V., De Amorim, M.D., Whitbeck,
J.: The Accordion Phenomenon: Analysis, Characterization, and Impact on DTN
routing. In: 28th IEEE Conference on Computer Communications (2009)

17. Tsalouchidou, I., Baeza-Yates, R., Bonchi, F., Liao, K., Sellis, T.: Temporal be-
tweenness centrality in dynamic graphs. International Journal of Data Science and
Analytics pp. 1–16 (2019)

18. Viard, T., Magnien, C., Latapy, M.: Enumerating maximal cliques in link streams
with durations. Information Processing Letters 133, 44–48 (2018)

	Computing Temporal Twins in Time Logarithmic in History Length

