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Abstract

We are interested here in multi-dimensional nonlinear scalar conservation laws forced by a multiplicative stochas-
tic noise with a general time and space dependent flux-function. We address simultaneously theoretical and nu-
merical issues in a general framework since we consider a large class of flux functions than the ones considered in
the literature. More precisely we establish existence and uniqueness of a stochastic entropy solution together with
the convergence of a finite volume scheme. The most significant novelty of this work is the use of a numerical
approximation (instead of a viscous one) to get both the existence and the uniqueness of such a solution. Moreover
the quantitative bounds obtained here to establish our uniqueness result constitute an important preliminary work
to the establishment of strong error estimates. We also provide a L∞ stability result on the stochastic entropy
solution to complete this study.
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monotone scheme • Young measures.

Mathematics Subject Classification (2000) : 35L60 • 60H15 • 35L60

1 Introduction
In this paper we study multi-dimensional nonlinear scalar conservation laws forced by a multiplicative noise with
a time and space dependent flux-function and a given initial data in L2(Rd). More precisely, we are interested in
the following Cauchy problem in d space dimensions:{

du+ divx
[
f(x, t, u)

]
dt = g(u)dW in Ω× Rd × (0, T )

u(ω, x, 0) = u0(x), ω ∈ Ω, x ∈ Rd, (1)

where divx is the divergence operator with respect to the space variable (which belongs to Rd), d is a positive
integer, T > 0 and W = {Wt,Ft; 0 ≤ t ≤ T} is a standard adapted one-dimensional continuous Brownian motion
defined on the classical Wiener space (Ω,F , P ). This equation has to be understood in the following way:
for almost any ω in Ω and for all ϕ in D

(
Rd × [0, T )

)
∫
Rd
u0(x)ϕ(x, 0)dx+

∫
Q

[
u(ω, x, t)∂tϕ(x, t) + f(x, t, u(ω, x, t)).∇xϕ(x, t)

]
dxdt

=

∫
Q

(∫ t

0

g(u(ω, x, s))dW (s)
)
∂tϕ(x, t)dxdt. (2)

In order to relieve the presentation of the paper, we omit in the sequel the variables ω, x, t and write u instead of
u(ω, x, t) and we denote by x the space variable of f , t the time variable and v the third one.

The theoretical study of stochastic scalar conservation laws has been the subject of many works recently, let
us mention in chronological order the contributions of [EKMS00], [Ki03], [FN08], [DeV10], [CDK12], [BVW12],
[BVW14], [BM14], [KN16], [KS17]. A time-discretization of the equation has been studied by the use of an
operator-splitting method in [HR91] and generalized to the multidimensional-case in [B14], see also [KS17] for a
similar approach. Let us also mention the paper of [KR12] where a space-discretization of the equation is investigated
by considering monotone numerical fluxes. Full discretizations through a finite volume approach have been studied
in [BCG16-1], [BCG16-2], [BCG17], [DoV19], [DoV18], [FGH18] and [M18].

The present article extends the results of [BCG16-2] to a general flux function f(x, t, v). More importantly, it
provides a new proof of uniqueness which does not rely on the use of viscous approximations at all. Indeed, in
[BCG16-1], the authors used the existence and uniqueness result proposed in [BVW12] to show the convergence of
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their flux-splitting finite volume approximation through the unique stochastic entropy solution of the hyperbolic
problem. More precisely in [BVW12], the authors obtained their well-posedness result by studying a viscous
parabolic approximation of the hyperbolic problem in the case where the flux function f was independent of the
time and space variable. Then, in [BCG16-2], the authors generalized such an existence and uniqueness result
to a particular time and space dependent flux function taking the form ~v(x, t)f(u), still by considering a viscous
parabolic regularization. It allowed them to show a result of convergence for a general class of monotone finite
volume schemes through the unique stochastic entropy solution of the hyperbolic problem. In [BCG17], the authors
used the existence and uniqueness result of [KN16] obtained with a viscous approximation (and by the way of
a kinetic approach) to get the convergence of their finite volume scheme in a bounded domain under Dirichlet
boundary conditions. In this paper, both existence and uniqueness of a solution are established by using only the
numerical approximation. To do so, we propose a new way to adapt the Kruzkhov doubling variable technique
to the stochastic framework by comparing any generalized solution to a limit of the finite volume approximation.
It is important to note that the estimates obtained in such a comparaison technique are expected to constitute a
crucial step towards the establishment of error estimates (as in the deterministic case, see [EGH00] for instance).
Therefore this work provides an original proof of a theoretical result, but it also constitutes a first and important
part of the work to establish strong error estimates. Additionally we provide a L∞ stability result satisfied by the
stochastic entropy solution in the case where u0 is essentially bounded and g admits a compact support.

Remind that the main difficulties brought by the stochastic noise for the study of this kind of problems are the
following ones : the use of smooth entropies for the entropy formulation (mainly due to the Itô derivation formula),
the L2(Ω × Rd × (0, T )) Hilbert framework required by the stochastic integral and the predictable measurability
property of the solution due to the multiplicative nature of the noise.

The paper is organized as follows. In Section 2, we will present the problem, the assumptions made on the
data, introduce the notion of stochastic entropy solution, as well as a generalized notion of solution (namely
measure-valued entropy solution). The finite volume approximation constructed with general monotone flux will
then be introduced, as well as some useful related notations. We will conclude this first section with the statement
of the main results. The remainder of the paper will be devoted to the proof of this main result, which states
the existence and uniqueness of the stochastic entropy solution as well as the convergence of the finite volume
approximation under a stability condition on the time step. This proof relies on two key results. The first one is
the convergence of the numerical approximation towards a measure-valued entropy solution (up to a subsequence)
and will be established in Section 3. In order to prove it, we will start with classical preliminary results for this
kind of equations : stability of the scheme, Weak-BV estimates and derivation of approximate entropy inequalities.
Note that, contrary to [BCG16-2], it is crucial to have here explicit bounds at each step since they will be essential
in what follows. The second key result is a uniqueness one and it will be established in Section 4 by adapting the
Kruzhkov doubling variable technique to the stochastic case. Indeed we will compare a general measure-valued
solution to the numerical approximation. At the end of Section 4, we will be able to prove the main result by
gathering these two keys results. Finally, the proof of the L∞ stability result will be given in the appendix.

2 Main result

2.1 Assumptions
In this work, we assume the following hypotheses:

H1: u0 ∈ L2(Rd).
H2: g : R → R is a Lipschitz-continuous bounded function with g(0) = 0. We denote by Cg a Lipschitz constant

of g.

H3: f ∈ C1(Rd × [0, T ]× R,Rd) and there exists a constant Cf > 0 such that for any (x, t, v) ∈ Rd × [0, T ]× R,∣∣∣∣∂f∂v (x, t, v)

∣∣∣∣ ≤ Cf .
H4: For all x ∈ Rd, there exist two reals Cxf > 0 and Rx > 0 such that for all (t, v) ∈ [0, T ] × R and for all

y ∈ B(x,Rx),
|f(x, t, v)− f(y, t, v)| ≤ Cxf |x− y|.

H5: There exists a real CTf > 0 such that for all (x, v) ∈ Rd × R and for all (t, t′) ∈ [0, T ]2,

|f(x, t, v)− f(x, t′, v)| ≤ CTf |t− t′|.

H6: For all (x, t, v) ∈ Rd × [0, T ]× R, divx
[
f(x, t, v)

]
=

d∑
i=1

∂fi
∂xi

(x1, ..., xd, t, v) = 0.

H7: For all x ∈ Rd, there exist two reals C̃xf > 0 and R̃x > 0 such that for all (t, v) ∈ [0, T ] × R and for all
y ∈ B(x, R̃x), ∣∣∣∣∂f∂v (x, t, v)− ∂f

∂v
(y, t, v)

∣∣∣∣ ≤ C̃xf |x− y|.
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Remark 1 (On these assumptions)

. Note that, as it is classically done in the deterministic setting for hyperbolic scalar conservation laws, for con-
venience one can assume that for all (x, t) in Rd × [0, T ], f(x, t, 0) = ~0 without loss of generality thanks to
H6.

. The existence and uniqueness result still holds without assuming that g is bounded (see [BVW12], [BCG16-2]),
but we use this assumption to get the convergence of the numerical approximation.

. g(0) = 0 is an important condition. Indeed, if g(0) 6= 0, the problem is generally not well-posed in L2(Ω × Rd ×
(0, T )).

. Note that the present study can be extended to the case where divx[f(x, t, v)] 6= 0 (which only brings technical
difficulties) following for example the work of [CH00] in the deterministic case.

. Finally, if additionally g has compact support and u0 ∈ L∞(Rd), then, as we will see in Corollary 1, the solution
is also bounded. Thus, our result still holds if we suppose that we only have local bounds with respect to v in
assumptions H3, H4 and H5 (i.e. if the constants Cf , Cxf and CTf depend on v). It enables in particular to
treat a larger class of flux functions such as Burgers’ one.

2.2 The continuous problem: definitions and notations
First of all, let us introduce some notations and make precise the functional setting.

. We define the following sets Q = Rd × (0, T ) and for all R > 0, QR = B(0, R) × (0, T ), where B(0, R) denotes
the ball of Rd centered at 0 of radius R.

. |x| denotes the Euclidean norm of x in Rd and x.y the usual scalar product of x and y in Rd.

. D+
(
Rd × [0, T )

)
denotes the subset of non-negative elements of D(Rd × [0, T )).

. For a given separable Banach space X, we denote by N 2
w(0, T,X) the space of the predictable X-valued processes

endowed with the norm

‖φ‖2N2
w(0,T,X) = E

[∫ T

0

‖φ‖2Xdt
]

(see [DPZ92] p.94).

. A denotes the set of any C3(R) convex functions such that η′, η′′ and η′′′ are bounded functions.

. For any entropy function η ∈ A we introduce the function Φη defined for any a, b ∈ R by

Φη(x, t, a, b) =

∫ a

b

η′(σ − b)∂f
∂v

(x, t, σ)dσ,

for all (x, t) ∈ Rd × [0, T ] and for all v ∈ R. Note that Φη(x, t, ·, b) is then the entropy flux associated with
η(· − b) which vanishes at b. This notation will be very useful in the proof of the uniqueness result in section
4. For any entropy η ∈ A, Φη(·, ·, ·, 0) is then an entropy flux associated with η.

. In the sequel, we will consider a ball B(0, R) ⊂ Rd for some R > 0. Using the assumptions H4 and H7 we get the
existence of two constants CRf > 0 and C̃Rf such that for all (t, v) ∈ [0, T ]× R and for all (x, y) ∈ B(0, R)2,

|f(x, t, v)− f(y, t, v)| ≤ CRf |x− y| and
∣∣∣∣∂f∂v (x, t, v)− ∂f

∂v
(y, t, v)

∣∣∣∣ ≤ C̃Rf |x− y|
Let us now introduce the concept of solution we are interested in for Problem (1).

Definition 1 (Stochastic entropy solution)
A function u of N 2

w

(
0, T, L2(Rd)

)
∩L∞

(
0, T ;L2

(
Ω× Rd

))
is an entropy solution of the stochastic scalar conserva-

tion law (1) with the initial condition u0 ∈ L2(Rd), if P-a.s in Ω, for any η ∈ A, and for any ϕ ∈ D+
(
Rd × [0, T )

)
0 ≤

∫
Rd
η(u0)ϕ(x, 0)dx+

∫
Q

η(u)∂tϕ(x, t)dxdt+

∫
Q

Φη(x, t, u, 0).∇xϕ(x, t)dxdt

+

∫ T

0

∫
Rd
η′(u)g(u)ϕ(x, t)dxdW (t) +

1

2

∫
Q

g2(u)η′′(u)ϕ(x, t)dxdt. (3)

As it is classically done in the deterministic and stochastic setting with an entropy approach (see [BVW12],
[BCG16-1] and [BCG16-2]), we also need to consider a generalized notion of entropy solution. In fact, in a first
step, we will only prove the convergence (up to a subsequence) of the finite volume approximate solution to a
measure-valued entropy solution. Then, thanks to the result of uniqueness stated in Section 4 and established by
using the finite volume approximation, we will be able to deduce simultaneously the existence of an entropy solution
of Problem (1) and the convergence of our approximate solution to the unique stochastic entropy solution of (1).

Definition 2 (Measure-valued entropy solution)
A function µ of N 2

w

(
0, T, L2

(
Rd × (0, 1)

))
∩L∞

(
0, T ;L2

(
Ω× Rd × (0, 1)

))
is a measure-valued entropy solution of
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the stochastic scalar conservation law (1) with the initial condition u0 ∈ L2(Rd), if P-a.s in Ω, for any η ∈ A, and
for any ϕ ∈ D+

(
Rd × [0, T )

)
0 ≤

∫
Rd
η(u0)ϕ(x, 0)dx+

∫
Q

∫ 1

0

η(µ(., α))∂tϕ(x, t)dαdxdt+

∫
Q

∫ 1

0

Φη(x, t, µ(., α), 0).∇xϕ(x, t)dαdxdt

+

∫ T

0

∫
Rd

∫ 1

0

η′(µ(., α))g(µ(., α))ϕ(x, t)dαdxdW (t) +
1

2

∫
Q

∫ 1

0

g2(µ(., α))η′′(µ(., α))ϕ(x, t)dαdxdt.

2.3 The finite volume approximation: definitions and notations
Definition 3 (Admissible mesh) An admissible mesh T of Rd for the discretization of Problem (1) is given by
a family of disjoint polygonal connected subsets of Rd such that Rd is the union of the closure of the elements of T
(which are called control volumes in the following) and such that the common interface between two control volumes
is included in a hyperplane of Rd. It is assumed that h = size(T ) = sup{diam(K),K ∈ T } <∞ and that, for some
ᾱ ∈ R?+, we have

ᾱhd ≤ |K|, and |∂K| ≤ 1

ᾱ
hd−1, ∀K ∈ T , (4)

where we denote by

. ∂K the boundary of the control volume K.

. |K| the d-dimensional Lebesgue measure of K.

. |∂K| the (d− 1)-dimensional Lebesgue measure of ∂K.

. N (K) the set of control volumes neighbours of the control volume K.

. σK,L the common interface between K and L for any L ∈ N (K).

. nK,L the unit normal vector to interface σK,L, oriented from K to L, for any L ∈ N (K).

From (4), we get the following inequality, which will be used several times later:

|∂K|
|K| ≤

1

ᾱ2h
. (5)

We now define monotone schemes. Consider an admissible mesh T in the sense of Definition 3. In order to compute
an approximation of u on [0, T ], we take N ∈ N? and define the time step k = T

N
∈ R?+. In this way:

[0, T ] =

N−1⋃
n=0

[nk, (n+ 1)k].

The equations satisfied by the discrete unknowns denoted by unK , n ∈ {0, ..., N − 1}, K ∈ T , are obtained by
discretizing Problem (1). In order to do this, we introduce a family of numerical fluxes for the discretization of the
divergence term. We also define for any n ∈ N? and K,L ∈ T such that L ∈ N (K) and for all v ∈ R the following
quantity:

fnK,L(v) =
1

k|σK,L|

∫ (n+1)k

nk

∫
σK,L

f(x, t, v).nK,Ldγ(x)dt, (6)

where γ denotes the Lebesgue measure on the interfaces. Note that we have, for any v, v′ ∈ R:∣∣∣fnK,L(v)− fnK,L(v′)
∣∣∣ ≤ Cf ∣∣∣v − v′∣∣∣. (7)

Definition 4 (Family of monotone numerical fluxes associated with a flux f)
A family of functions

(
FnK,L

)
n∈N,K∈T ,L∈N (K)

from R2 to R is said to be a family of monotone numerical fluxes

associated with a flux f if for any n ∈ N, K ∈ T and L ∈ N (K), FnK,L satisfies the following assumptions of
consistency, monotony, conservativity and regularity:

(i) Consistency : for any v ∈ R, FnK,L(v, v) = fnK,L(v).

(ii) Monotonicity : for any (a, b) ∈ R2, v 7→ FnK,L(v, b) is non-decreasing and v 7→ FnK,L(a, v) is non-increasing.

(iii) Conservativity : for any (a, b) ∈ R2, FnK,L(a, b) = −FnL,K(b, a).

(iv) Lipschitz-diagonal property : FnK,L is Lipschitz-continuous w.r.t the diagonal (Lip-diag) which means that there
exist F1 > 0 and F2 > 0 such that for any n ∈ N and any K ∈ T , L ∈ N (K), FnK,L verifies for all (a, b) ∈ R2,

|FnK,L(b, a)− FnK,L(a, a)| ≤ F1|b− a| and |FnK,L(a, b)− FnK,L(a, a)| ≤ F2|b− a|.
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The set {u0
K ,K ∈ T } is given by the mean value of the initial condition on each control volume:

u0
K =

1

|K|

∫
K

u0(x)dx,∀K ∈ T . (8)

Once a family of numerical fluxes FnK,L is chosen, the equations satisfied by the discrete unknowns unK , n ∈
{0, ..., N − 1}, K ∈ T are given by the following explicit scheme: for any K ∈ T , any n ∈ {0, ..., N − 1}:

|K|
k

(
un+1
K − unK

)
+

∑
L∈N (K)

|σK,L|FnK,L(unK , u
n
L) = |K|g(unK)

Wn+1 −Wn

k
, (9)

where Wn = W (nk) for n ∈ {0, ..., N − 1}.
The approximate finite volume solution uT ,k may be defined on Ω × Rd × [0, T ) from the discrete unknowns unK ,
K ∈ T , n ∈ {0, ..., N − 1} which are computed in (9) by:

uT ,k(ω, x, t) = unK for ω ∈ Ω, x ∈ K and t ∈
[
nk, (n+ 1)k

)
. (10)

Remark 2 Note that assumption H6 implies that: ∀s ∈ R, ∀K ∈ T ,∑
L∈N (K)

|σK,L|FnK,L(s, s) = 0. (11)

Remark 3 (On the measurability of the approximate finite volume solution) Let us mention that using
properties of the Brownian motion, for all K in T and all n in {0, ..., N − 1}, unK is Fnk-measurable and so, as an
elementary process adapted to the filtration (Ft)t≥0, uT ,k is predictable with values in L2(Rd).

In what follows, we will use the following sets: for any n ∈ {0, ..., N − 1} and R > 0

In =
{

(K,L) ∈ T 2;L ∈ N (K) and unK > unL
}
, (12)

TR =
{
K ∈ T such that K ⊂ B(0, R)

}
, (13)

InR =
{

(K,L) ∈ T 2
R such that L ∈ N (K) and unK > unL

}
. (14)

2.4 Statement of the main result
We now state the main result of this paper.

Theorem 1 (Existence, uniqueness of the entropy solution and convergence of the scheme)
Assume that hypotheses H1 to H7 hold. Let T be an admissible mesh in the sense of Definition 3, N ∈ N? and

k =
T

N
∈ R?+ be the time step. Let uT ,k be the finite volume approximation defined by the finite volume scheme

(8)-(9)-(10). Then Problem (1) admits a unique stochastic entropy solution in the sense of Definition 1, and the
finite volume approximation uT ,k converges to this solution, in Lmloc(Ω×Q) for any 1 ≤ m < 2 as (h, k/h) tends to
(0, 0).

The proof of Theorem 1 constitutes the remainder of this work and will be achieved through two steps. Firstly,
Section 3 will be devoted to the proof of Proposition 7, which states that the finite volume approximation uT ,k
converges, up to a subsequence, to a measure-valued entropy solution. Secondly in Section 4, we will establish in
Proposition 9 that Problem (1) admits a unique measure-valued entropy solution which happens to be a stochastic
entropy solution.

Remark 4 Under the CFL Condition

k ≤ (1− ξ) ᾱ2h

F1 + F2
(15)

one gets the "weak BV" estimate stated in Proposition 2. In the deterministic case, condition (15) for some
ξ ∈ (0, 1) is sufficient to show the convergence of uT ,k to the unique entropy solution of the problem, whereas in
the stochastic case, as in the work [BCG16-2], we are only able to prove it under the slightly stronger assumption
(h, k/h) −→ (0, 0). Note that in [DoV19], convergence of finite volume approximations is established without this
additional assumption, by using a kinetic approach.

Remark 5 This theorem can easily be generalized to the case of a stochastic finite dimensional perturbation of
the form g(u).dW where g takes values into Rp and W is a p-dimensional Brownian motion. The study of the
convergence of a full discretization in the case of an infinite dimensional noise will be the subject of a further work.
Such noises are considered in [DoV19] or [FGH18], but in these works the question of the noise truncation is not
or not totally addressed.
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Remark 6 The present work could be easily extended (under natural assumptions) to the case of random initial
value u0 or to the case of a space dependent noise g(x, u), but we don’t present this general case here for the sake
of readability.

Let us now state an additional result proved in the appendix.

Corollary 1 (L∞ stability of the entropy solution) Under H1 to H7 and the additional assumptions u0 ∈
L∞(Rd) and g compactly supported, the unique stochastic entropy solution u of Problem (1) in the sense of Definition
1 belongs to L∞(Ω×Q). More precisely for any a, b ∈ R with a < b, if for almost every x in Rd u0(x) ∈ [a, b] and
supp(g) ⊂ [a, b], then u(x, t) belongs to [a, b] for almost all (x, t) ∈ Q and P-almost surely in Ω.

3 Convergence to a measure-valued solution uT ,k

In this section, we will establish the convergence (up to a subsequence) of the finite volume approximation uT ,k, de-
fined by (9) and (10), towards a measure-valued entropy solution of Problem (1). Following [BCG16-2], we will start
with classical preliminary results : stability estimate on (uT ,k) (used at the end of this section to get compactness
in the sense of Young measures), weak BV estimates on the discrete unknowns unK (as in the deterministic setting
to get convergence of the scheme) and finally an error bound of a time-continuous approximation. We will then
be able to provide successively discrete and continuous entropy inequalities, which, together with the compactness
property in the sense of Young measures, will enable us to prove the convergence, up to a subsequence, of the
finite volume approximation (uT ,k) to a measure-valued solution of Problem (1). Note that we will extend here to
the case of a general flux function f(x, t, v) the results established in [BCG16-2] with a flux function of the form
~v(x, t)f(v). To get such a generalization, we will adapt some technics from [CH00]. The results and proofs of this
section follow closely the work [BCG16-2], but as we will need later (Section 4) to know explicitly the dependance
of the constants appearing in the majorations of terms involving the entropy η and the test function ϕ, we will give
here the main steps of the proofs.

3.1 Stability estimate
Proposition 1 (L∞t L2

ω,x estimate) Let T > 0, u0 ∈ L2(Rd), T be an admissible mesh in the sense of Definition

3, N ∈ N? and k =
T

N
∈ R?+ satisfying the Courant-Friedrichs-Levy (CFL) condition:

k ≤ ᾱ2h

F1 + F2
. (16)

Let uT ,k be the finite volume approximate solution defined by (9) and (10).
Then, we have the following bound:

‖uT ,k‖L∞(0,T ;L2(Ω×Rd)) ≤ e
C2
gT/2‖u0‖L2(Rd).

As a consequence, we get:
‖uT ,k‖2L2(Ω×Q) ≤ Te

C2
gT ‖u0‖2L2(Rd).

Proof. Following [BCG16-2], we show by induction on n ∈ {0, ..., N − 1} the following property:∑
K∈T

|K|E[(unK)2] ≤ (1 + kC2
g )n‖u0‖2L2(Rd). (Pn)

Set n ∈ {0, ..., N−1} and assume that (Pn) holds. Let us multiply the numerical scheme (9) by unK , use the formula

ab =
1

2

[
(a+ b)2−a2− b2

]
with a = un+1

K −unK and b = unK , replace (un+1
K −unK)2 by using the finite volume scheme

(9) and take the expectation. Then, thanks to the independence between the random variables (Wn+1 −Wn) and
unK , we get:

|K|
2
E
[
(un+1
K )2 − (unK)2

]
= B1 −B2 +D, (17)

where:

B1 =
k2

2|K|E

 ∑
L∈N (K)

|σK,L|FnK,L(unK , u
n
L)

2 , B2 = kE

 ∑
L∈N (K)

|σK,L|FnK,L(unK , u
n
L)unK

 and D =
|K|k

2
E
[
g2(unK)

]
.

Let us now define

B3 = k
∑

(K,L)∈In

|σK,L|E

[
unK

{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
}
− unL

{
FnK,L(unK , u

n
L)− FnK,L(unL, u

n
L)
}]
.

Using the fact that for any (a, b) ∈ R2, FnK,L(a, b) = −FnL,K(b, a), and (11), one gets that
∑
K∈T

B2 = B3.
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We denote by φnK,L the function defined for any a ∈ R by φnK,L(a) =

∫ a

0

v
d

dv

(
FnK,L(v, v)

)
dv. Using this function

we can rewrite the terms of the sum in B3 as follows:

unK

(
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
)
−unL

(
FnK,L(unK , u

n
L)− FnK,L(unL, u

n
L)
)

=

∫ unL

un
K

(
FnK,L(s, s)− FnK,L(unK , u

n
L)
)
ds−

(
φnK,L(unK)− φnK,L(unL)

)
.

Thus, the term B3 can be decomposed as B3 = B4 −B5 where:

B4 = E

 ∑
(K,L)∈In

k|σK,L|
∫ unL

un
K

(
FnK,L(s, s)− FnK,L(unK , u

n
L)
)
ds


and

B5 = E

 ∑
(K,L)∈In

k|σK,L|
{
φnK,L(unK)− φnK,L(unL)

} = 0,

thanks to (11).
So, B3 = B4. In order to get an estimate of B4, we now use the following technical lemma, which is a slight

generalization of a result from [EGH00] (Lemma 4.5 p.107) in the sense that we don’t need Lipschitz-continuous
assumption on the considered function.

Lemma 1 Let g : R → R be a monotone function such that there exists G > 0 and d ∈ R such that for all s ∈ R,∣∣∣g(d)− g(s)
∣∣∣ ≤ G∣∣∣d− s∣∣∣. Then, for any c ∈ R:∣∣∣∣∫ d

c

(
g(s)− g(c)

)
ds

∣∣∣∣ ≥ 1

2G

(
g(d)− g(c)

)2

,∀c ∈ R.

The proof of this lemma is exactly the same as in [EGH00].
Using the monotony of FnK,L w.r.t its variables and its regularity, we apply this lemma with d = unK , c = unL, G = F2

and g(v) = FnK,L(unK , v) and then with d = unL, c = unK , G = F1 and g(v) = FnK,L(v, unL). We deduce that

B3 = B4 ≥ E

[ ∑
(K,L)∈In

k|σK,L|
2(F1 + F2)

{(
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
)2

+
(
FnK,L(unK , u

n
L)− FnK,L(unL, u

n
L)
)2
}]

.

Let us now turn to the study of B1. Using Cauchy-Schwarz inequality and (5), we have:

∑
K∈T

B1 = E

k2

2

∑
K∈T

1

|K|

 ∑
L∈N (K)

|σK,L|
{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
}2

≤ E

 k2

2ᾱ2h

∑
K∈T

∑
L∈N (K)

|σK,L|
{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
}2

 .
Finally, using the CFL Condition (16), we get

∑
K∈T

B1 ≤ E

 ∑
(K,L)∈In

k|σK,L|
2(F1 + F2)

{(
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
)2

+
(
FnK,L(unK , u

n
L)− FnK,L(unL, u

n
L)
)2
} ,

and so,
∑
K∈T

B1 ≤ B3 =
∑
K∈T

B2, which provides by induction the first stability estimate and the second estimate is

a direct consequence of the first one.

3.2 Weak BV estimates
In what follows, we take two real numbers R > 0 and h > 0 such that h < R.

Proposition 2 (Weak BV estimates) Let T be an admissible mesh in the sense of Definition 3, T > 0, N ∈ N?

and let k =
T

N
∈ R?+ satisfying the CFL Condition:

k ≤ (1− ξ) ᾱ2h

F1 + F2
, for some ξ ∈ (0, 1). (18)

Let uT ,k be the finite volume approximate solution defined by (9) and (10).
Then, we have the three following bounds:
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1. There exists CBV,1 ∈ R?+, only depending on T, u0, ξ, F1, F2 and Cg such that:

N−1∑
n=0

k
∑
K∈T

∑
L∈N (K)

|σK,L|E
[(
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
)2
]
≤ CBV,1.

2. There exists CBV,2 ∈ R?+, only depending on R, d, T, ᾱ, u0, ξ, F1, F2 and Cg such that:

N−1∑
n=0

k
∑

(K,L)∈In
R

|σK,L|E
[

max
un
L
≤c≤d≤un

K

(
FnK,L(d, c)− FnK,L(d, d)

)
+ max
un
L
≤c≤d≤un

K

(
FnK,L(d, c)− FnK,L(c, c)

)]
≤ CBV,2h−1/2.

3. There exists CBV,3 ∈ R?+, only depending on R, d, T, ᾱ, u0, ξ, F1, F2 and Cg such that:

N−1∑
n=0

∑
K∈TR

|K| × E
[
|un+1
K − unK |

]
≤ CBV,2 × h−1/2 + CBV,3 × k−1/2.

Proof. We give here the main steps of the proof, adapted from the deterministic case (see for example [CLF93]
or [EGH00]). Note that points 1. and 2. are generalizations of results from [BCG16-2], and point 3. is a time
weak BV estimate. Similarly to the proof of Proposition 1, multiplying the numerical scheme by kunK , taking the
expectation, summing over K ∈ T and n ∈ {0, ..., N − 1}, using the independence properties of the Brownian
motion yields:

A1 +A2 +B = 0,

where

A1 = −1

2

N−1∑
n=0

∑
K∈T

{
k|K|E

[
g2(unK)

]
+

k2

|K|E

[( ∑
L∈N (K)

|σK,L|FnK,L(unK , u
n
L)

)2
]}

,

A2 =
1

2

∑
K∈T

|K|E
[ (
uNK

)2

−
(
u0
K

)2 ]

and B =

N−1∑
n=0

∑
K∈T

∑
L∈N (K)

k|σK,L|E
[
FnK,L(unK , u

n
L)unK

]
.

Using Cauchy-Schwarz inequality, the CFL Condition (18), inequality (5) and the stability result in Proposition 1
one gets:

A1 +A2 ≥

− 1

2

(
1 + TC2

ge
TC2

g

)
‖u0‖2L2(Rd)

+
(ξ − 1)

2(F1 + F2)

N−1∑
n=0

∑
(K,L)∈In

k|σK,L|E
[

max
un
L
≤c≤d≤un

K

(
FnK,L(d, c)− FnK,L(d, d)

)2

+ max
un
L
≤c≤d≤un

K

(
FnK,L(d, c)− FnK,L(c, c)

)2
]
.

We now study the term B. As in the proof of Proposition 1, by using the function φnK,L, one has:

B =

N−1∑
n=0

∑
(K,L)∈In

k|σK,L|E

[∫ unL

un
K

(
FnK,L(v, v)− FnK,L(unK , u

n
L)
)
dv

]
.

We now use again Lemma 1, the monotonicity of FnK,L, and deduce:∫ unL

un
K

(
FnK,L(v, v)− FnK,L(unK , u

n
L)
)
dv ≥ 1

2(F1 + F2)

[
max

un
L
≤c≤d≤un

K

(
FnK,L(c, c)− FnK,L(d, c)

)2

+ max
un
L
≤c≤d≤un

K

(
FnK,L(d, d)− FnK,L(d, c)

)2
]
.

Now, since A1 +A2 +B = 0, we obtain:

1

2

(
1 + TC2

ge
TC2

g

)
‖u0‖2L2(Rd) ≥

ξ

2(F1 + F2)

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|E

[
max

un
L
≤c≤d≤un

K

(
FnK,L(d, c)− FnK,L(d, d)

)2

+ max
un
L
≤c≤d≤un

K

(
FnK,L(d, c)− FnK,L(c, c)

)2
]
.

By reordering the summation and defining CBV,1 =
F1 + F2

ξ

(
1 + TC2

ge
TC2

g

)
‖u0‖2L2(Rd), we have in particular:

N−1∑
n=0

k
∑
K∈T

∑
L∈N (K)

|σK,L|E
[(
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
)2
]
≤ CBV,1,
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which proves the first point of the proposition.
Let us now turn to the second point. Let us note:

T1 = max
un
L
≤c≤d≤un

K

(
FnK,L(d, c)− FnK,L(d, d)

)
and T2 = max

un
L
≤c≤d≤un

K

(
FnK,L(d, c)− FnK,L(c, c)

)
.

Using Cauchy-Schwarz inequality and the mesh properties (5), one gets:(
N−1∑
n=0

k
∑

(K,L)∈In
R

|σK,L|E
[
T1 + T2

])2

≤ T |B(0, R)|
ᾱ2h

(
N−1∑
n=0

k
∑

(K,L)∈In
R

|σK,L|E
[(
T1 + T2

)2
])

, (19)

where the set InR is defined by (14). Using the first point of Proposition 2, one gets:

N−1∑
n=0

k
∑

(K,L)∈In
R

|σK,L|E
[(
T1 + T2

)2
]
≤ 2CBV,1.

Thus, we deduce from the point 1. of Proposition 2:

(
N−1∑
n=0

k
∑

(K,L)∈In
R

|σK,L|E
[
T1 + T2

])2

≤ 2T |B(0, R)|CBV,1
ᾱ2h

.

Therefore, we have:

N−1∑
n=0

k
∑

(K,L)∈In
R

|σK,L|E
[

max
un
L
≤c≤d≤un

K

(
FnK,L(d, c)− FnK,L(d, d)

)
+ max
un
L
≤c≤d≤un

K

(
FnK,L(d, c)− FnK,L(c, c)

)]
≤ CBV,2 × h−1/2, (20)

with CBV,2 =

√
2T |B(0, R)|CBV,1

ᾱ2
, which concludes the proof of point 2. of the Proposition.

Finally, we are going to prove the last point of the Proposition: the time weak BV estimate. Using the numerical
scheme (9), we have:

|K| × |un+1
K − unK | =

∣∣∣− k ∑
L∈N (K)

|σK,L|FnK,L(unK , u
n
L) + |K|g(unK)(Wn+1 −Wn)

∣∣∣
≤k

∑
L∈N (K)

|σK,L|
∣∣∣FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
∣∣∣+ |K|

∣∣g(unK)
∣∣∣∣Wn+1 −Wn

∣∣.
We sum this inequality for K ∈ TR (where the set TR is defined by (13)), n ∈ {0, ..., N−1} and take the expectation.
On the one hand, we get:

N−1∑
n=0

∑
K∈TR

k
∑

L∈N (K)

|σK,L|E
[∣∣∣FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
∣∣∣] =

N−1∑
n=0

k
∑

(K,L)∈In
R

|σK,L|E
[∣∣∣FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
∣∣∣

+
∣∣∣FnK,L(unK , u

n
L)− FnK,L(unL, u

n
L)
∣∣∣]

≤ CBV,2 × h−1/2,

where CBV,2 (resp. InR) is defined in inequality (20) (resp. (14)). On the other hand, using Cauchy-Schwarz
inequality, one has:

N−1∑
n=0

E

[ ∑
K∈TR

|K|
∣∣g(unK)

∣∣∣∣Wn+1 −Wn
∣∣] ≤N−1∑

n=0

( ∑
K∈TR

|K|
)1/2( ∑

K∈TR

|K|E
[
g2(unK)

(
Wn+1 −Wn)2])1/2

≤
√
|B(0, R)|Cg × k1/2

N−1∑
n=0

( ∑
K∈TR

|K|E[(unK)2]
)1/2

≤CBV,3 × k−1/2,

with CBV,3 =
√
|B(0, R)|CgTeTC

2
g/2‖u0‖L2(Rd) ; then, we get that:

N−1∑
n=0

∑
K∈TR

|K| × E
[
|un+1
K − unK |

]
≤ CBV,2 × h−1/2 + CBV,3 × k−1/2,

which concludes the proof.
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3.3 A time-continuous approximation
Set K ∈ T , n ∈ {0, ..., N − 1}, as in [BCG16-2], in view of applying Itô’ formula, we introduce a time-continuous
process ūnK defined on Ω× [nk, (n+ 1)k) from the discrete unknowns unK by:

ūnK(s) =unK −
∫ s

nk

1

|K|
∑

L∈N (K)

|σK,L|FnK,L(unK , u
n
L)dt+

∫ s

nk

g(unK)dW (t) (21)

=unK −
s− nk
|K|

∑
L∈N (K)

|σK,L|
{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
}

+ g(unK)
(
W (s)−Wnk). (22)

In this way, we can define a time-continuous approximate solution ūT ,k on Ω× Rd × [0, T ) by

ūT ,k(ω, x, t) = ūnK(ω, t), ω ∈ Ω, x ∈ K and t ∈ [nk, (n+ 1)k]. (23)

Naturally, our aim is to estimate in what follows the error between the approximations ūT ,k and uT ,k.

Proposition 3 (A time-continuous approximation) Let u0 ∈ L2(Rd) and T be an admissible mesh in the

sense of Definition 3, T > 0, N ∈ N? and let k =
T

N
∈ R?+ be the time step satisfying the CFL Condition (18).

Let ūT ,k be the time-continuous approximate solution defined by (21), and uT ,k be the finite volume approximate
solution defined by (9) and (10). Then, there exists a constant CTA ∈ R?+ depending only on T,Cg, F1, F2, ᾱ, u0

and ξ such that:
‖uT ,k − ūT ,k‖2L2(Ω×Q) ≤ CTAk.

Note that this estimate is sharper than the one given in [BCG16-2], where the bound was equal, up to a constant,
to h+ k.

Proof. Using the equivalent definition (22) of ūT ,k, we have

‖uT ,k − ūT ,k‖2L2(Ω×Q)

=
∑
K∈T

N−1∑
n=0

∫ (n+1)k

nk

|K|E
[
g2(unK)

(
W (s)−Wn)2]ds

+
∑
K∈T

N−1∑
n=0

∫ (n+1)k

nk

|K|E

(s− nk
|K|

∑
L∈N (K)

|σK,L|
{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
})2

 ds
≤
∑
K∈T

N−1∑
n=0

|K|k2C2
gE
[
(unK)2

]
+

N−1∑
n=0

∑
K∈T

k|K| k
2

|K|2E

( ∑
L∈N (K)

|σK,L|
{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
})2


≤kC2

g‖uT ,k‖2L2(Ω×Q) + k2
N−1∑
n=0

k
∑
K∈T

|∂K|
|K|

( ∑
L∈N (K)

|σK,L|E
[(
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
)2
])

.

Due to the properties of the mesh (5) and the CFL Condition (18), one shows that
|∂K|
|K| ≤

1

ᾱ2h
≤ (1− ξ)

(F1 + F2)k
.

Moreover, thanks to the first point of Proposition 2 and the L2
ω,x,t estimate given by Proposition 1, one gets:

‖uT ,k − ūT ,k‖2L2(Ω×Q) ≤kC
2
g‖uT ,k‖2L2(Ω×Q) +

(1− ξ)
(F1 + F2)k

CBV,1k
2

≤CTAk,

where CTA = max

{
TC2

ge
TC2

g‖u0‖2L2(Rd);
(1− ξ)

(F1 + F2)
CBV,1

}
, which concludes the proof.

3.4 Discrete entropy inequalities on the approximate solution
In order to obtain entropy inequalities for (uT ,k), some discrete entropy inequalities satisfied by the discrete un-
knowns unK are first derived in the upcoming propositions. Following [BCG16-2], we start in a first step (for
technical reasons due to the stochastic noise) with the particular case of a Godunov numerical scheme. Then, we
will generalize in a second step the obtained inequality to any monotone finite volume scheme. Indeed, we will
use the fact that any monotone numerical flux can be decomposed as a convex combinaison between a Godunov
numerical flux and a modified Lax-Friedrichs’ one (the proof of such a splitting can be found in [CH00] for example).
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3.4.1 The case of a family of Godunov’s numerical fluxes

We assume in this subsection that, for all K ∈ T , for all L ∈ N (K) and for all n ∈ {0, ..., N − 1}, FnK,L is the
Godunov’s numerical flux defined as follows: for all a, b ∈ R, if a > b (resp. a < b), there exists snK,L(a, b) ∈ [b, a]
(resp. [a, b]) such that:

FnK,L(a, b) = fnK,L(snK,L(a, b)) = max
{
fnK,L(v), v ∈ [b, a]

} (
resp. min

{
fnK,L(v), v ∈ [a, b]

})
. (24)

Then, fixing η ∈ A, and denoting for all v ∈ R:

ΦnK,L(v) =

∫ v

0

η′(σ)(fnK,L)′(σ)dσ,

we can define the entropy numerical flux GnK,L by GnK,L(a, b) = ΦnK,L(snK,L(a, b)), for all a, b ∈ R.

Remark 7 From (11), we deduce that for all a ∈ R, GnK,L(a, a) = ΦnK,L(a) and for all s ∈ R,∑
L∈N (K)

|σK,L|ΦnK,L(s) =
∑

L∈N (K)

|σK,L|GnK,L(s, s) = 0.

Proposition 4 (Discrete entropy inequalities) Assume that hypotheses H1 to H7 hold and that for all n ∈
{0, ..., N − 1} and (K,L) ∈ TR, (FnK,L)n,K,L is the family of Godunov’s fluxes associated with the flux f . Let
u0 ∈ L2(Rd) and T be an admissible mesh in the sense of Definition 3, T > 0, N ∈ N? and let k = T

N
∈ R?+

be the time step satisfying the CFL Condition (18) with F1 = F2 = Cf . Then, there exists a constant CDE,G
depending only on R, d, ᾱ, u0, ξ, F1, F2, C

R
f , C

T
f , ‖g‖∞ and Cg such that P − a.s in Ω, for any η ∈ A and for any

ϕ ∈ D+(Rd × [0, T ))

−
N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η(un+1
K )− η(unK)

k
ϕ(x, nk)dxdt+

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

Φη(x, t, unK , 0).∇xϕ(x, nk)dxdt

+

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η′(unK)g(unK)ϕ(x, nk)dxdW (t) +
1

2

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η′′(unK)g2(unK)ϕ(x, nk)dxdt

≥ R̃h,k,η,ϕG , (25)

where for any P-measurable set A:∣∣∣E [1AR̃h,k,η,ϕG

] ∣∣∣ ≤ CDE,G[‖η′′‖∞‖ϕ‖∞ k1/2

h1/2
+ ‖η′‖∞‖∇xϕ‖∞ × h1/2

+ (‖∂tϕ‖∞‖η′‖∞ + ‖ϕ‖∞‖η′′‖∞)× k1/2 + ‖ϕ‖∞‖η′′′‖∞ × k
]
.

Proof. In order to prove this proposition, we are going to show firstly that inequality (38) holds for a certain
R̃h,k,η,ϕG and in a second time, we will estimate the quantity E

[
1AR̃

h,k,η,ϕ
G

]
for a given P-measurable set A. We will

use in particular some techniques developped in the deterministic framework (see for example [EGH00], [CH00] or
[CCLF95]) and deepen their adaptation to our stochastic case.

Let T > 0, u0 ∈ L2(Rd), T be an admissible mesh in the sense of Definition 3, N ∈ N? and k =
T

N
∈ R?+. We assume

that the CFL Condition (18) holds for some ξ ∈ (0, 1). In this manner, the estimates given by Proposition 1 and 2
hold. Consider η ∈ A and ϕ ∈ D+(Rd × [0, T )), thus there exists R > h such that supp ϕ ⊂ B(0, R− h)× [0, T ).
STEP I: Existence of R̃h,k,η,ϕG

Let K ∈ T and n ∈ {0, ..., N − 1}. The application of Itô’s formula to the process ūnK and the function v ∈ R 7→
η(v) ∈ R on the interval [nk, (n+ 1)k] yields P-a.s in Ω:

η
(
ūnK
(
(n+ 1)k

))
− η
(
ūnK(nk)

)
=−

∫ (n+1)k

nk

η′(ūnK(t))
1

|K|
∑

L∈N (K)

|σK,L|FnK,L(unK , u
n
L) dt

+

∫ (n+1)k

nk

η′(ūnK(t))g(unK)dW (t) +
1

2

∫ (n+1)k

nk

η′′(ūnK(t))g2(unK)dt.

Let us multiply this equation by |K|ϕnK , where ϕnK =
1

|K|

∫
K

ϕ(x, nk)dx, and sum for all K ∈ TR and n ∈

{0, ..., N − 1}. Thus, one gets P-a.s in Ω:

0 =Ah,k,η,ϕ −Bh,k,η,ϕ + Ch,k,η,ϕ +Dh,k,η,ϕ,
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where:

Ah,k,η,ϕ =−
N−1∑
n=0

∑
K∈TR

|K|ϕnK
{
η(un+1

K )− η(unK)
}

= −
N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η(un+1
K )− η(unK)

k
ϕ(x, nk)dxdt

Bh,k,η,ϕ =

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

η′(ūnK(t))
∑

L∈N (K)

|σK,L|FnK,L(unK , u
n
L)ϕnKdt,

Ch,k,η,ϕ =

N−1∑
n=0

∑
K∈TR

|K|
∫ (n+1)k

nk

η′(ūnK(t))g(unK)ϕnKdW (t)

and Dh,k,η,ϕ =
1

2

N−1∑
n=0

∑
K∈TR

|K|
∫ (n+1)k

nk

η′′(ūnK(t))g2(unK)ϕnKdt.

Let us analyze separately the last three terms. We decompose Bh,k,η,ϕ in the following way:

Bh,k,η,ϕ =
(
Bh,k,η,ϕ − B̃h,k,η,ϕ

)
+
(
B̃h,k,η,ϕ −Bh,k,η,ϕG

)
+
(
Bh,k,η,ϕG −Bh,k,η,ϕΦ

)
+Bh,k,η,ϕΦ ,

where:

B̃h,k,η,ϕ =

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

1

|K|

∫
K

η′(unK)
∑

L∈N (K)

|σK,L|FnK,L(unK , u
n
L)ϕ(x, nk)dxdt,

Bh,k,η,ϕG =

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

1

|K|

∫
K

∑
L∈N (K)

|σK,L|GnK,L(unK , u
n
L)ϕ(x, nk)dxdt

and Bh,k,η,ϕΦ =−
N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

Φη(x, t, unK , 0).∇xϕ(x, nk)dxdt.

We first show that B̃h,k,η,ϕ −Bh,k,η,ϕG ≥ 0 almost surely.

Using Remarks 2 and 7, we can rewrite B̃h,k,η,ϕ −Bh,k,η,ϕG in the following way:

B̃h,k,η,ϕ −Bh,k,η,ϕG =

N−1∑
n=0

∑
K∈TR

k

|K|

∫
K

ϕ(x, nk)dx
∑

L∈N (K)

|σK,L|
{
η′(unK)

(
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
)

−
(
GnK,L(unK , u

n
L)−GnK,L(unK , u

n
K)
)}
.

Following [BCG16-2], we use the fact that our numerical fluxes are the Godunov’s one. Indeed, thanks to their
explicit definitions given by (24), one can affirm that the numerical entropy fluxes (GnK,L)n,K,L, satisfy for any
(K,L) ∈ In:

η′(unK)
(
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
)
−
(
GnK,L(unK , u

n
L)−GnK,L(unK , u

n
K)
)
≥ 0, (26)

and, thus:
Bh,k,η,ϕ ≥ Bh,k,η,ϕ − B̃h,k,η,ϕ +Bh,k,η,ϕG −Bh,k,η,ϕΦ +Bh,k,η,ϕΦ .

Conclusion of STEP I: Since P-a.s in Ω, Ah,k,η,ϕ −Bh,k,η,ϕ + Ch,k,η,ϕ +Dh,k,η,ϕ = 0,
we get with the study of Bh,k,η,ϕ:

Ah,k,η,ϕ −Bh,k,η,ϕΦ + C̃h,k,η,ϕ + D̃h,k,η,ϕ ≥(Bh,k,η,ϕ − B̃h,k,η,ϕ) + (Bh,k,η,ϕG −Bh,k,η,ϕΦ )

+ (C̃h,k,η,ϕ − Ch,k,η,ϕ) + (D̃h,k,η,ϕ −Dh,k,η,ϕ),

where

C̃h,k,η,ϕ =

N−1∑
n=0

∑
K∈TR

∫
K

∫ (n+1)k

nk

η′(unK)g(unK)ϕ(x, nk)dW (t)dx

and D̃h,k,η,ϕ =
1

2

N−1∑
n=0

∑
K∈TR

∫
K

∫ (n+1)k

nk

η′′(unK)g2(unK)ϕ(x, nk)dtdx.

In this way, we get inequality (38), with:

R̃h,k,η,ϕG = (Bh,k,η,ϕ − B̃h,k,η,ϕ) + (Bh,k,η,ϕG −Bh,k,η,ϕΦ ) + (C̃h,k,η,ϕ − Ch,k,η,ϕ) + (D̃h,k,η,ϕ −Dh,k,η,ϕ). (27)

STEP II: Estimate of E
[
1AR̃

h,k,η,ϕ
G

]
Let A be a P-measurable set. In this second step, we estimate the term E

[
1AR̃

h,k,η,ϕ
G

]
.
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II.1 Study of E
[
1A(B

h,k,η,ϕ − B̃h,k,η,ϕ)
]

For almost all ω ∈ Ω, t ∈ (nk, (n+ 1)k), any K ∈ T and any n ∈ {0, ..., N − 1}, there exists vnK(w, t) ∈ R such
that:

η′(ūnK(t))− η′(unK) = η′′(vnK(w, t))(ūT ,k(t)− unK).

So, Bh,k,η,ϕ − B̃h,k,η,ϕ = Th,k,η,ϕ1 − Th,k,η,ϕ2 where:

Th,k,η,ϕ1 =−
N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

1

|K|

∫
K

η′′(vnK(t))
t− nk
|K| ϕ(x, nk)dxdt×

 ∑
L∈N (K)

|σK,L|FnK,L(unK , u
n
L)

2

and

Th,k,η,ϕ2 =
1

|K|

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η′′(vnK(t))g(unK)
(
W (t)−W (nk)

)
ϕ(x, nk)dxdt×

 ∑
L∈N (K)

|σK,L|FnK,L(unK , u
n
L)

 .

We first study E
[
1AT

h,k,η,ϕ
1

]
. Using Remark 2, Cauchy-Schwarz inequality, the properties of the mesh (5)

and the point 1. of Proposition 2 (which gives the existence of a constant CBV,1), we get:

∣∣∣E [1ATh,k,η,ϕ1

]∣∣∣ =

∣∣∣∣∣E
[
1A

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

1

|K|

∫
K

η′′(vnK(t))
t− nk
|K| ϕ(x, nk)dxdt

×

 ∑
L∈N (K)

|σK,L|
{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
}2 ]∣∣∣∣∣

≤‖η′′‖∞‖ϕ‖∞
k

ᾱ2h
CBV,1.

Let us now estimate E
[
1AT

h,k,η,ϕ
2

]
. Using the same arguments as previously, one gets

(
E
[
1AT

h,k,η,ϕ
2

] )2

=

(
E

[
1A

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

1

|K|

∫
K

η′′(vnK(t))g(unK)
(
W (t)−W (nk)

)

×
( ∑
L∈N (K)

|σK,L|FnK,L(unK , u
n
L)

)
ϕ(x, nk)dxdt

])2

≤‖η′′‖2∞‖ϕ‖2∞C2
g‖uT ,k‖2L2(Ω×Q)

N−1∑
n=0

∑
K∈TR

k2

|K|

 ∑
L∈N (K)

|σK,L|


× E

[ ∑
L∈N (K)

|σK,L|
{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
}2
]

≤
(
‖η′′‖2∞‖ϕ‖2∞C2

gTe
TC2

g‖u0‖2L2(Rd)

CBV,1
ᾱ2

)
× k

h
.

Gathering these two estimates, we get

[
E
[
1A(Bh,k,η,ϕ − B̃h,k,η,ϕ)

]∣∣∣ ≤ ‖η′′‖∞‖ϕ‖∞CBV,1
α2

k

h
+

(
‖η′′‖∞‖ϕ‖∞CgTeTC

2
g/2‖u0‖L2(Rd)

√
CBV,1

ᾱ

)√
k

h
.

II.2 Study of E
[
1A(B

h,k,η,ϕ
G − Bh,k,η,ϕ

Φ )
]

To begin with, we split Bh,k,η,ϕG and Bh,k,η,ϕΦ into the sum of two terms. Using Remark 7 and the anti-symmetry
property of the numerical flux, we can rewrite:

Bh,k,η,ϕG =T̄1
h,k,η,ϕ − T̄2

h,k,η,ϕ
,

where:

T̄1
h,k,η,ϕ

=

N−1∑
n=0

∑
(K,L)∈In

R

k

|K| |σK,L|
{
GnK,L(unK , u

n
L)− ΦnK,L(unK)

}∫
K

ϕ(x, nk)dx

and T̄2
h,k,η,ϕ

=

N−1∑
n=0

∑
(K,L)∈In

R

k

|L| |σK,L|
{
GnK,L(unK , u

n
L)− ΦnK,L(unL)

}∫
L

ϕ(x, nk)dx.

Let us note that using Assumption H6, we have for all (x, t) ∈ Q and a, b ∈ R:
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divx
[
Φη(x, t, a, b)

]
= 0. (28)

Then, Bh,k,η,ϕΦ can be rewritten in the following way:

Bh,k,η,ϕΦ =−
N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

divx
[
Φη(x, t, unK , 0)ϕ(x, nk)

]
dxdt

=−
N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∑
L∈N (K)

∫
σK,L

(
Φη(x, t, unK , 0).nK,L

)
ϕ(x, nk)dγ(x)dt

=Th,k,η,ϕ1 − Th,k,η,ϕ2 ,

where:

Th,k,η,ϕ1 =

N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)k

nk

∫
σK,L

{
GnK,L(unK , u

n
L)− Φη(x, t, unK , 0).nK,L

}
ϕ(x, nk)dγ(x)dt

and Th,k,η,ϕ2 =

N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)k

nk

∫
σK,L

{
GnK,L(unK , u

n
L)− Φη(x, t, unL, 0).nK,L

}
ϕ(x, nk)dγ(x)dt.

Now, our aim is to estimate |T̄1
h,k,η,ϕ − Th,k,η,ϕ1 | and |T̄2

h,k,η,ϕ − Th,k,η,ϕ2 |. To do this, we first note that we
have:

T̄1
h,k,η,ϕ − Th,k,η,ϕ1

=

N−1∑
n=0

∑
(K,L)∈In

R

k|σK,L|
{
GnK,L(unK , u

n
L)− ΦnK,L(unK)

}( 1

|K|

∫
K

ϕ(x, nk)dx− 1

|σK,L|

∫
σK,L

ϕ(x, nk)dγ(x)

)

+

N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)k

nk

∫
σK,L

{
Φη(x, t, unK , 0).nK,L − ΦnK,L(unK)

}
ϕ(x, nk)dγ(x)dt.

Similarly, we have:

T̄2
h,k,η,ϕ − Th,k,η,ϕ2

=

N−1∑
n=0

∑
(K,L)∈In

R

k|σK,L|
{
GnK,L(unK , u

n
L)− ΦnK,L(unL)

}( 1

|L|

∫
L

ϕ(x, nk)dx− 1

|σK,L|

∫
σK,L

ϕ(x, nk)dγ(x)

)

+

N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)k

nk

∫
σK,L

{
Φη(x, t, unL, 0).nK,L − ΦnK,L(unL)

}
ϕ(x, nk)dγ(x)dt.

Let us now bound |T̄1
h,k,η,ϕ − Th,k,η,ϕ1 | and |T̄2

h,k,η,ϕ − Th,k,η,ϕ2 |.
• Let us begin with the estimate of GnK,L(unK , u

n
L)−ΦnK,L(unK) and GnK,L(unK , u

n
L)−ΦnK,L(unL). Set (K,L) ∈

InR, we then have unK > unL which implies that there exists snK,L(unK , u
n
L) ∈ [unL, u

n
K ] such that

fnK,L(snK,L(unK , u
n
L)) = max

s∈[un
L
,un
K

]
fnK,L(s)

and hence:

GnK,L(unK , u
n
L)− ΦnK,L(unK) = ΦnK,L(snK,L(unK , u

n
L))− ΦnK,L(unK) =

∫ snK,L(unK ,u
n
L)

un
K

η′(v)
(
fnK,L

)′
(v)dv.

Using an integration by parts formula, the convexity of η and the fact that (FnK,L) is a family of Godunov
fluxes, we have for any (K,L) ∈ InR:∣∣∣GnK,L(unK , u

n
L)− ΦnK,L(unK)

∣∣∣ ≤ 2‖η′‖∞ max
un
L
≤c≤d≤un

K

∣∣∣FnK,L(d, c)− FnK,L(d, d)
∣∣∣. (29)∣∣GnK,L(unK , u

n
L)− ΦnK,L(unL)

∣∣ ≤ 2‖η′‖∞ max
un
L
≤c≤d≤un

K

∣∣∣FnK,L(d, c)− FnK,L(c, c)
∣∣∣. (30)

• We get easily that for any K ∈ T :∣∣∣∣∣ 1

|σK,L|

∫
σK,L

ϕ(x, nk)dγ(x)− 1

|K|

∫
K

ϕ(x, nk)dx

∣∣∣∣∣ ≤h‖∇xϕ‖∞. (31)
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• Let us now bound
N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)k

nk

∫
σK,L

{
Φη(x, t, unK , 0).nK,L − ΦnK,L(unK)

}
ϕ(x, nk)dγ(x)dt.

First, note that, thanks to the definition of ΦnK,L, this term is equal to:

N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)k

nk

∫
σK,L

{
Φη(x, t, unK , 0).nK,L − ΦnK,L(unK)

}
ϕ(x, nk)dγ(x)dt

=

N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)k

nk

∫
σK,L

1

k|σK,L|

(∫ (n+1)k

nk

∫
σK,L

{
Φη(x, t, unK , 0)− Φη(y, s, unK , 0)

}
.nK,Ldγ(y)ds

)
ϕ(x, nk)dγ(x)dt.

Using Assumptions H4 and H5, we deduce that for any x, y ∈ B(0, R), t, s ∈ [0, T ] and a, b ∈ R

|Φη(x, t, a, b)− Φη(x, s, a, b)| ≤ 2‖η′‖∞CTf |t− s|, (32)

|Φη(x, t, a, b)− Φη(y, t, a, b)| ≤ 2‖η′‖∞CRf |x− y|. (33)

Indeed, thanks to an integration par parts, we have

|Φη(x, t, a, b)− Φη(x, s, a, b)| ≤ |η′(a− b)(f(x, t, a)− f(x, s, a)|+
∣∣∣∣∫ a

b

η′′(σ − b)(f(x, t, σ)− f(x, s, σ))dσ

∣∣∣∣
≤ 2CTf |t− s||η′(a− b)|.

The proof of (33) is similar.
Hence, by denoting xσ the center of the edge σK,L, we deduce that P-a.s. in Ω we have:∣∣∣∣∣∣
N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)k

nk

∫
σK,L

{
Φη(x, t, unK , 0).nK,L − ΦnK,L(unK)

}
ϕ(x, nk)dγ(x)dt

∣∣∣∣∣∣
=

∣∣∣∣N−1∑
n=0

∑
(K,L)∈In

R

1

k|σK,L|

∫ (n+1)k

nk

∫
σK,L

∫ (n+1)k

nk

∫
σK,L

{
Φη(x, t, unK , 0)− Φη(y, s, unK , 0)

}
.nK,L

×
{
ϕ(x, nk)− ϕ(xσ, nk)

}
dγ(y)dsdγ(x)dt

∣∣∣∣
≤
N−1∑
n=0

∑
K∈TR

∑
L∈N (K)

k|σK,L|2(CTf k + CRf h)‖η′‖∞‖∇xϕ‖∞

≤‖∇xϕ‖∞‖η′‖∞
1

ᾱ2
T |B(0, R)| × 2(CTf k + CRf h). (34)

• We are now ready to compare Bh,k,η,ϕG to Bh,k,η,ϕΦ . We first recall that:

Bh,k,η,ϕG −Bh,k,η,ϕΦ = (T̄1
h,k,η,ϕ − Th,k,η,ϕ1 )− (T̄2

h,k,η,ϕ − Th,k,η,ϕ2 ).

Using (29), (30), (31) and (34), a.s. in Ω, we get:

∣∣∣T̄1
h,k,η,ϕ − Th,k,η,ϕ1

∣∣∣ ≤2‖η′‖∞‖∇xϕ‖∞h
N−1∑
n=0

∑
(K,L)∈In

R

k|σK,L|
{

max
un
L
≤c≤d≤un

K

∣∣∣FnK,L(d, c)− FnK,L(d, d)
∣∣∣}

+ 2T |B(0, R)(CTf k + CRf h)
‖∇xϕ‖∞

ᾱ2

and
∣∣∣T̄2

h,k,η,ϕ − Th,k,η,ϕ2

∣∣∣ ≤2‖η′‖∞‖∇xϕ‖∞h
N−1∑
n=0

∑
(K,L)∈In

R

k|σK,L|
{

max
un
L
≤c≤d≤un

K

∣∣∣FnK,L(d, c)− FnK,L(c, c)
∣∣∣}

+ 2T |B(0, R)(CTf k + CRf h)
‖∇xϕ‖∞

ᾱ2
.

So, combining these two inequalities and using the weak BV estimate of Proposition 2, we have:∣∣∣E [1A(Bh,k,η,ϕG −Bh,k,η,ϕΦ )
]∣∣∣ ≤2‖η′‖∞‖∇xϕ‖∞CBV,2h1/2 +

2T |B(0, R)(CTf k + CRf h)‖∇xϕ‖∞
ᾱ2

. (35)

II.3 Study of E
[
1A(C̃

h,k,η,ϕ − Ch,k,η,ϕ)
]

∣∣∣∣E[1A(C̃h,k,η,ϕ − Ch,k,η,ϕ)]∣∣∣∣ =Sh,k,η,ϕ1 + Sh,k,η,ϕ2 ,
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where

Sh,k,η,ϕ1 =

∣∣∣∣∣∣E
 ∑
K∈TR

N−1∑
n=0

∫
K

1A

∫ (n+1)k

nk

{
η′(ūnK(t))− η′(unK)

}
g(unK)

{
ϕ(x, nk)− ϕ(x, t)

}
dW (t)dx

∣∣∣∣∣∣
and

Sh,k,η,ϕ2 =

∣∣∣∣∣∣E
 ∑
K∈TR

N−1∑
n=0

∫
K

1A

∫ (n+1)k

nk

{
η′(ūnK(t))− η′(unK)

}
g(unK)ϕ(x, t)dW (t)dx

∣∣∣∣∣∣ .
Using successively Cauchy-Schwarz inequality on Ω×B(0, R), Itô isometry and Proposition 1, one gets:

Sh,k,η,ϕ1 =

∣∣∣∣∣∣E
 ∑
K∈TR

N−1∑
n=0

∫
K

1A

∫ (n+1)k

nk

{
η′(ūnK(t))− η′(unK)

}
g(unK)

{
ϕ(x, nk)− ϕ(x, t)

}
dW (t)dx

∣∣∣∣∣∣
≤
√
|B(0, R)|

N−1∑
n=0

 ∑
K∈TR

∫
K

E

[(∫ (n+1)k

nk

{
η′(ūnK(t))− η′(unK)

}
g(unK)

{
ϕ(x, nk)− ϕ(x, t)

}
dW (t)

)2
]
dx


1/2

≤
√
k
√
|B(0, R)|2Cg‖∂tϕ‖∞‖η′‖∞TeTC

2
g/2‖u0‖L2(Rd).

Note that here the assumption on the boundedness of g is crucial. Using Proposition 3, we have:

(
Sh,k,η,ϕ2

)2
=

∣∣∣∣∣E
[
1A

∫
B(0,R)

∫ T

0

{
η′(ūT ,k)− η′(uT ,k)

}
g(uT ,k)ϕ(x, t)dW (t)dx

] ∣∣∣∣∣
2

≤|B(0, R)|
∫
B(0,R)

E

[(∫ T

0

{
η′(ūT ,k)− η′(uT ,k)

}
g(uT ,k)ϕ(x, t)dW (t)

)2
]
dx

≤|B(0, R)|‖ϕ‖2∞‖η′′‖2∞‖g‖2∞CTA × k.

So, we deduce that:∣∣∣E [1A(C̃h,k,η,ϕ − Ch,k,η,ϕ)
] ∣∣∣ ≤√|B(0, R)|2Cg‖∂tϕ‖∞‖η′‖∞TeTC

2
g/2‖u0‖L2(Rd)k

1/2 +
√
CTA|B(0, R)|‖ϕ‖∞‖η′′‖∞‖g‖∞k1/2.

II.4 Study of E
[
1A
(
D̃h,k,η,ϕ − Dh,k,η,ϕ

)]
Using again the boundedness of g, Cauchy-Schwarz inequality and Proposition 3, one gets:

∣∣∣E[1A(D̃h,k,η,ϕ −Dh,k,η,ϕ)]∣∣∣ =

∣∣∣∣∣∣12E
 ∑
K∈TR

N−1∑
n=0

∫
K

∫ (n+1)k

nk

1A

[
η′′(unK)− η′′(ūnK(t))

]
g2(unK)ϕ(x, nk)dxdt

∣∣∣∣∣∣
≤
√
T |B(0, R)|

2
‖g‖2∞‖ϕ‖∞‖η′′′‖∞CTA × k.

Conclusion of STEP II:
By gathering the results obtained previously, one gets that for any P-measurable set A:∣∣∣E[1AR̃h,k,η,ϕG

]∣∣∣ ≤‖η′′‖∞‖ϕ‖∞CBV,1
α2

k

h
+

(
‖η′′‖∞‖ϕ‖∞CgTeTC

2
g/2‖u0‖L2(Rd)

√
CBV,1

ᾱ

)√
k

h
+ 2‖η′‖∞‖∇xϕ‖∞CBV,2h1/2

+
2‖∇xϕ‖∞

ᾱ2
T |B(0, R)|(CRf h+ CRf k)

+
√
|B(0, R)|2Cg‖∂tϕ‖∞‖η′‖∞TeTC

2
g/2‖u0‖L2(Rd)k

1/2 +
√
CTA|B(0, R)|‖ϕ‖∞‖η′′‖∞‖g‖∞k1/2

+

√
T |B(0, R)|

2
‖g‖2∞‖ϕ‖∞‖η′′′‖∞CTA × k,

which concludes the proof of the proposition by using the CFL Condition (18).

3.4.2 The general case

Similarly to what has been done in [BCG16-2], we prove the case of general monotone numerical fluxes by using
the previous study on Godunov’s numerical fluxes and the following decomposition lemma (see [CH00]).

Lemma 2 Consider a family of monotone numerical fluxes (FnK,L)n,K,L in the sense of Definition 4 with constants
F̄1, F̄2. Then, there exists a family of functions (θnK,L)n,K,L taking values in [0, 1] such that for any n ∈ N, K ∈ T
and L ∈ N (K), for any (a, b) ∈ R2:

FnK,L(a, b) = θnK,L(a, b)Fn,GK,L(a, b) +
(
1− θnK,L(a, b)

)
Fn,LFK,L (a, b),

where (Fn,GK,L)n,K,L is the family of Godunov’s numerical fluxes associated with the flux function f and (Fn,LFK,L )n,K,L

is the family of modified Lax-Friedrichs’ numerical fluxes with parameter D = max
(
2F̄1, 2F̄2, Cf

)
associated with

the flux function f .
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Remark 8 Note that the numerical fluxes (Fn,GK,L)n,K,L and (Fn,LFK,L )n,K,L satisfy Definition 4 with the following
respective parameters F1 = F2 = Cf and F1 = F2 = D.

Let us recall the definition of a family of modified Lax-Friedrichs’ numerical fluxes associated with the flux
function f with parameter D (where D ≥ Cf ). Since f is a Lipschitz-continuous function, it can be decomposed in
the following way: f = f1 + f2 where

f1 : (x, t, v) 7→ f(x, t, v) +Dv

2
and f2 : (x, t, v) 7→ f(x, t, v)−Dv

2

are respectively non-decreasing and non-increasing. Then, for any n ∈ N? and any K,L ∈ T , the discretization
fnK,L of the flux function f defined by (6) can be decomposed in the following manner: fnK,L = f

n,(1)
K,L + f

n,(2)
K,L where

for all s ∈ R
f
n,(1)
K,L (s) =

fnK,L(s) +Ds

2
and fn,(2)

K,L (s) =
fnK,L(s)−Ds

2
.

The modified Lax-Friedrichs numerical fluxes with parameter D are then defined for any a, b ∈ R by:

Fn,LFK,L (a, b) = F
n,(LF,1)
K,L (a, b) + F

n,(LF,2)
K,L (a, b),

where

F
n,(LF,1)
K,L (a, b) = f

n,(1)
K,L (a) and Fn,(LF,2)

K,L (a, b) = f
n,(2)
K,L (b). (36)

Note that for i = 1, 2, Fn,(LF,i)K,L belongs to the class of Godunov numerical fluxes as upwind numerical fluxes
associated with the monotonic functions fn,(i)K,L . Hence we can naturally define the entropy numerical flux Gn,LFK,L

associated with Fn,LFK,L by:
Gn,LFK,L (a, b) = G

n,(LF,1)
K,L (a, b) +G

n,(LF,2)
K,L (a, b),

where for any a, b ∈ R,

G
n,(LF,1)
K,L (a, b) =

∫ a

0

η′(v)(f
n,(1)
K,L )′(v)dv and Gn,(LF,2)

K,L (a, b) =

∫ b

0

η′(v)(f
n,(2)
K,L )′(v)dv. (37)

Proposition 5 (Discrete entropy inequalities) Assume that Assumptions H1 to H7 hold and that (FnK,L)n,K,L
is a family of monotone numerical fluxes associated with the flux function f . Let u0 ∈ L2(Rd) and T be an
admissible mesh in the sense of Definition 3, T > 0, N ∈ N? and let k = T

N
∈ R?+ be the time step satisfying the

CFL Condition (18). Then, there exists a constant CDE depending only on R, d, ᾱ, u0, ξ, F1, F2, C
R
f , C

T
f , ‖g‖∞ and

Cg such that P − a.s in Ω, for any η ∈ A and for any ϕ ∈ D+(Rd × [0, T )):

−
N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η(un+1
K )− η(unK)

k
ϕ(x, nk)dxdt+

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

Φη(x, t, unK , 0).∇xϕ(x, nk)dxdt

+

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η′(unK)g(unK)ϕ(x, nk)dxdW (t) +
1

2

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η′′(unK)g2(unK)ϕ(x, nk)dxdt

≥ R̃h,k,η,ϕ, (38)

where for any P-measurable set A:∣∣∣E [1AR̃h,k,η,ϕ] ∣∣∣ ≤CDE[‖η′′‖∞‖ϕ‖∞ k1/2

h1/2
+ ‖η′‖∞‖∇xϕ‖∞ × h1/2

+
(
‖∂tϕ‖∞‖η′‖∞ + ‖ϕ‖∞‖η′′‖∞

)
× k1/2 + ‖ϕ‖∞‖η′′′‖∞ × k

]
. (39)

Proof. Most of the proof of Proposition 4 can be applied without any modifications, since we only used the fact
that (FnK,L) was a family of Godunov numerical fluxes in the following two steps: firstly when we proven in the
point I that B̃h,k,η,ϕ − Bh,k,η,ϕG ≥ 0 a.s. in Ω and secondly when we established (29)-(30) in the point II.2. For
these two points, we have truly exploited the fact that FnK,L was of Godunov’s type through the use of the numerical
entropy fluxes (GnK,L)n,K,L. In order to get these inequalities in the general case, we use the decomposition given by
Lemma 2 to define the family of entropy numerical fluxes (GnK,L)n,K,L associated with (FnK,L)n,K,L in the following
way: for any a, b ∈ R,

GnK,L(a, b) = θnK,L(a, b)Gn,GK,L(a, b) +
(
1− θnK,L(a, b)

)
Gn,LFK,L (a, b),

where Gn,GK,L(a, b) and Gn,LFK,L (a, b) denote respectively the entropy numerical fluxes associated with Fn,GK,L and Fn,LFK,L .
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I In order to show that B̃h,k,η,ϕ −Bh,k,η,ϕG ≥ 0 almost surely, we split the sum into two terms:

B̃h,k,η,ϕ−Bh,k,η,ϕG =

N−1∑
n=0

∑
K∈TR

k

|K|

∫
K

ϕ(x, nk)dx
∑

L∈N (K)

θnK,L(unK , u
n
L)|σK,L|

{
η′(unK)Fn,GK,L(unK , u

n
L)−Gn,GK,L(unK , u

n
L)

}

+

N−1∑
n=0

∑
K∈TR

k

|K|

∫
K

ϕ(x, nk)dx
∑

L∈N (K)

(
1− θnK,L(unK , u

n
L)
)
|σK,L|

{
η′(unK)Fn,LFK,L (unK , u

n
L)−Gn,LFK,L (unK , u

n
L)

}
.

Exactly as in the point I of the proof of Proposition 4, we get η′(unK)Fn,GK,L(unK , u
n
L) − Gn,GK,L(unK , u

n
L) ≥ 0 for

any (K,L) ∈ InR. The second term can be decomposed as:

η′(unK)Fn,LFK,L (unK , u
n
L)−Gn,LFK,L (unK , u

n
L) = η′(unK)F

n,(LF,1)
K,L (unK , u

n
L)−Gn,(LF,1)

K,L (unK , u
n
L)

+ η′(unK)F
n,(LF,2)
K,L (unK , u

n
L)−Gn,(LF,2)

K,L (unK , u
n
L),

where Fn,(LF,1)
K,L , Fn,(LF,2)

K,L , G
n,(LF,1)
K,L , G

n,(LF,2)
K,L are respectively defined by (36)-(37). Hence the proof given in

the point I of the proof of Proposition 4 can be applied directly to Fn,(LF,1)
K,L and Fn,(LF,2)

K,L since any upwind
numerical flux is a Godunov’s one. We have then for any (K,L) ∈ InR

η′(unK)Fn,LFK,L (unK , u
n
L)−Gn,LFK,L (unK , u

n
L) ≥ 0.

II.2 Let us now establish inequalities (29)-(30) in order to get bounds for the terms |T̄h,k1 −Th,k1 | and |T̄h,k2 −Th,k2 |.
Set (K,L) ∈ InR. In order to prove (29) for a family of general numerical fluxes, we use the splitting:

GnK,L(unK , u
n
L)− ΦnK,L(unK) = θnK,L(unK , u

n
L)
(
Gn,GK,L(unK , u

n
L)− ΦnK,L(unK)

)
+
(
1− θnK,L(unK , u

n
L)
) (
Gn,LFK,L (unK , u

n
L)− ΦnK,L(unK)

)
.

Once again, we apply directly the proof of Proposition 4 for the Godunov part and get∣∣∣Gn,GK,L(unK , u
n
L)− ΦnK,L(unK)

∣∣∣ ≤ 2‖η′‖∞ max
un
L
≤c≤d≤un

K

∣∣∣Fn,GK,L(d, c)− Fn,GK,L(d, d)
∣∣∣.

As above, we deal with the Lax-Friedrichs part by using the decomposition of Fn,LFK,L involving the upwind
numerical fluxes Fn,(LF,1)

K,L and Fn,(LF,2)
K,L . For i = 1, 2, we set for any v in R

Φ
n,(LF,i)
K,L (v) =

∫ v

0

η′(σ)(f
n,(i)
K,L )′(σ)dσ

and one gets the decomposition:

Gn,LFK,L (unK , u
n
L)− ΦnK,L(unK) =

(
G
n,(LF,1)
K,L (unK , u

n
L)− Φ

n,(LF,1)
K,L (unK)

)
+
(
G
n,(LF,2)
K,L (unK , u

n
L)− Φ

n,(LF,2)
K,L (unK)

)
.

Using again the fact that any upwind numerical flux belongs to the class of Godunov’s ones, we can apply the
proof of Proposition 4 directly and get for i = 1, 2:∣∣∣Gn,(LF,i)K,L (unK , u

n
L)− Φ

n,(LF,i)
K,L (unK)

∣∣∣ ≤ 2‖η′‖∞ max
un
L
≤c≤d≤un

K

∣∣∣Fn,(LF,i)K,L (d, c)− Fn,(LF,i)K,L (d, d)
∣∣∣.

Using the same technique, we obtain similar bounds for GnK,L(unK , u
n
L)−ΦnK,L(unL). Then, by applying Propo-

sition 2 with the numerical fluxes Fn,GK,L , F
n,(LF,1)
K,L and Fn,(LF,2)

K,L , one gets the existence of constants CGBV,2,
CLF,1BV,2 and CLF,2BV,2 such that

∣∣∣E [1A(Bh,k,η,ϕG −Bh,k,η,ϕΦ )
]∣∣∣ ≤2‖η′‖∞‖∇xϕ‖∞

(
CGBV,2 + CLF,1BV,2 + CLF,2BV,2

)
h1/2 +

2T |B(0, R)(CTf k + CRf h)‖∇xϕ‖∞
ᾱ2

,

which achieves the proof since these constants depend only on R, d, ᾱ, u0, ξ, F1, F2, C
R
f , C

T
f , ‖g‖∞ and Cg.

3.5 Continuous entropy inequalities on the approximate solution uT ,k

The following proposition investigates the entropy inequalities which are satisfied by the approximate solution uT ,k.
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Proposition 6 (Continuous entropy inequalities on the discrete solution) Assume that hypotheses H1 to

H7 hold. Let T be an admissible mesh in the sense of Definition 3, N ∈ N?, T ∈ R?+ and let k =
T

N
∈ R?+ be

the time step such that the CFL Condition (18) holds for some ξ ∈ (0, 1). Then, there exists a constant CCE,
which depends only on R, d, ᾱ, u0, ξ, F1, F2, C

R
f , C

T
f , ‖g‖∞ and Cg, such that P-a.s in Ω, for any η ∈ A and for any

ϕ ∈ D+
(
Rd × [0, T )

)
:∫

Rd
η(u0)ϕ(x, 0)dx+

∫
Q

η(uT ,k)∂tϕ(x, t)dxdt+

∫
Q

Φη(x, t, uT ,k, 0).∇xϕ(x, t)dxdt

+

∫ T

0

∫
Rd
η′(uT ,k)g(uT ,k)ϕ(x, t)dxdW (t) +

1

2

∫
Q

η′′(uT ,k)g2(uT ,k)ϕ(x, t)dxdt ≥ Rh,k,η,ϕ, (40)

where for any P-measurable set A:∣∣∣E[1ARh,k,η,ϕ]∣∣∣ ≤ CCE[‖η′′‖∞‖ϕ‖∞ k1/2

h1/2
+ ‖η′‖∞‖∇xϕ‖∞h1/2 + (‖∂tϕ‖∞‖η′‖∞ + ‖ϕ‖∞‖η′′‖∞)k1/2

+ ‖η′′′‖∞‖ϕ‖∞k +

∫
B(0,R)

|u0(x)− uT ,0(x)|dx+ (‖η′‖∞‖∂t∇xϕ‖∞ + ‖η′′‖∞‖∂tϕ‖∞)k
]
. (41)

From here we will use the notation uT ,0(x) = u0
K for x ∈ K.

Proof. Using Proposition 5 , we have:

Ah,k,η,ϕ +Bh,k,η,ϕ + Ch,k,η,ϕ +Dh,k,η,ϕ ≥ R̃h,k,η,ϕ,

where:

Ah,k,η,ϕ =−
N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η(un+1
K )− η(unK)

k
ϕ(x, nk)dxdt,

Bh,k,η,ϕ =

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

Φη(x, t, unK , 0).∇xϕ(x, nk)dxdt,

Ch,k,η,ϕ =

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η′(unK)g(unK)ϕ(x, nk)dxdW (t),

Dh,k,η,ϕ =
1

2

N−1∑
n=0

∑
K∈TR

∫ (n+1)k

nk

∫
K

η′′(unK)g2(unK), ϕ(x, nk)dxdt

and R̃h,k,η,ϕ verifies inequality (39).
Let us show that inequality (40) holds for a convenient Rh,k,η,ϕ. To do this, we introduce the following quantities:

Ah,k,η,ϕ1 =

∫
Rd
η(u0(x))ϕ(x, 0)dx+

∫
Q

η(uT ,k)∂tϕ(x, t)dxdt.

Bh,k,η,ϕ1 =

∫
Q

Φη(x, t, uT ,k, 0).∇xϕ(x, t)dxdt.

Ch,k,η,ϕ1 =

∫
Q

η′(uT ,k)g(uT ,k)ϕ(x, t)dxdW (t).

Dh,k,η,ϕ
1 =

1

2

∫
Q

η′′(uT ,k)g2(uT ,k)ϕ(x, t)dxdt.

Therefore, if we set:

Rh,k,η,ϕ = R̃h,k,η,ϕ + (Ah,k,η,ϕ1 −Ah,k,η,ϕ) + (Bh,k,η,ϕ1 −Bh,k,η,ϕ) + (Ch,k,η,ϕ1 − Ch,k,η,ϕ) + (Dh,k,η,ϕ
1 −Dh,k,η,ϕ),

one obtains that P-a.s in Ω:∫
Rd
η(u0(x))ϕ(x, 0)dx+

∫
Q

η(uT ,k)∂tϕ(x, t)dxdt+

∫
Q

Φη(x, t, uT ,k, 0).∇xϕ(x, t)dxdt

+

∫
Q

η′(uT ,k)g(uT ,k)ϕ(x, t)dxdW (t) +
1

2

∫
Q

η′′(uT ,k)g2(uT ,k)ϕ(x, t)dxdt ≥ Rh,k,η,ϕ.

Now, let A be a P-measurable set. It remains to estimate E
[
1AR

h,k,η,ϕ
]
. Thanks to Proposition 5 we have a

bound on E
[
1AR̃

h,k,η,ϕ
]
. Let us analyze separately each other term. Using a discrete integration by parts we get :
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∫ T

0

∫
R
η(uT ,k)∂tϕ(x, t)dxdt =

N−1∑
n=0

∑
K∈TR

η(unK)

∫
K

{
ϕ(x, (n+ 1)k)− ϕ(x, nk)

}
dx

=−
N−1∑
n=0

∑
K∈TR

{
η(un+1

K )− η(unK)
}∫

K

ϕ(x, (n+ 1)k)dx−
∑
K∈TR

η(u0
K)

∫
K

ϕ(x, 0)dx.

Then, using the CFL Condition (18) and the point 3. of Proposition 2, we deduce that:

∣∣E[1A(Ah,k,η,ϕ −Ah,k,η,ϕ1 )]
∣∣ ≤ ∣∣∣∣[∫

K

(η(u0(x))− η(uT ,0(x)))ϕ(x, 0)dx

]∣∣∣∣
+

∣∣∣∣∣∣E
N−1∑
n=0

∑
K∈TR

η(un+1
K )− η(unK)

k

∫ (n+1)k

nk

∫
K

(
ϕ(x, (n+ 1)k − ϕ(x, nk)

)
dxdt

∣∣∣∣∣∣
≤
∫
Rd
|η(u0(x))− η(uT ,0(x))|ϕ(x, 0)dx+ ‖η′‖∞‖∂tϕ‖∞

N−1∑
n=0

∑
K∈TR

k|K|E
[
|η(un+1

K )− η(unK)|
]

≤ ‖η′‖∞‖ϕ‖∞
∫
B(0,R)

|u0(x)− uT ,0(x)|dx+ ‖η′‖∞‖∂tϕ‖∞

(√
(1− ξ)
F1 + F2

ᾱCBV,2 + CBV,3

)
k1/2.

Let us now notice that for all (x, t) ∈ Q and a, b ∈ R, we have:

|Φη(x, t, a, b)| =
∣∣∣∣∫ a

b

η′(σ − b)∂vf(x, t, σ)dσ

∣∣∣∣ ≤ ‖η′‖∞Cf |a− b|. (42)

So, one gets:∣∣∣∣∣Φη(x, t, unK , 0)

∫ (n+1)k

nk

∫
K

{
∇xϕ(x, nk)−∇xϕ(x, t)

}
dxdt

∣∣∣∣∣ ≤‖η′‖∞Cf |unK | × ‖∂t∇xϕ‖∞|K|k2.

Then, using the stability result of Proposition 1, we obtain:

∣∣∣E[1A(Bh,k,η,ϕ −Bh,k,η,ϕ1 )
]∣∣∣ ≤‖η′‖∞Cf‖∂t∇xϕ‖∞k × N−1∑

n=0

k
∑
K∈TR

|K|E
[
|unK |

]
≤‖η′‖∞Cf‖∂t∇xϕ‖∞

√
|B(0, R)|TeC

2
gT/2‖u0‖L2(Rd)k.

Using Cauchy-Schwarz inequality, the isometric property of Itô integral and finally Proposition 1, we get :

∣∣∣E[1A(Ch,k,η,ϕ − Ch,k,η,ϕ1 )
]∣∣∣ =

∣∣∣∣E[1A N−1∑
n=0

∑
K∈TR

η′(unK)g(unK)

∫ (n+1)k

nk

∫
K

{
ϕ(x, nk)− ϕ(x, t)

}
dxdW (t)

]∣∣∣∣
≤
N−1∑
n=0

√
|B(0, R)|

( ∑
K∈TR

∫
K

∫ (n+1)k

nk

E

[(
η′(unK)g(unK)

{
ϕ(x, nk)− ϕ(x, t)

})2
]
dtdx

)1/2

≤‖η′‖∞Cg‖∂tϕ‖∞
√
|B(0, R)|TeC

2
gT/2‖u0‖L2(Rd)k

1/2.

We bound the last term by using again Proposition 1:∣∣∣E[1A(Dh,k,η,ϕ −Dh,k,η,ϕ
1

)]∣∣∣ ≤1

2
‖η′′‖∞C2

g‖∂tϕ‖∞TeC
2
gT ‖u0‖2L2(Rd)k.

Therefore, thanks to the estimate (39) on R̃h,k,η,ϕ, for any P-measurable set A, we have:∣∣∣E[1ARh,k,η,ϕ]∣∣∣ ≤ CCE[‖η′′‖∞‖ϕ‖k1/2

h1/2
+ ‖η′‖∞‖∇xϕ‖∞h1/2 + (‖∂tϕ‖∞‖η′‖∞ + ‖ϕ‖∞‖η′′‖∞)k1/2 + ‖η′′′‖∞‖ϕ‖∞k

]
+ ‖η′‖∞‖ϕ‖∞

∫
B(0,R)

|u0(x)− uT ,0(x)|dx+ ‖η′‖∞‖∂tϕ‖∞

(√
(1− ξ)
F1 + F2

ᾱCBV,2 + CBV,3

)
k1/2

+ ‖η′‖∞Cf‖∂t∇xϕ‖∞
√
|B(0, R)|TeC

2
gT/2‖u0‖L2(Rd)k + ‖η′‖∞Cg‖∂tϕ‖∞

√
|B(0, R)|TeC

2
gT/2‖u0‖L2(Rd)k

1/2

+
1

2
‖η′′‖∞C2

g‖∂tϕ‖∞TeC
2
gT ‖u0‖2L2(Rd)k.
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3.6 Convergence to a measure-valued entropy solution
In order to pass to the limit in the non linear terms, we use the estimate stated in Proposition 1 which yields com-
pactness in the sense of Young measures. Following [BVW12, BCG16-2], we get the following result of convergence.

Proposition 7 (Convergence to a measure-valued entropy solution) Assume that hypotheses H1 to H7

hold. Let N ∈ N? and k =
T

N
∈ R?+ be the time step. Let (uT ,k) be the finite volume approximation defined by (9).

Then (uT ,k) converges (up to a subsequence) in the sense of Young measures to a measure-valued entropy solution
µ of (1) in the sense of Definition 2 as (h, k/h) −→ (0, 0).

Proof. Let T be an admissible mesh in the sense of Definition 3, N ∈ N? and let k =
T

N
∈ R?+ be the time step.

Since we are interested in the limit as (h, k/h) −→ (0, 0) we can suppose that the CFL Condition (18) holds for
some ξ ∈ (0, 1). Consider a P-measurable set A, η ∈ A, ϕ ∈ D+(Rd × [0, T )) and apply Proposition 6. Multiplying
the obtained inequality (40) by 1A and taking the expectation gives

E

[
1A

∫
Rd
η(u0)ϕ(x, 0)dx

]
+ E

[
1A

∫
Q

η(uT ,k)∂tϕ(x, t)dxdt

]
+ E

[
1A

∫
Q

Φη(x, t, uT ,k, 0).∇xϕ(x, t)dxdt

]
+ E

[
1A

∫ T

0

∫
Rd
η′(uT ,k)g(uT ,k)ϕ(x, t)dxdW (t)

]
+

1

2
E

[
1A

∫
Q

η′′(uT ,k)g2(uT ,k)ϕ(x, t)dxdt

]
≥E

[
1AR

h,k,η,ϕ
]
. (43)

To show the convergence of uT ,k towards a measure-valued entropy solution of our problem, we aim to pass to

the limit in the above inequality. We deduce from Proposition 6 that E
[
1AR

h,k,η,ϕ
]
−−→ 0 as

(
h,
k

h

)
→ (0, 0).

Thus, it remains to study the convergence of the left-hand side of (43). Recall that thanks to the estimate stated
in Proposition 1, uT ,k converges (up to a subsequence denoted in the same way) in the sense of Young measures to
an "entropy process" denoted by µ in L2

(
Ω×Q× (0, 1)

)
. Following [BCG16-2], one gets the following convergences

as (h, k/h) −→ (0, 0):

E

[
1A

∫
Q

η(uT ,k)∂tϕ(x, t)dxdt

]
−→ E

[
1A

∫
Q

(∫ 1

0

η(µ(x, t, α))dα

)
∂tϕ(x, t)dxdt

]
,

1

2
E

[
1A

∫
Q

η′′(uT ,k)g2(uT ,k)ϕ(x, t)dxdt

]
−→ 1

2
E

[
1A

∫
Q

(∫ 1

0

η′′(µ(x, t, α))g2(µ(x, t, α))dα

)
ϕ(x, t)dxdt

]
,

E

[
1A

∫ T

0

∫
Rd
η′(uT ,k)g(uT ,k)ϕ(x, t)dxdW (t)

]
−→ E

[
1A

∫ T

0

∫
Rd

∫ 1

0

η′(µ(x, t, α))g(µ(x, t, α))ϕ(x, t)dαdxdW (t)

]
.

Let us now study the term associated with the flux function f : we introduce

Ψ1 : (ω, x, t, u) ∈ Ω×Q× R 7→ 1A(ω)Φη(x, t, u, 0).∇xϕ(x, t) ∈ R

which is a Carathéodory function. We deduce from Proposition 1 and inequality (42) that Ψ1(., uT ,k) is bounded
in L2(Ω×Q). Hence we have, as (h, k/h)→ (0, 0):

E

[
1A

∫
Q

Φη(x, t, uT ,k, 0).∇xϕ(x, t)dxdt

]
−→ E

[
1A

∫
Q

(∫ 1

0

Φη(x, t, µ(x, t, α), 0)dα

)
.∇xϕ(x, t)dxdt

]
.

By passing to the limit in (43), we obtain that for any P-measurable set A, for any η ∈ A and for any ϕ ∈
D+(Rd × [0, T ))

0 ≤E
[
1A

∫
Rd
η(u0)ϕ(x, 0)dx

]
+ E

[
1A

∫
Q

∫ 1

0

η(µ(x, t, α))∂tϕ(x, t)dαdxdt
]

+ E
[
1A

∫
Q

∫ 1

0

Φη(x, t, µ(x, t, α), 0).∇xϕ(x, t)dαdxdt
]

+ E
[
1A

∫ T

0

∫
Rd

∫ 1

0

η′(µ(x, t, α))g(µ(x, t, α))ϕ(x, t)dαdxdW (t)
]

+ E
[
1A

1

2

∫
Q

∫ 1

0

η′′(µ(x, t, α))g2(µ(x, t, α))ϕ(x, t)dαdxdt
]
.

Hence, µ is a measure-valued entropy solution in the sense of Definition 2, which concludes the proof.
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4 Uniqueness of the solution
In the previous section, we have proven the existence of a measure-valued entropy solution of Problem (1) through
the convergence (up to a subsequence) of the finite volume approximation (uT ,k) as (h, k/h) −→ (0, 0). In order to
prove Theorem 1, we establish the uniqueness of such a measure-valued entropy solution, and that it has moreover
the property to be an entropy solution in the sense of Definition 1. The idea to get such a uniqueness result is to
adapt the method of doubling variables introduced by Kruzhkov (see [EGH00] for example) which provides a Kato
inequality. But, as explained in [BVW12], in the stochastic case, the use of Kruzhkov’s entropy is out of range
and it is also not possible to compare directly two generic measure-valued entropy solutions. For this last reason,
the uniqueness was obtained by comparing a parabolic approximation to a generic solution in [BVW12, BCG16-2].
In this work we chose a different approach : the uniqueness is obtained by comparing a generic measure-valued
entropy solution to the finite volume approximation (uT ,k). With this method, we do not need to introduce a
viscous approximation and moreover, we expect that the estimates obtained will enable us to get an error bound
in a further work.

4.1 Notations and preliminary results
We first introduce a family of smooth entropies in order to approach Krushkov’s entropies.

Definition 5 Let δ > 0. We define the function ηδ: R→ R+ by ηδ(0) = 0 and:

η′δ(a) =


1 if a > δ

sin
( π

2δ
a
)

if |a| ≤ δ
−1 if a < −δ.

Note that we can then easily show that for all a ∈ R, we have:∣∣∣ηδ(a)− |a|
∣∣∣ ≤ δ. (44)

Using the notation introduced in Section 2.2, we then have

Φηδ (x, t, a, b) =

∫ a

b

η′δ(σ − b)∂σf(x, t, σ)dσ.

As noticed previously, Φηδ (·, ·, ·, b) is then the entropy flux associated with ηδ(· − b) which vanishes at a = b. We
will also denote by Φ(·, ·, ·, b) the entropy flux associated with the Kruzhkov’s entropy | · −b| which vanishes at
a = b. We then have classically

Φ(x, t, a, b) = f(x, t, a>b)− f(x, t, a⊥b) = sgn(a− b)
[
f(x, t, a)− f(x, t, b)

]
. (45)

This entropy flux is also such that for any x, x′ ∈ B(0, R), t, t′ ∈ [0, T ] and a, a′, b ∈ R:

|Φηδ (x, t, a, b)− Φ(x, t, a, b)| ≤ 4Cfδ, (46)

|Φ(x, t, a, b)| ≤ Cf |a− b|, (47)

|Φ(x, t, a, b)− Φ(x, t, a′, b)| ≤ Cf |a− a′|, (48)

and

|Φ(x, t, a, b)− Φ(x, t′, a′, b)| ≤ 2CTf |t− t′|, (49)

|Φ(x, t, a, b)− Φ(x′, t, a′, b)| ≤ 2CRf |x− x′|. (50)

Definition 6 (Mollifier sequences) Let ρ, ρ̄ ∈ D(R) and ρ̃ ∈ D(Rd) be such that: for all (a, t, x) ∈ R× R× Rd,

Supp(ρ) ⊂ [−1; 1], ρ(a) ≥ 0, ρ(−a) = ρ(a) and
∫
R
ρ(a)da = 1.

Supp(ρ̄) ⊂ [−2; 0], ρ̄(t) ≥ 0, ρ̄(−t− 1) = ρ̄(t− 1) and
∫
R
ρ̄(t)dt = 1.

Supp(ρ̃) ⊂ B(0, 1), ρ̃(x) ≥ 0, ρ̃(−x) = ρ̃(x) and
∫
Rd
ρ̃(x)dx = 1.

We introduce ρl, ρ̄p and ρ̃q the mollifiers sequences defined for (a, t, x) ∈ R× R× Rd and l, p, q ∈ N∗ by

ρl(a) = lρ(la), ρ̄p(t) = pρ(pt) and ρ̃q(x) = qdρ̃(qx).

We then have the following elementary properties on these mollifiers.

Lemma 3 For any l, p, q ∈ N∗, the functions ρl, ρ̄p and ρ̃q verify the following properties:
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1. Supp(ρl) ⊂ [−1/l, 1/l], Supp(ρ̄p) ⊂ [−2/p, 0] and Supp(ρ̃q) ⊂ B(0, 1/q).

2. There exists a constant Cρ > 0 such that:

‖ρl‖∞ ≤ l × Cρ, ‖ρ̄p‖∞ ≤ p× Cρ, ‖ρ̃q‖∞ ≤ qd × Cρ,

and ‖ρ′l‖∞ ≤ l2 × Cρ, ‖ρ̄′p‖∞ ≤ p2 × Cρ, ‖∇ρ̃q‖∞ ≤ qd+1 × Cρ.

3. The previous constant Cρ > 0 also satisfies for any a, t, x ∈ R× R× Rd:∫
R
|ρ′l(a− b)|db ≤ l × Cρ ,

∫
R
|ρ̄′p(t− s)|ds ≤ p× Cρ ,

∫
Rd
|∇ρ̃q(x− y)|dy ≤ q × Cρ,∫

R
|a|ρl(a)da ≤ Cρ ×

1

l
,

∫
R
|t|ρ̄p(t)dt ≤ Cρ ×

1

p
and

∫
Rd
|x|ρ̃q(x)dx ≤ Cρ ×

1

q
.

4.2 Kato inequality
Proposition 8 Let ν be any measure-valued entropy solution in the sense of Definition 2 and µ be the limit in the
sense of Young measures of a subsequence of (uT ,k) given by Proposition 7. Then for all ϕ ∈ D+(Q),

E

[ ∫
Q

∫
(0,1)2

{
|µ(x, t, α)− ν(x, t, β)|∂tϕ(x, t) + Φ(x, t, µ(x, t, α), ν(x, t, β)).∇xϕ(x, t)

}
dαdβdxdt

]
≥ 0. (51)

Proof. Let ν be any measure-valued entropy solution in the sense of Definition 2, κ ∈ R, ϕ ∈ D+(Q) and R such
that Supp(ϕ) ⊂ B(0, R)×[0, T ). For any (y, s) ∈ Q, we take the test function Ψ̃y,s : (x, t) 7→ ϕ(x, t)ρ̄p(t−s)ρ̃q(x−y)
and the entropy ηδ(· − κ) in Definition 2, then by multiplying it by ρl(uT ,k(y, s)− κ), integrating w.r.t (κ, y, s) on
R×Q, applying Fubini and stochastic Fubini theorems and taking the expectation, one has:

A1 +A2 +A3 +A4 +A5 +A6 +A7 ≥ 0 (52)

where:

A1 =E

[ ∫
Q

∫
R

∫
Q

∫ 1

0

ηδ(ν(x, t, α)− κ)∂tϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)ρl(uT ,k(y, s)− κ)dαdxdtdκdyds

]
,

A2 =E

[ ∫
Q

∫
R

∫
Q

∫ 1

0

ηδ(ν(x, t, α)− κ)ϕ(x, t)ρ̄′p(t− s)ρ̃q(x− y)ρl(uT ,k(y, s)− κ)dαdxdtdκdyds

]
,

A3 =E

[ ∫
Q

∫
R

∫
Q

∫ 1

0

Φηδ (x, t, ν(x, t, α), κ).∇xϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)ρl(uT ,k(y, s)− κ)dαdxdtdκdyds

]
,

A4 =E

[ ∫
Q

∫
R

∫
Q

∫ 1

0

Φηδ (x, t, ν(x, t, α), κ).∇ρ̃q(x− y)ϕ(x, t)ρ̄p(t− s)ρl(uT ,k(y, s)− κ)dαdxdtdκdyds

]
,

A5 =E

[ ∫
Q

∫
R

∫ T

0

∫
Rd

∫ 1

0

η′δ(ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)dαdxdW (t)ρl(uT ,k(y, s)− κ)dκdyds

]
,

A6 =
1

2
E

[ ∫
Q

∫
R

∫
Q

∫ 1

0

η′′δ (ν(x, t, α)− κ)g2(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)ρl(uT ,k(y, s)− κ)dαdxdtdκdyds

]
and A7 =E

[ ∫
Q

∫
R

∫
Rd

∫ 1

0

ηδ(u0(x)− κ)ϕ(x, 0)ρ̄p(−s)ρ̃q(x− y)ρl(uT ,k(y, s)− κ)dαdxdκdyds

]
.

Indeed, we can notice that Φηδ(·−κ)(·, ·, ·, 0) is equal, up to a constant, to Φηδ (·, ·, ·, κ).
Now, by fixing (x, t, α) ∈ Q× (0, 1) and considering the test function Ψx,t : (y, s) 7→ ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y) in

the entropy formulation (40) satisfied by uT ,k, multiplying it by ρl(ν(x, t, α)− κ), then integrating it with respect
to (κ, x, t, α) on R×Q× (0, 1), applying Fubini and stochastic Fubini theorems and taking the expectation, we get:

B1 +B2 +B3 +B4 +B5 +B6 +B7 ≥ R, (53)
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where:

B2 =E

[ ∫ 1

0

∫
Q

∫
R

∫
Q

ηδ(uT ,k(y, s)− κ)ϕ(x, t)×−ρ̄′p(t− s)× ρ̃q(x− y)ρl(ν(x, t, α)− κ)dydsdκdxdtdα

]
,

B4 =E

[ ∫ 1

0

∫
Q

∫
R

∫
Q

ϕ(x, t)ρ̄p(t− s)Φηδ (y, s, uT ,k(y, s), κ).
(
−∇ρ̄m(x− y)

)
× ρl(ν(x, t, α)− κ)dydsdκdxdtdα

]
,

B5 =E

[ ∫ 1

0

∫
Q

∫
R

∫ T

0

∫
Rd
η′δ(uT ,k(y, s)− κ)ϕ(x, t)g(uT ,k(y, s))ρ̄p(t− s)ρ̃q(x− y)dydW (s)ρl(ν(x, t, α)− κ)dκdxdtdα

]
,

B6 =
1

2
E

[ ∫ 1

0

∫
Q

∫
R

∫
Q

η′′δ (uT ,k(y, s)− κ)ϕ(x, t)g2(uT ,k(y, s))ρ̄p(t− s)ρ̃q(x− y)ρl(ν(x, t, α)− κ)dydsdκdxdtdα

]
,

B1 =B3 = B7 = 0, and

R =E

[ ∫ 1

0

∫
Q

∫
R
Rh,k,ηδ(·−κ),Ψx,tρl(ν(x, t, α)− κ)dκdαdxdt

]
.

Note that Proposition 6 gives the existence of the term Rh,k,ηδ(·−κ)Ψx,t which satisfies for any (x, t) ∈ Q∣∣∣E[Rh,k,ηδ(·−κ),Ψx,t
]∣∣∣ ≤ CCE[‖η′′δ ‖∞‖Ψx,t‖∞

k1/2

h1/2
+ ‖η′δ‖∞‖∇yΨx,t‖∞h1/2 + (‖∂sΨx,t‖∞‖η′‖∞ + ‖Ψx,t‖∞‖η′′δ ‖∞)k1/2

+ ‖η′′′δ ‖∞‖Ψx,t‖∞k +

∫
B(0,R)

|u0(x)− uT ,0(x)|dx+ (‖η′δ‖∞‖∂s∇yΨx,t‖∞ + ‖η′′δ ‖∞‖∂sΨx,t‖∞)k
]
. (54)

In order to conclude, we aim to pass to the limit as h, k, δ go to 0 and p, q, l tend to +∞, but we need to be careful:
the order of the passages to the limit is crucial and h, k, p cannot be chosen independently. Hence, in this proof, we
take (hr)r∈N a sequence of mesh sizes such that lim

r→∞
hr = 0. We define then a sequence of time steps (kr)r∈N by

kr = (hr)
21. Note that (hr, kr/hr) −→ (0, 0) as r → +∞ and for r large enough, there exists ξ ∈ (0, 1) such that

the CFL Condition (18) is fulfilled. We also define a sequence (pr)r∈N by pr = (hr)
−5. For the sake of readability,

the index r will me omitted when it is not important and from now on, we will denote by C a constant whose value
may change from one line to another but which only depends on T,R, d, u0, ν, Cf , C

T
f , C

R
f , Cg, ϕ, F1, F2, ᾱ and Cρ.

In order to simplify the expressions of the bounds, we suppose from now on that h, k, δ ≤ 1 and p, q, l ≥ 1.
Summing up the preceding two inequalities, our aim is now to estimate each terms (Ai +Bi) for i ∈ {0, ..., 7} and
to pass to the limit with respect to r, l, δ, q in this order. More precisely, we prove successively that:

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

A1 +B1 = E

[∫
Q

∫
(0,1)2

|ν(x, t, α)− µ(x, t, β)|∂tϕ(x, t)dαdβdxdt

]
,

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

A2 +B2 = 0,

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

A3 +B3 = E

[ ∫
Q

∫
(0,1)2

Φ(x, t, ν(x, t, α), µ(x, t, β)).∇xϕ(x, t)dαdβdxdt

]
,

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

A4 +B4 = 0,

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

A5 +B5 +A6 +B6 = 0,

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

A7 +B7 = 0,

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

R = 0.

4.2.1 Study of A1 +B1

Firstly, since B1 = 0, we only analyze the term A1. We rewrite it in the following way:

A1 = (A1 −A1,1) + (A1,1 −A1,2) + (A1,2 −A1,3) + (A1,3 −A1,4) + (A1,4 −A1,5) +A1,5,

where:

A1,1 =E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

ηδ(ν(x, t, α)− κ)∂tϕ(x, t)ρ̃q(x− y)ρl(uT ,k(y, t)− κ)dαdxdtdκdy

]
,

A1,2 =E

[ ∫
Rd

∫
Q

∫ 1

0

ηδ(ν(x, t, α)− uT ,k(y, t))∂tϕ(x, t)ρ̃q(x− y)dαdxdtdy

]
,

A1,3 =E

[ ∫
Rd

∫
Q

∫ 1

0

|ν(x, t, α)− uT ,k(y, t)|∂tϕ(x, t)ρ̃q(x− y)dαdxdtdy

]
,

A1,4 =E

[ ∫
Q

∫ 1

0

|ν(x, t, α)− uT ,k(x, t)|∂tϕ(x, t)dαdxdt

]
,

and A1,5 =E

[ ∫
Q

∫ 1

0

∫ 1

0

|ν(x, t, α)− µ(x, t, β)|∂tϕ(x, t)dβdαdxdt

]
.
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Using a change of variables, we get

A1,1 = E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

ηδ(ν(x, s, α)− uT ,k(y, s) + ξ)∂sϕ(x, s)ρ̃q(x− y)ρl(ξ)dαdxdsdξdy

]
=Ã1,1 + Ā1,1,

where:

Ã1,1 =E

[ ∫
Q

∫
R

∫
Q

∫ 1

0

ηδ(ν(x, s, α)− uT ,k(y, s) + ξ)∂sϕ(x, s)ρ̃q(x− y)ρl(ξ)ρ̄p(t− s)dαdxdsdξdydt
]

and Ā1,1 =E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

ηδ(ν(x, s, α)− uT ,k(y, s) + ξ)∂sϕ(x, s)ρ̃q(x− y)ρl(ξ)

(
1−

∫ T

0

ρ̄p(t− s)dt
)
dαdxdsdξdy

]
.

Let us bound |A1 − Ã1,1| and |Ā1,1|. Using the fact that ‖η′δ‖∞ = 1, one has:

|A1 − Ã1,1| ≤
∣∣∣∣E[ ∫

Q

∫
R

∫
Q

∫ 1

0

{
ηδ(ν(x, t, α)− uT ,k(y, s) + ξ)− ηδ(ν(x, s, α)− uT ,k(y, s) + ξ)

}
× ∂tϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdsdξdydt

]∣∣∣∣
+

∣∣∣∣E[ ∫
Q

∫
R

∫
Q

∫ 1

0

ηδ(ν(x, s, α)− uT ,k(y, s) + ξ)
{
∂tϕ(x, t)− ∂tϕ(x, s)

}
× ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdsdξdydt

]∣∣∣∣
≤‖∂tϕ‖∞‖η′δ‖∞E

[ ∫
Q

∫
R

∫
QR

∫ 1

0

∣∣∣ν(x, t, α)− ν(x, s, α)
∣∣∣ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdsdξdydt

]
+ ‖∂ttϕ‖∞E

[ ∫
Q

∫
R

∫
QR

∫ 1

0

|t− s||ηδ(ν(x, s, α)− uT ,k(y, s) + ξ)|ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdsdξdydt

]
≤‖∂tϕ‖∞E

[ ∫
Q

∫
QR

∫ 1

0

∣∣∣ν(x, t, α)− ν(x, s, α)
∣∣∣ρ̄p(t− s)ρ̃q(x− y)dαdxdsdydt

]
+ ‖∂ttϕ‖∞ ×

2

p
E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

|ηδ(ν(x, s, α)− uT ,k(y, s) + ξ)|ρ̃q(x− y)ρl(ξ)dαdxdξdyds

]
.

The first term can be bounded as follows:

E

[ ∫
Q

∫
QR

∫ 1

0

∣∣∣ν(x, t, α)− ν(x, s, α)
∣∣∣ρ̄p(t− s)ρ̃q(x− y)dαdxdsdydt

]
≤E
[ ∫ T

0

∫
QR

∫ 1

0

∣∣∣ν(x, t, α)− ν(x, s, α)
∣∣∣ρ̄p(t− s)dαdxdsdt]

≤ε(2/p, ν,QR),

where ε(2/p, ν,QR) = sup
{
‖ν − ν(., . − τ, .)‖L1(Ω×QR×(0,1)); |τ | ≤ 2/p

}
. Since ν ∈ L1

loc(Ω × Q × (0, 1)) and

QR × (0, 1) is bounded, we have ν ∈ L1(Ω×QR × (0, 1)) and ε(2/p, ν,QR) −−→ 0 when p −−→∞.
Using (44), Proposition 1 and Lemma 3, we can bound the second term of the sum as follows:

E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

|ηδ(ν(x, t, α)− uT ,k(y, t) + ξ)|ρ̃q(x− y)ρl(ξ)dαdxdξdydt

]
=E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

|ηδ(ν(x, t, α)− uT ,k(y, t) + ξ)|ρ̃q(x− y)ρl(ξ)dαdxdξdydt

]
≤E
[ ∫

Q

∫
R

∫
B(0,R)

∫ 1

0

∣∣∣ηδ(ν(x, t, α)− uT ,k(y, t) + ξ)− |ν(x, t, α)− uT ,k(y, t) + ξ|
∣∣∣ρ̃q(x− y)ρl(ξ)dαdxdξdydt

]
+ E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

|ν(x, t, α)− uT ,k(y, t) + ξ|ρ̃q(x− y)ρl(ξ)dαdxdξdydt

]
≤δ × E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

ρ̃q(x− y)ρl(ξ)dαdxdξdydt

]
+ E

[ ∫ T

0

∫
B(0,R)

∫ 1

0

|ν(x, t, α)|d alphadxdt
]

+ E

[ ∫
Q

∫
B(0,R)

|uT ,k(y, t)|ρ̃q(x− y)dxdydt

]
+ E

[ ∫
Q

∫
R

∫
B(0,R)

|ξ|ρ̃q(x− y)ρl(ξ)dxdξdydt

]
≤δ × T |B(0, R)|+ ‖ν‖L1(Ω×QR×(0,1)) + ‖uT ,k‖L1(Ω×B(0,R+1)×(0,T )) + T |B(0, R)|Cρ

1

l

≤δ × T |B(0, R)|+
√
T |B(0, R)|‖ν‖L2(Ω×QR×(0,1)) +

√
|B(0, R+ 1)|TeTC

2
g/2‖u0‖L2(Rd) + T |B(0, R)|Cρ

1

l
.
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Therefore, one gets:

|A1 − Ã1,1| ≤‖∂tϕ‖∞ × ε(2/p, ν,QR) +
2

p
‖∂ttϕ‖∞

(
δ × T |B(0, R)|+

√
T |B(0, R)|‖ν‖L2(Ω×QR×(0,1))

+
√
|B(0, R+ 1)|TeTC

2
g/2‖u0‖L2(Rd) + T |B(0, R)|Cρ

1

l

)
≤C
(
ε(2/p, ν,QR) +

1

p

)
.

Now, we estimate |Ā1,1|. Since 1−
∫ T

0

ρ̄p(t− s)dt is equal to 0 for s ≥ 2/p and using again (44), we have:

|Ā1,1| ≤

∣∣∣∣∣E
[ ∫

Rd

∫
R

∫ 2/p

0

∫
Rd

∫ 1

0

ηδ(ν(x, s, α)− uT ,k(y, s) + ξ)∂sϕ(x, s)ρ̃q(x− y)ρl(ξ)dαdxdsdξdy

]∣∣∣∣∣
≤‖∂sϕ‖∞

{
E

[ ∫
Rd

∫
R

∫ 2/p

0

∫
B(0,R)

∫ 1

0

∣∣∣ηδ(ν(x, s, α)− uT ,k(y, s) + ξ)− |ν(x, s, α)− uT ,k(y, s) + ξ|
∣∣∣ρ̃q(x− y)

× ρl(ξ)dαdxdsdξdy
]

+ E

[ ∫
Rd

∫
R

∫ 2/p

0

∫
B(0,R)

∫ 1

0

|ν(x, s, α)− uT ,k(y, s) + ξ|ρ̃q(x− y)ρl(ξ)dαdxdsdξdy

]}

≤‖∂sϕ‖∞

{
2δ

p
|B(0, R)|+ ‖ν‖L∞(0,T ;L1(Ω×B(0,R)×(0,1))) ×

2

p

+ ‖uT ,k‖L∞(0,T ;L1(Ω×B(0,R+1))) ×
2

p
+ |B(0, R)|Cρ ×

2

lp

}

≤‖∂sϕ‖∞

{
2δ

p
|B(0, R)|+

√
|B(0, R)|‖ν‖L∞(0,T ;L2(Ω×B(0,R)×(0,1))) ×

2

p

+
√
|B(0, R+ 1)|eTC

2
g/2‖u0‖L2(Rd) ×

2

p
+ |B(0, R)|Cρ ×

2

lp

}

≤C
p
.

So, one gets:

|A1 −A1,1| ≤C
(
ε(2/p, ν,QR) +

1

p

)
.

Let us now bound |A1,1 −A1,2|. Using a change of variables and Lemma 3, we have:

|A1,1 −A1,2| =
∣∣∣∣E[ ∫

Rd

∫
R

∫
Q

∫ 1

0

{
ηδ(ν(x, t, α)− uT ,k(y, t) + ξ)− ηδ(ν(x, t, α)− uT ,k(y, t))

}
× ∂tϕ(x, t)ρ̃q(x− y)ρl(ξ)dαdxdtdξdy

]∣∣∣∣
≤‖∂tϕ‖∞‖η′δ‖∞E

[ ∫
Rd

∫
R

∫
QR

∫ 1

0

|ξ|ρ̃q(x− y)ρl(ξ)dαdxdtdξdy

]
≤‖∂tϕ‖∞‖η′δ‖∞T |B(0, R)|Cρ ×

1

l
.

So, since ‖η′δ‖∞ = 1, we obtain:

|A1,1 −A1,2| ≤C
1

l
.

Using again (44), we have:

|A1,2 −A1,3| =
∣∣∣∣E[ ∫

Rd

∫
Q

∫ 1

0

{
ηδ(ν(x, t, α)− uT ,k(y, t))− |ν(x, t, α)− uT ,k(y, t)|

}
∂tϕ(x, t)ρ̃q(x− y)dαdxdtdy

]∣∣∣∣
≤δ‖∂tϕ‖∞E

[ ∫
Rd

∫
QR

∫ 1

0

ρ̃q(x− y)dαdxdtdy

]
.

So, we obtain:
|A1,2 −A1,3| ≤ Cδ.

In order to bound |A1,3 −A1,4|, we start by rewriting A1,4:

A1,4 =E

[ ∫
Rd

∫
Q

∫ 1

0

|ν(y, t, α)− uT ,k(y, t)|∂tϕ(y, t)ρ̃q(x− y)dαdtdydx

]
.
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Using the reverse triangular inequality and Proposition 1 , one gets:

|A1,3 −A1,4| ≤
∣∣∣∣E[ ∫

Rd

∫
Q

∫ 1

0

{
|ν(x, t, α)− uT ,k(y, t)| − |ν(y, t, α)− uT ,k(y, t)|

}
∂tϕ(x, t)ρ̃q(x− y)dαdxdtdy

]∣∣∣∣
+

∣∣∣∣E[ ∫
Rd

∫
Q

∫ 1

0

|ν(y, t, α)− uT ,k(y, t)|
{
∂tϕ(x, t)− ∂tϕ(y, t)

}
ρ̃q(x− y)dαdxdtdy

]∣∣∣∣
≤‖∂tϕ‖∞E

[ ∫
Rd

∫
QR

∫ 1

0

|ν(x, t, α)− ν(y, t, α)|ρ̃q(x− y)dαdxdtdy

]
+ ‖∇x∂tϕ‖∞E

[ ∫
B(0,R+1)

∫ T

0

∫
|x−y|<1/q

∫ 1

0

|ν(y, t, α)− uT ,k(y, t)||x− y|ρ̃q(x− y)dαdxdtdy

]
≤‖∂tϕ‖∞ × ε̄(1/q, ν,QR) + ‖∇x∂tϕ‖∞ ×

1

q
E

[ ∫
B(0,R+1)

∫ T

0

∫ 1

0

|ν(y, t, α)− uT ,k(y, t)|dαdtdy
]

≤‖∂tϕ‖∞ × ε̄(1/q, ν,QR) + ‖∇x∂tϕ‖∞ ×
1

q
×
(
‖ν‖L1(Ω×B(0,R+1)×(0,T )×(0,1)) + ‖uT ,k‖L1(Ω×B(0,R+1)×(0,T ))

)
,

where ε̄(1/q, ν,QR) = sup
{
‖ν−ν(.−ξ, ., .)‖L1(Ω×QR×(0,1)); |ξ| ≤ 1/q

}
. As previously, we have ε̄(1/q, ν,QR) −−→ 0

when q −−→∞. Then, we deduce that:

|A1,3 −A1,4| ≤C
(
ε̄(1/q, ν,QR) +

1

q

)
.

In order to bound |A1,4 −A1,5|, we define

γ(k, h,QR) =

∣∣∣∣E[ ∫
Q

∫ 1

0

∫ 1

0

{
|ν(x, t, α)− uT ,k(x, t)| − |ν(x, t, α)− µ(x, t, β)|

}
∂tϕ(x, t)dβdαdxdt

]∣∣∣∣ .
Since H : (v, ω, x, t) 7−→

∫ 1

0

|ν(x, t, α) − v||∂tϕ(x, t)|dα is a Carathéodory function such that H(uT ,k, ., ., .) is

bounded in L2(Ω×Q), thus it is uniformly integrable. So, we have:

E

[ ∫
Q

H(uT ,k, ω, x, t)dxdt

]
−−→ E

[ ∫
Q

∫ 1

0

∫ 1

0

|ν(x, t, α)− µ(x, t, β)||∂tϕ(x, t)|dβdαdxdt
]
,

when r −−→ +∞, which means that γ(kr, hr, QR) = γ(h21
r , hr, QR) −−→ 0 when r −−→ +∞.

Therefore, one obtains finally from the above bounds that:

|A1 −A1,5| ≤C
(
ε(2/p, ν,QR) +

1

p
+

1

l
+ δ + ε̄(1/q, ν,QR) +

1

q
+ γ(k, h,QR)

)
≤C
(
ε(2h5

r, ν,QR) + h5
r +

1

l
+ δ + ε̄(1/q, ν,QR) +

1

q
+ γ(h21

r , hr, QR)
)
.

Finally, we can pass to the limit in the term A1 +B1 and we have:

lim sup
q→+∞

lim sup
δ→0

lim sup
l→+∞

lim sup
r→+∞

∣∣∣(A1 +B1)−A1,5

∣∣∣ ≤ 0,

hence we have proven that

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

(A1 +B1) = A1,5 = E

[ ∫
Q

∫
(0,1)2

∣∣∣ν(x, t, α)− µ(x, t, β)
∣∣∣∂tϕ(x, t)dαdβdxdt

]
.

4.2.2 Study of A2 +B2

Since ηδ and ρl are even functions, using Fubini’s theorem, we obtain:

A2 +B2 =E

[ ∫
Q

∫
R

∫
Q

∫ 1

0

ηδ(ν(x, t, α)− uT ,k(y, s) + ξ)ϕ(x, t)ρ̄′p(t− s)ρ̃q(x− y)ρl(ξ)dxdtdξdyds

]
−E
[ ∫

Q

∫
R

∫
Q

∫ 1

0

ηδ(uT ,k(y, s)− ν(x, t, α)− τ)ϕ(x, t)ρ̄′p(t− s)ρ̃q(x− y)ρl(−τ)dxdtdτdyds

]
=0.
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4.2.3 Study of A3 +B3

Since B3 = 0, we only consider A3 and we start by rewriting it in the following way:

A3 = (A3 −A3,1) + (A3,1 −A3,2) + (A3,2 −A3,3) + (A3,3 −A3,4) + (A3,4 −A3,5) +A3,5,

where:

A3 =E

[ ∫
Q

∫
R

∫
Q

∫ 1

0

Φηδ (x, t, ν(x, t, α), κ).∇xϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)ρl(uT ,k(y, s)− κ)dαdxdtdκdyds

]
,

A3,1 =E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

Φηδ (x, t, ν(x, t, α), κ).∇xϕ(x, t)ρ̃q(x− y)ρl(uT ,k(y, t)− κ)dαdxdtdκdy

]
,

A3,2 =E

[ ∫
Rd

∫
Q

∫ 1

0

Φηδ (x, t, ν(x, t, α), uT ,k(y, t)).∇xϕ(x, t)ρ̃q(x− y)dαdxdtdy

]
,

A3,3 =E

[ ∫
Rd

∫
Q

∫ 1

0

Φ(x, t, ν(x, t, α), uT ,k(y, t)).∇xϕ(x, t)ρ̃q(x− y)dαdxdtdy

]
,

A3,4 =E

[ ∫
Q

∫ 1

0

Φ(x, t, ν(x, t, α), uT ,k(x, t)).∇xϕ(x, t)dαdxdt

]
and A3,5 =E

[ ∫
Q

∫ 1

0

∫ 1

0

Φ(x, t, ν(x, t, α), µ(x, t, β)).∇xϕ(x, t)dβdαdxdt

]
.

Let us compare A3 and A3,5. We start by bounding |A3 −A3,1| thanks to the following splitting of A3,1:

A3,1 =Ã3,1 + Ā3,1,

where:

Ã3,1 =E

[ ∫
Q

∫
R

∫
Q

∫ 1

0

Φηδ (x, s, ν(x, s, α), uT ,k(y, s)− ξ).∇xϕ(x, s)ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdtdξdyds

]
,

Ā3,1 =E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

Φηδ (x, s, ν(x, s, α), uT ,k(y, s)− ξ).∇xϕ(x, s)

(
1−

∫ T

0

ρ̄p(t− s)dt
)
ρ̃q(x− y)ρl(ξ)dαdxdsdξdy

]
.

Then, using (32), we have:

|A3 − Ã3,1| ≤
∣∣∣∣E[ ∫

Q

∫
R

∫
Q

∫ 1

0

{
Φηδ (x, t, ν(x, t, α), uT ,k(y, s)− ξ)− Φηδ (x, t, ν(x, s, α), uT ,k(y, s)− ξ)

}
.∇xϕ(x, t)

× ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdtdξdyds

]∣∣∣∣
+

∣∣∣∣E[ ∫
Q

∫
R

∫
Q

∫ 1

0

{
Φηδ (x, t, ν(x, s, α), uT ,k(y, s)− ξ)− Φηδ (x, s, ν(x, s, α), uT ,k(y, s)− ξ)

}
.∇xϕ(x, t)

× ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdtdξdyds

]∣∣∣∣
+

∣∣∣∣E[ ∫
Q

∫
R

∫
Q

∫ 1

0

Φηδ (x, s, ν(x, s, α), uT ,k(y, s)− ξ).
{
∇xϕ(x, t)−∇xϕ(x, s)

}
× ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdtdξdyds

]∣∣∣∣
≤‖∇xϕ‖∞CfE

[ ∫ T

0

∫
QR

∫ 1

0

∣∣ν(x, t, α)− ν(x, s, α)
∣∣ρ̄p(t− s)dαdxdtds]

+ ‖∇xϕ‖∞2Cf |B(0, R)|E
[ ∫ T

0

∫ T

0

∣∣t− s∣∣ρ̄p(t− s)dtds]
+ ‖∂t∇xϕ‖∞ ×

2

p
E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

|Φηδ (x, s, ν(x, s, α), uT ,k(y, s)− ξ)|ρ̃q(x− y)ρl(ξ)dαdxdξdyds

]
≤‖∇xϕ‖∞Cf × ε(2/p, ν,QR) + ‖∇xϕ‖∞Cf |B(0, R)| × 4T

p

+ ‖∂t∇xϕ‖∞ ×
2

p
E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

|Φηδ (x, s, ν(x, s, α), uT ,k(y, s)− ξ)|ρ̃q(x− y)ρl(ξ)dαdxdξdyds

]
,

where ε(2/p, ν,QR) = sup
{
‖ν − ν(., .− τ, .)‖L1(Ω×QR×(0,1)); |τ | ≤ 2/p

}
, and ε(2/p, ν,QR) −−→ 0 when p −−→∞.
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Moreover, using (46) and (47), one gets:

E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

|Φηδ (x, s, ν(x, s, α), uT ,k(y, s)− ξ)|ρ̃q(x− y)ρl(ξ)dαdxdξdyds

]
≤E
[ ∫

Q

∫
R

∫
B(0,R)

∫ 1

0

|Φηδ (x, s, ν(x, s, α), uT ,k(y, s)− ξ)− Φ(x, s, ν(x, s, α), uT ,k(y, s)− ξ)|ρ̃q(x− y)ρl(ξ)dαdxdξdyds

]
+ E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

|Φ(x, s, ν(x, s, α), uT ,k(y, s)− ξ)|ρ̃q(x− y)ρl(ξ)dαdxdξdyds

]
≤4Cfδ × E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

ρ̃q(x− y)ρl(ξ)dαdxdξdyds

]
+ Cf × E

[ ∫
Q

∫
R

∫
B(0,R)

∫ 1

0

|ν(x, s, α)− uT ,k(y, s) + ξ|ρ̃q(x− y)ρl(ξ)dαdxdξdyds

]
≤4CfδT |B(0, R)|+ ‖ν‖L1(Ω×B(0,R)×(0,T )×(0,1)) + ‖uT ,k‖L1(Ω×B(0,R+1)×(0,T )) + T |B(0, R)|Cρ

1

l
.

Therefore, we obtain that:

|A3 − Ã3,1| ≤ ‖∇xϕ‖∞Cfε(2/p, ν,QR) + ‖∇xϕ‖∞|B(0, R)| × 4T

p
+ ‖∂t∇xϕ‖∞ ×

2

p

(
4CfT |B(0, R)| × δ

+
√
T |B(0, R)|‖ν‖L2(Ω×B(0,R)×(0,T )×(0,1)) +

√
|B(0, R+ 1)|TeTC

2
g/2‖u0‖L2(Rd) + T |B(0, R)|Cρ

l

)
≤C
(
ε(2/p, ν,QR) +

1

p

)
.

Now, let us estimate |Ā3,1|. Using the inequality (42), we have:

|Ā3,1| ≤E
[ ∫

Rd

∫
R

∫ 2/p

0

∫
Rd

∫ 1

0

|Φηδ (x, s, ν(x, s, α), uT ,k(y, s)− ξ)||∇xϕ(x, s)|ρ̃q(x− y)ρl(ξ)dαdxdsdξdy

]
≤‖∇xϕ‖∞Cf

2

p
×
{
‖ν‖L∞(0,T ;L1(Ω×B(0,R)×(0,1))) + ‖uT ,k‖L∞(0,T ;L1(Ω×B(0,R+1))) + |B(0, R)|Cρ

l

}
≤C 1

p
.

Finally, we get:

|A3 −A3,1| ≤C
(
ε(2/p, ν,QR) +

1

p

)
.

Since for any (x, t) ∈ Q and a, b, b′ ∈ R we have:

|Φηδ (x, t, a, b)− Φηδ (x, t, a, b′)| ≤ 5Cf |b− b′|, (55)

hence, we get:

|A3,1 −A3,2| ≤‖∇xϕ‖∞E
[ ∫

Rd

∫
R

∫
QR

∫ 1

0

5Cf |ξ|ρ̃q(x− y)ρl(ξ)dαdxdsdξdy

]
≤‖∇xϕ‖∞5CfT |B(0, R)|Cρ

l
.

Using (42), we obtain:

|A3,2 −A3,3| ≤‖∇xϕ‖∞E
[ ∫

Rd

∫
QR

(
4Cfδ

)
ρ̃q(x− y)dxdtdy

]
≤ Cδ.

Thanks to (47), (48), (49), one gets:
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|A3,3 −A3,4|

≤
∣∣∣∣E[ ∫

Rd

∫
Q

∫ 1

0

{
Φ(x, t, ν(x, t, α), uT ,k(y, t))− Φ(x, t, ν(y, t, α), uT ,k(y, t))

}
.∇xϕ(x, t)ρ̃q(x− y)dαdydtdx

]∣∣∣∣
+

∣∣∣∣E[ ∫
Rd

∫
Q

∫ 1

0

{
Φ(x, t, ν(y, t, α), uT ,k(y, t))− Φ(y, t, ν(y, t, α), uT ,k(y, t))

}
.∇xϕ(x, t)ρ̃q(x− y)dαdydtdx

]∣∣∣∣
+

∣∣∣∣E[E[ ∫
Rd

∫
Q

∫ 1

0

Φ(y, t, ν(y, t, α), uT ,k(y, t)).
{
∇xϕ(x, t)−∇xϕ(y, t)

}
ρ̃q(x− y)dαdydtdx

]∣∣∣∣
≤‖∇xϕ‖∞CRf E

[ ∫
Rd

∫
QR

∫ 1

0

|ν(x, t, α)− ν(y, t, α)|ρ̃q(x− y)dαdydtdx

]
+ 2‖∇xϕ‖∞CfE

[ ∫
Rd

∫
QR

∫ 1

0

|x− y|ρ̃q(x− y)dαdydtdx

]
+ ‖∇xxϕ‖∞CfE

[ ∫
B(0,R+1)

∫ T

0

∫
|x−y|<1/q

∫ 1

0

|ν(y, t, α)− uT ,k(y, t)||x− y|ρ̃q(x− y)dαdydtdx

]
≤‖∇xϕ‖∞Cf ε̄(1/q, ν,QR) + 2‖∇xϕ‖∞CRf T |B(0, R)| × Cρ

q

+ ‖∇xxϕ‖∞Cf ×
1

q

(
‖ν‖L1(Ω×QR+1×(0,1)) + ‖uT ,k‖L1(Ω×QR+1)

)
,

where ε̄(1/q, ν,QR) = sup
{
‖ν − ν(.− ξ, ., .)‖L1(Ω×QR×(0,1)); |ξ| ≤ 1/q

}
, and ε̄(1/q, ν,QR) −−→ 0 when q −−→∞.

Therefore, we deduce that:

|A3,3 −A3,4| ≤ C
(
ε̄(1/q, ν,QR) +

1

q

)
.

Since uT ,k tends to µ in the sense of Young measures and H̃ : (v, ω, x, t) 7→
∫ 1

0

Φ(x, t, ν(x, t, α), v).∇xϕ(x, t)dα is

a Carathéodory function such that H̃(uT ,k, ., .) is bounded in L2(Ω×Q), if one denotes

γ̄(k, h,QR)| =
∣∣∣∣E[ ∫

Q

∫ 1

0

∫ 1

0

{
Φ(x, t, ν(x, t, α), uT ,k(x, t))− Φ(x, t, ν(x, t, α), µ(x, t, β))

}
.∇xϕ(x, t)dβdαdxdt

]∣∣∣∣,
one gets that γ̄(kr, hr, QR) = γ̄(h21

r , hr, QR) −−→ 0 when r −−→ +∞. Therefore, we deduce from the above
estimates that we have:

|A3 −A3,5| ≤C
(
ε(2/p, ν,QR) +

1

p
+ δ +

1

l
+ ε̄(1/q, ν,QR) +

1

q
+ γ̄(kr, hr, QR)

)
≤C
(
ε(2h5

r, ν,QR) + h5
r + δ +

1

l
+ ε̄(1/q, ν,QR) +

1

q
+ γ̄(h21

r , hr, QR)
)
.

Finally, we can pass to the limit in the term A3 +B3 and we obtain:

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

(A3 +B3) = A3,5 = E

[ ∫
Q

∫
(0,1)2

Φ
(
x, t, ν(x, t, α), µ(x, t, β)

)
.∇xϕ(x, t)dαdβdxdt

]
.

4.2.4 Study of A4 +B4

Using the change of variables ξ = uT ,k(y, s)− κ in A4 and ξ = ν(x, t, α)− κ in B4, one gets

A4 =(A4 −A4,1) + (A4,1 −A4,2) +A4,2 and B4 = (B4 −B4,1) + (B4,1 −B4,2) + (B4,2 −B4,3) +B4,3,

where A4,1 =E

[ ∫
Q

∫
Q

∫ 1

0

Φηδ (x, t, ν(x, t, α), uT ,k(y, s)).∇ρ̃q(x− y)ϕ(x, t)ρ̄p(t− s)dαdxdtdyds
]
,

A4,2 =E

[ ∫
Q

∫
Q

∫ 1

0

Φ(x, t, ν(x, t, α), uT ,k(y, s)).∇ρ̃q(x− y)ϕ(x, t)ρ̄p(t− s)dαdxdtdyds
]
,

B4,1 =− E
[ ∫

Q

∫
Q

∫ 1

0

Φηδ (y, s, uT ,k(y, s), ν(x, t, α)).∇ρ̃q(x− y)ϕ(x, t)ρ̄p(t− s)dαdxdtdyds
]
,

B4,2 =− E
[ ∫

Q

∫
Q

∫ 1

0

Φ(y, s, uT ,k(y, s), ν(x, t, α)).∇ρ̃q(x− y)ϕ(x, t)ρ̄p(t− s)dαdxdtdyds
]

and B4,3 =− E
[ ∫

Q

∫
Q

∫ 1

0

Φ(y, t, uT ,k(y, s), ν(x, t, α)).∇ρ̃q(x− y)ϕ(x, t)ρ̄p(t− s)dαdxdtdyds
]
.

Let us estimate separately (A4 −A4,2) and (B4 −B4,3). Using (55) and Lemma 3, we obtain:

|A4 −A4,1| ≤5‖ϕ‖∞CfTE
[ ∫

Rd

∫
R

∫
B(0,R)

|ξ||∇ρ̃q(x− y)|ρl(ξ)dxdξdy
]
≤ C q

l
.

30



Similarly, we get:

|B4 −B4,1| ≤‖ϕ‖∞E
[ ∫

Q

∫
R

∫
QR

∫ 1

0

5Cf |ξ||∇ρ̃q(x− y)|ρ̄p(t− s)ρl(ξ)dαdxdtdξdyds
]
≤ C q

l
.

Using (46), one has:

|A4,1 −A4,2| ≤‖ϕ‖∞E
[ ∫

Q

∫
QR

4Cfδ|∇ρ̃q(x− y)|ρ̄p(t− s)dxdtdyds
]
≤ Cqδ.

In the same way, we obtain that:

|B4,1 −B4,2| ≤‖ϕ‖∞E
[ ∫

Q

∫
QR

{
4Cfδ

}
|∇ρ̃q(x− y)|ρ̄p(t− s)dxdtdyds

]
≤ Cqδ.

Thanks to (49), we have:

|B4,2 −B4,3| =
∣∣∣∣E[ ∫

Q

∫
Q

∫ 1

0

{
Φ(y, s, uT ,k(y, s), ν(x, t, α))− Φ(y, t, uT ,k(y, s), ν(x, t, α))

}
.∇ρ̃q(x− y)

× ϕ(x, t)ρ̄p(t− s)dαdxdtdyds
]∣∣∣∣

≤‖ϕ‖∞E
[ ∫

Q

∫
QR

2CTf |t− s||∇ρ̃q(x− y)|ρ̄p(t− s)dxdtdyds
]
≤ C q

p
.

Now, using the equality Φ(x, t, a, b) = Φ(x, t, b, a) for all (x, t, a, b) in Q× R2, we have:

A4,2 +B4,3 =E

[ ∫
Q

∫
Q

∫ 1

0

{
Φ(x, t, uT ,k(y, s), ν(x, t, α))− Φ(y, t, uT ,k(y, s), ν(x, t, α))

}
.∇ρ̃q(x− y)

× ϕ(x, t)ρ̄p(t− s)dαdxdtdyds
]
.

Moreover, using (28) and (33), we obtain:∣∣∣∣E[ ∫
Q

∫
Q

∫ 1

0

{
Φ(x, t, uT ,k(y, s), ν(y, t, α))− Φ(y, t, uT ,k(y, s), ν(y, t, α))

}
.∇ρ̃q(x− y)ϕ(x, t)ρ̄p(t− s)dαdxdtdyds

]∣∣∣∣
=

∣∣∣∣E[ ∫
Q

∫
Q

∫ 1

0

{
Φ(x, t, uT ,k(y, s), ν(y, t, α))− Φ(y, t, uT ,k(y, s), ν(y, t, α))

}
ρ̃q(x− y).∇xϕ(x, t)ρ̄p(t− s)dαdxdtdyds

]∣∣∣∣
≤ C

q
.

And so

|A4,2 +B4,3| ≤
C

q
+

∣∣∣∣E[ ∫
Q

∫
Q

∫ 1

0

({
Φ(x, t, uT ,k(y, s), ν(x, t, α))− Φ(x, t, uT ,k(y, s), ν(y, t, α))

}
−
{

Φ(y, t, uT ,k(y, s), ν(x, t, α))− Φ(y, t, uT ,k(y, s), ν(y, t, α))
})

.∇ρ̃q(x− y)ϕ(x, t)ρ̄p(t− s)dαdxdtdyds
]∣∣∣∣.

Using the expression (45) of Φ we have:

Φ(x, t, uT ,k(y, s), ν(x, t, α))− Φ(x, t, uT ,k(y, s), ν(y, t, α))

=
(
f(x, t, uT ,k(y, s)>ν(x, t, α))− f(x, t, uT ,k(y, s)>ν(y, t, α))

)
−
(
f(x, t, uT ,k(y, s)⊥ν(x, t, α))− f(x, t, uT ,k(y, s)⊥ν(y, t, α))

)
=
(
uT ,k(y, s)>ν(x, t, α)− uT ,k(y, s)>ν(y, t, α)

)
×
∫ 1

0

∂vf
(
x, t, uT ,k(y, s)>ν(y, t, α) + θ

(
uT ,k(y, s)>ν(x, t, α)− uT ,k(y, s)>ν(y, t, α)

))
dθ

+
(
uT ,k(y, s)⊥ν(x, t, α)− uT ,k(y, s)⊥ν(y, t, α)

)
×
∫ 1

0

∂vf
(
x, t, uT ,k(y, s)⊥ν(y, t, α) + θ

(
uT ,k(y, s)⊥ν(x, t, α)− uT ,k(y, s)⊥ν(y, t, α)

))
dθ,
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and, similarly:

Φ(y, t, uT ,k(y, s), ν(x, t, α))− Φ(y, t, uT ,k(y, s), ν(y, t, α))

=
(
uT ,k(y, s)>ν(x, t, α)− uT ,k(y, s)>ν(y, t, α)

)
×
∫ 1

0

∂vf
(
y, t, uT ,k(y, s)>ν(y, t, α) + θ

(
uT ,k(y, s)>ν(x, t, α)− uT ,k(y, s)>ν(y, t, α)

))
dθ

+
(
uT ,k(y, s)⊥ν(x, t, α)− uT ,k(y, s)⊥ν(y, t, α)

)
×
∫ 1

0

∂vf
(
y, t, uT ,k(y, s)⊥ν(y, t, α) + θ

(
uT ,k(y, s)⊥ν(x, t, α)− uT ,k(y, s)⊥ν(y, t, α)

))
dθ.

Since for all a, b, b′ ∈ R,
∣∣a>b− a>b′∣∣ ≤ ∣∣b− b′∣∣ and ∣∣a⊥b− a⊥b′∣∣ ≤ ∣∣b− b′∣∣, we deduce that:

|A4,2 +B4,3| ≤
C

q
+ E

[ ∫
Q

∫
QR

∫ 1

0

|ν(x, t, α)− ν(y, t, α)|
∣∣∇ρ̃q(x− y)

∣∣ϕ(x, t)ρ̄p(t− s)

×

(∣∣∣∣ ∫ 1

0

∂vf
(
x, t, uT ,k(y, s)>ν(y, t, α) + θ

(
uT ,k(y, s)>ν(x, t, α)− uT ,k(y, s)>ν(y, t, α)

))
dθ

−
∫ 1

0

∂vf
(
y, t, uT ,k(y, s)>ν(y, t, α) + θ

(
uT ,k(y, s)>ν(x, t, α)− uT ,k(y, s)>ν(y, t, α)

))
dθ

∣∣∣∣
+

∣∣∣∣ ∫ 1

0

∂vf
(
x, t, uT ,k(y, s)⊥ν(y, t, α) + θ

(
uT ,k(y, s)⊥ν(x, t, α)− uT ,k(y, s)⊥ν(y, t, α)

))
dθ

−
∫ 1

0

∂vf
(
y, t, uT ,k(y, s)⊥ν(y, t, α) + θ

(
uT ,k(y, s)⊥ν(x, t, α)− uT ,k(y, s)⊥ν(y, t, α)

))
dθ

∣∣∣∣
)
dαdxdtdyds

]
.

Using Assumption H7, we get:

|A4,2 +B4,3| ≤
C

q
+ ‖ϕ‖∞2C̃Rf E

[ ∫
Q

∫
QR

∫ 1

0

|ν(x, t, α)− ν(y, t, α)|
∣∣∇ρ̃q(x− y)

∣∣ρ̄p(t− s)|x− y|dαdxdtdyds]
≤C

(
1

q
+ ε̄(1/q, ν,QR)

)
,

where ε̄(1/q, ν,QR) = sup
{
‖ν − ν(.− ξ, ., .)‖L1(Ω×QR×(0,1)); |ξ| ≤ 1/q

}
.

Therefore, thanks to the above bounds, we deduce that:∣∣∣A4 +B4

∣∣∣ ≤C(qδ +
q

l
+ qh5

r +
1

q
+ ε̄(1/q, ν,QR)

)
.

Finally, we obtain:

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

A4 +B4 = 0.

4.2.5 Study of A7 +B7

Since B7 = 0, we consider:

A7 =E

[ ∫
Q

∫
R

∫
Rd

∫ 1

0

ηδ(u0(x)− uT ,k(y, s) + ξ)ϕ(x, 0)ρ̄p(−s)ρ̃q(x− y)ρl(ξ)dαdxdξdyds

]
.

In order to show the convergence of A7 to 0, we use a new entropy formulation. We fix x ∈ Rd and the idea is to
apply Proposition 6 to the entropy ηδ(· − κ) and the following test function:

(y, s) 7→ Ψ̄x(y, s) = ϕ(x, 0)ρ̃q(x− y)

∫ ∞
s

ρ̄p(−τ)dτ.

Due to Proposition 6, for any x in Rd there exists Rh,k,ηδ(·−κ),Ψ̄x which satisfies (41) and such that P almost surely
in Ω: ∫

Rd
ηδ(u0(y)− κ)ϕ(x, 0)ρ̃q(x− y)dy +

∫
Q

ηδ(uT ,k(y, s)− κ)ϕ(x, 0)ρ̃q(x− y)

(∫ ∞
s

ρ̄p(−τ)dτ

)′
dyds

+

∫
Q

Φηδ (y, s, uT ,k(y, s), κ)ϕ(x, 0))
(
−∇ρ̃q(x− y)

)(∫ ∞
s

ρ̄p(−τ)dτ

)
dyds

+

∫ T

0

∫
Rd
η′δ(uT ,k(y, s)− κ)g(uT ,k(y, s))ϕ(x, 0)ρ̃q(x− y)

(∫ ∞
s

ρ̄p(−τ)dτ

)
dydW (s)

+
1

2

∫
Q

η′′δ (uT ,k(y, s)− κ)g2(uT ,k(y, s))ϕ(x, 0)ρ̃q(x− y)

(∫ ∞
s

ρ̄p(−τ)dτ

)
dyds ≥ Rh,k,ηδ(·−κ),Ψ̄x .
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Multiplying it by ρl(u0(x)− κ) then integrating w.r.t x on Rd, κ on R and taking the expectation, we get:

D2 +D4 +D5 +D6 +D7 ≥ R̃, (56)

where:

D2 =E

[ ∫
Rd

∫
R

∫
Q

ηδ(uT ,k(y, s)− κ)ϕ(x, 0)ρ̃q(x− y)ρl(u0(x)− κ)

(∫ ∞
s

ρ̄p(−τ)dτ

)′
dydsdκdx

]
,

D4 =E

[ ∫
Rd

∫
R

∫
Q

Φηδ (y, s, uT ,k(y, s), κ).∇ρ̃q(x− y)ϕ(x, 0)ρl(u0(x)− κ)

(∫ ∞
s

ρ̄p(−τ)dτ

)
dydsdκdx

]
,

D5 =E

[ ∫
Rd

∫
R

∫
Rd

∫ T

0

η′δ(uT ,k(y, s)− κ)ϕ(x, 0)g(uT ,k(y, s))ρ̃q(x− y)ρl(u0(x)− κ)

(∫ ∞
s

ρ̄p(−τ)dτ

)
dW (s)dydκdx

]
,

D6 =
1

2
E

[ ∫
Rd

∫
R

∫
Q

η′′δ (uT ,k(y, s)− κ)ϕ(x, 0)g2(uT ,k(y, s))ρ̃q(x− y)ρl(u0(x)− κ)

(∫ ∞
s

ρ̄p(−τ)dτ

)
dydsdκdx

]
,

D7 =

∫
Rd

∫
R

∫
Rd
ηδ(u0(y)− κ)ϕ(x, 0)ρ̃q(x− y)ρl(u0(x)− κ)dydκdx

and R̃ =E

[ ∫
Rd

∫
R
Rh,k,ηδ(·−κ),Ψ̄xρl(u0(x)− κ)dκdx

]
.

Since ηδ and ρl are even functions, one shows that D2 = −A7, then

0 ≤ A7 ≤ D4 +D5 +D6 +D7 − R̃.

In view to show the convergence of A7 to 0, we prove that each term in the right hand side of inequality (56)
converges to 0 when passing to the limit successively with respect to r, l, δ and q.
Using the fact that Supp(ρ̄p) ⊂ [−2/p, 0], (42) and Proposition 1, we have:

|D4| ≤E
[ ∫

Rd

∫
R

∫ 2/p

0

∫
Rd
|Φηδ (y, s, uT ,k(y, s), u0(x)− ξ)||∇ρ̃q(x− y)||ϕ(x, 0)|ρl(ξ)dydsdξdx

]
≤ C q

p
.

Thanks to Cauchy-Schwarz inequality, the isometric property of the Itô integral, Jensen inequality, the fact that g
is a bounded function and that ‖η′δ‖∞ = 1, one gets:

|D5| ≤
∣∣∣∣ ∫

Rd

∫
R

{
E

[(∫ T

0

η′δ(uT ,k(y, s)− u0(x) + ξ)g(uT ,k(y, s))
(∫ ∞

s

ρ̄p(−τ)dτ
)
dW (s)

)2]}1/2

×
(∫

Rd
ϕ(x, 0)ρ̃q(x− y)ρl(ξ)dx

)
dξdy

∣∣∣∣
≤
∣∣∣∣ ∫

Rd

∫
R
E

{[∫ T

0

η′2δ (uT ,k(y, s)− u0(x) + ξ)g2(uT ,k(y, s))
(∫ ∞

s

ρ̄p(−τ)dτ
)2

ds

]}1/2

×
(∫

Rd
ϕ(x, 0)ρ̃q(x− y)ρl(ξ)dx

)
dξdy

∣∣∣∣
≤C 1

p1/2
.

Moreover, since g is a bounded function and ‖η′′δ ‖∞ =
π

2δ
, one has:

|D6| =
∣∣∣∣12E

[ ∫
Rd

∫
R

∫
Q

η′′δ (uT ,k(y, s)− κ)ϕ(x, 0)g2(uT ,k(y, s))ρ̃q(x− y)ρl(u0(x)− κ)

(∫ ∞
s

ρ̄p(−τ)dτ

)
dydsdκdx

]∣∣∣∣
≤C 1

pδ
.

Thanks to (44) and the triangular inequality, we get:

|D7| ≤‖ϕ(., 0)‖∞
{∫

Rd

∫
R

∫
B(0,R)

∣∣∣ηδ(u0(y)− u0(x) + ξ)− |u0(y)− u0(x) + ξ|
∣∣∣ρ̃q(x− y)ρl(ξ)dxdξdy

+

∫
Rd

∫
R

∫
B(0,R)

|u0(y)− u0(x) + ξ|ρ̃q(x− y)ρl(ξ)dxdξdy

}
≤‖ϕ(., 0)‖∞

{
δ|B(0, R)|+ 1

l
|B(0, R)|+ ε̄(1/q, u0, B(0, R))

}
≤C
(
δ +

1

l
+ ε̄(1/q, u0, B(0, R))

)
,

33



where ε̄(1/q, u0, B(0, R)) = sup
{
‖u0 − u0(.− ξ)‖L1(B(0,R)); |ξ| ≤ 1/q

}
.

Let us bound R̃. For each x in Rd, due to Proposition 6, the expression of Ψ̄x and Lemma 3 we have∣∣∣E [Rh,k,ηδ(·−κ),Ψ̄x
]∣∣∣ ≤ CCE[‖η′′δ ‖∞‖Ψ̄x‖∞

k1/2

h1/2
+ ‖η′δ‖∞‖∇yΨ̄x‖∞h1/2 + (‖∂sΨ̄x‖∞‖η′δ‖∞ + ‖Ψ̄x‖∞‖η′′δ ‖∞)k1/2

+ ‖η′′′δ ‖∞‖Ψ̄x‖∞k +

∫
B(0,R)

|u0(x)− uT ,0(x)|dx+ (‖η′δ‖∞‖∂s∇yΨ̄x‖∞ + ‖η′′δ ‖∞‖∂sΨ̄x‖∞)k
]

≤ C

(
qd

δ

k1/2

h1/2
+ qd+1h1/2 + pqdk1/2 +

qd

δ2
k +

∫
B(0,R)

|u0(x)− uT ,0(x)|dx+ pqd+1k +
pqd

δ
k

)
.

We deduce the following bound for R̃ by integrating with respect to κ and x the above inequality:

|R̃| =E
[ ∫

B(0,R)

∫
R
R̃h,k,ηδ(·−κ),Ψ̄xρl(u0(x)− κ)dκdx

]

≤C

(
qd

δ

k1/2

h1/2
+ qd+1h1/2 + pqdk1/2 +

qd

δ2
k +

∫
B(0,R)

|u0(x)− uT ,0(x)|dx+ pqd+1k +
pqd

δ
k

)
.

Finally, since
0 ≤ A7 +B7 ≤ |D4 +D5 +D6 +D7|+ |R̃|,

and since we have chosen to take p = pr = (hr)
−5 and k = kr = h21

r , one gets that

|A7 +B7| ≤ C
( q
p

+
1

p1/2
+

1

pδ
+ δ +

1

l
+ ε̄(1/q, u0, B(0, R))

+
qd

δ

k1/2

h1/2
+ qd+1h1/2 + pqdk1/2 +

qd

δ2
k +

∫
B(0,R)

|u0(x)− uT ,0(x)|dx+ pqd+1k +
pqd

δ
k
)

≤ C
(
qh5
r + h5/2

r +
h5
r

δ
+ δ +

1

l
+ ε̄(1/q, u0, B(0, R)) +

h10
r q

d

δ
+ h1/2

r qd+1

+ qdh11/2
r +

h21
r q

d

δ2
+ qd+1h16

r + qd
h16
r

δ
+

∫
B(0,R)

∣∣uT ,0(y)− u0(y)
∣∣dy).

Using the fact that u0 ∈ L2(Rd) and passing successively to the superior limit with respect to r, l, δ and q, one
concludes that

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

A7 +B7 = 0.

4.2.6 Study of the stochastic terms: A5 +B5 +A6 +B6

Let us now turn to the study of terms coming from the stochastic integral. Since Supp(ρ̄p) ⊂ R−, and using the
martingale property of the stochastic integral, we have:

B5 =E

[ ∫
Q

∫ 1

0

∫
R

∫
Rd

∫ T

0

η′δ(uT ,k(y, s)− κ)g(uT ,k(y, s))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)dW (s)dyρl(ν(x, t, α)− κ)dκdαdxdt

]
=

∫
Q

∫
R
E

[ ∫ T

t

∫
Rd
η′δ(uT ,k(y, s)− κ)g(uT ,k(y, s))ρ̄p(t− s)ρ̃q(x− y)dydW (s)

∫ 1

0

ϕ(x, t)ρl(ν(x, t, α)− κ)dα

]
dκdxdt

=0.

By the same type of martingale arguments and since Supp(ρ̄p(.− s)) ∩ [0, T ] ⊂ [(s− 2/p)+, s], one gets that:

A5 =E

[ ∫
Q

∫ 1

0

∫
R

∫
Rd

∫ s

(s−2/p)+
η′δ(ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)dW (t)ρl(uT ,k(y, s)− κ)dκdxdαdsdy

]
=E

[ ∫
Q

∫ 1

0

∫
R

∫
Rd

∫ s

(s−2/p)+
η′δ(ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)dW (t)

]
×
[
ρl(uT ,k(y, s)− κ)− ρl(uT ,k(y, (s− 2/p)+)− κ)

]
dκdxdαdsdy

]
.

Set s ∈ (0, T ) and p ∈ N∗, thus there exist n1, n2 ∈ {0, ..., N − 1} such that s ∈ [n1k; (n1 + 1)k) and (s− 2/p)+ ∈
[n2k; (n2 + 1)k). One has then uT ,k(y, s) = ūT ,k(y, n1k) and uT ,k(y, (s − 2/p)+) = ūT ,k(y, n2k). Remind at this
point that ūT ,k is the solution of the following equation:

dūT ,k(y, t) = A(y, t)dt+ g(uT ,k(y, t))dW (t),

where A is defined on Q× Ω by:

A(y, t) = − 1

|K|
∑

L∈N (K)

|σK,L|FnK,L(unK , u
n
L) = − 1

|K|
∑

L∈N (K)

|σK,L|
{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
}
,
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for y ∈ K and t ∈ [nk; (n+ 1)k].
Note that if n1 = n2, thus uT ,k(y, s) = uT ,k(y, (s − 2/p)+), so A5 = B5 = 0. Else, if n1 > n2, we have

(n1 − n2)k <
2

p
+ k, and by applying Itô’s formula to ρl(ūT ,k(y, .)− κ) between n2k and n1k and using a theorem

of derivation of stochastic integrals with respect to parameters (see for example [Ku82] Theorem 7.6), one gets:

ρl(ūT ,k(y, n1k)− κ)− ρl(ūT ,k(y, n2k)− κ)

=

∫ n1k

n2k

ρ′l(ūT ,k(y, τ)− κ)A(y, τ)dτ +

∫ n1k

n2k

ρ′l(ūT ,k(y, τ)− κ)g(uT ,k(y, τ))dW (τ)

+
1

2

∫ n1k

n2k

ρ′′l (ūT ,k(y, τ)− κ)g2(uT ,k(y, τ))dτ

=− d

dκ

(∫ n1k

n2k

ρl(ūT ,k(y, τ)− κ)A(y, τ)dτ +

∫ n1k

n2k

ρl(ūT ,k(y, τ)− κ)g(uT ,k(y, τ))dW (τ)

+
1

2

∫ n1k

n2k

ρ′l(ūT ,k(y, τ)− κ)g2(uT ,k(y, τ))dτ

)
.

So, we obtain that:

A5 +B5 =−E
[ ∫

Q

∫ 1

0

∫
R

∫
Rd

∫ s

(s−2/p)+
η′′δ (ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)dW (t)

×
(∫ n1k

n2k

ρl(ūT ,k(y, τ)− κ)A(y, τ)dτ +

∫ n1k

n2k

ρl(ūT ,k(y, τ)− κ)g(uT ,k(y, τ))dW (τ)

+
1

2

∫ n1k

n2k

ρ′l(ūT ,k(y, τ)− κ)g2(uT ,k(y, τ))dτ

)
dxdκdαdsdy

]
=I1 + I2 + I3,

where:

I1 =− E
[ ∫

Q

∫ 1

0

∫
R

∫
Rd

∫ s

(s−2/p)+
η′′δ (ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)dW (t)

×
∫ n1k

n2k

ρl(ūT ,k(y, τ)− κ)A(y, τ)dτdxdκdαdsdy

]
,

I2 =− E
[ ∫

Q

∫ 1

0

∫
R

∫
Rd

∫ s

(s−2/p)+
η′′δ (ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)dW (t)

×
∫ n1k

n2k

ρl(ūT ,k(y, τ)− κ)g(uT ,k(y, τ))dW (τ)dxdκdαdsdy

]
and I3 =− E

[ ∫
Q

∫ 1

0

∫
R

∫
Rd

∫ s

(s−2/p)+
η′′δ (ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)dW (t)

× 1

2

∫ n1k

n2k

ρ′l(ūT ,k(y, τ)− κ)g2(uT ,k(y, τ))dτdxdκdαdsdy

]
.
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Using the isometric property of the Itô integral and the fact that Supp(η′′δ ) ⊂ [−δ; δ], we find

|I1| ≤
∫
Rd

∫ T

0

∫
R

∫
Rd

{
E

[(∫ s

(s−2/p)+

∫ 1

0

η′′δ (ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)dαdW (t)

)2]}1/2

×

{
E

[(∫ n1k

n2k

ρl(ūT ,k(y, τ)− κ)A(y, τ)dτ

)2]}1/2

dxdκdsdy

≤
∫
Rd

∫ T

0

∫
R

∫
Rd

{
E

[ ∫ s

(s−2/p)+

∫ 1

0

η′′2δ (ν(x, t, α)− κ)g2(ν(x, t, α))ϕ2(x, t)ρ̄2
p(t− s)ρ̃2

q(x− y)dαdt

]}1/2

×
√

(n1 − n2)k

{
E

[ ∫ n1k

n2k

ρ2
l (ūT ,k(y, τ)− κ)A2(y, τ)dτ

]}1/2

dxdκdsdy

≤Cpqdl
√
k +

2

p

(∫ T

0

∫ 1

0

∫
B(0,R)

∫
|x−y|<1/q

∫
R
E

[ ∫ s

(s−2/p)+
η′′2δ (ν(x, t, α)− κ)g2(ν(x, t, α))dt

]
dκdydxdαds

+

∫ T

0

∫
B(0,R)

∫
|x−y|<1/q

∫
R
E

[ ∫ n1kr

n2kr

1{|ūT ,k(y,τ)−κ|<1/l}A
2(y, τ)dτ

]
dκdydxds

)

≤C pq
dl

δ2
δ

√
k +

2

p

∫ T

0

∫ 1

0

∫
B(0,R)

∫
|x−y|<1/q

E

[ ∫ s

(s−2/p)+
g2(ν(x, t, α))dt

]
dydxdαds

+ Cpqd
1

qd

√
k +

2

p

∫ T

0

∫
B(0,R+1)

E

[ ∫ n1k

n2k

A2(y, τ)dτ

]
dyds.

The first right-hand side term can be dominated in the following way:

C
pqdl

δ

√
k +

2

p

∫ T

0

∫ 1

0

∫
B(0,R)

∫
|x−y|<1/q

E

[ ∫ s

(s−2/p)+
g2(ν(x, t, α))dt

]
dydxdαds

≤C pq
dl

δ

√
k +

2

p

2

pqd

∫ T

0

∫ 1

0

∫
B(0,R)

E

[
g2(ν(x, s, α))

]
dxdαds

≤C l

δ

√
k +

2

p
.

For the second one, we propose to decompose the interval (n2k, n1k). Using Cauchy-Schwarz inequality, the Lip-
diag property of (FnK,L) (stated in Definition 4), the property of the mesh (5), the stability result of Proposition 1,

and the inequality (n1 − n2)k <
2

p
+ k, we obtain that:∫ T

0

∫
B(0,R+1)

E

[ ∫ n1k

n2k

A2(y, τ)dτ

]
dyds

=E

[ ∫ T

0

∑
K∈TR+1

∫
K

n1−1∑
n=n2

∫ (n+1)kr

nkr

(
1

|K|
∑

L∈N (K)

|σK,L|
{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
})2

dτdyds

]

≤ T

ᾱ2h
E

[ n1−1∑
n=n2

k
∑

K∈TR+1

∑
L∈N (K)

|σK,L|
{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
}2
]

=
T

ᾱ2h

n1−1∑
n=n2

k
∑

(K,L)∈In
R+1

|σK,L|E
[{
FnK,L(unK , u

n
L)− FnK,L(unK , u

n
K)
}2

+
{
FnK,L(unK , u

n
L)− FnK,L(unL, u

n
L)
}2
]

≤ T

ᾱ2h

n1−1∑
n=n2

k
∑

(K,L)∈In
R+1

|σK,L|E
[
(F2)2

∣∣∣unK − unL∣∣∣2 + (F1)2
∣∣∣unK − unL∣∣∣2]

≤2T
(F1)2 + (F2)2

ᾱ2h

n1−1∑
n=n2

k
∑

K∈TR+1

∑
L∈N (K)

|σK,L|E
[(
unK
)2]

≤8T
(F1)2 + (F2)2

ᾱ4
eC

2
gT ‖u0‖2L2(Rd)

1

h2

(
2

p
+ k

)
.

Therefore, we have:

|I1| ≤C
(
l
h

5/2
r

δ
+ h1/2

r

)
.

Using the same type of arguments, we obtain the following estimate on I3:

|I3| ≤C
(
l2

δ
+ l

)
p1/2

(
1

p
+ k

)
≤ Ch5/2

r

(
l2

δ
+ l

)
.
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It remains to consider I2. The idea is to compare it later on with A6 + B6. We start by decomposing I2 in the
following way

I2 =− E
[ ∫

Q

∫ 1

0

∫
R

∫
Rd

∫ s

(s−2/p)+
η′′δ (ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)dW (t)

×
∫ n1kr

n2kr

ρl(ūT ,k(y, τ)− κ)g(uT ,k(y, τ))dW (τ)dxdκdαdsdy

]
=(I2 − Ĩ2) + Ĩ2,

where:

Ĩ2 =−
∫ 1

0

∫
Q

∫
R

∫
Rd
E

[(∫ s

(s−2/p)+
η′′δ (ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)dW (t)

)

×
(∫ n1kr

n2kr

ρl(uT ,k(y, τ)− κ)g(uT ,k(y, τ))dW (τ)

)]
ρ̃q(x− y)dxdκdydsdα.

Using the martingale property of the stochastic integral and Itô isometry, since n2kr ≤ (s− 2/p)+ ≤ n1kr ≤ s, one
gets thanks to Proposition 3

|I2 − Ĩ2| =
∣∣∣∣ ∫ 1

0

∫
Q

∫
R

∫
Rd
E

[ ∫ n1kr

(s−2/p)+
η′′δ (ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρ̃q(x− y)

×
{
ρl
(
ūT ,k(y, t)− κ

)
− ρl

(
uT ,k(y, t)− κ

)}
g(uT ,k(y, t))dt

]
dydκdxdsdα

≤Cδl2k1/2
r .

By denoting

X̃(x, t, α, y, s) = η′′δ (ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρ̄p(t− s)ρl(uT ,k(y, t)− κ)g(uT ,k(y, t))ρ̃q(x− y),

and using again the isometry and martingale properties of Itô integral, the fact that supp(ρp) ⊂ [− 2
p
, 0], one can

decompose Ĩ2 in the following manner:

Ĩ2 =−
∫ 1

0

∫
Q

∫
R

∫
B(0,R)

E

[ ∫ T

0

X̃(x, t, α, y, s)dt

]
dxdκdydsdα+

∫ 1

0

∫
Q

∫
R

∫
B(0,R)

E

[ ∫ s

n1kr

X̃(x, t, α, y, s)dt

]
dxdκdydsdα

=(Ĩ2 − Ī2) + (Ī2 − Ī2,1) + Ī2,1,

where:

Ī2 =−
∫ 1

0

∫
Q

∫
R

∫
B(0,R)

∫ T

0

E

[
X̃(x, t, α, y, s)

]
dtdxdκdydsdα

=−
∫ 1

0

∫
Rd

∫
R

∫
QR

E

[
η′′δ (ν(x, t, α)− κ)g(ν(x, t, α))ϕ(x, t)ρl(uT ,k(y, t)− κ)g(uT ,k(y, t))ρ̃q(x− y)

]
dtdxdκdydα

and Ī2,1 =−
∫ 1

0

∫
Rd

∫
QR

E

[
η′′δ (ν(x, t, α)− uT ,k(y, t))g(ν(x, t, α))g(uT ,k(y, t))ϕ(x, t)ρ̃q(x− y)

]
dtdxdydα.

Since 0 ≤ s− n1k ≤ k, we have:

|Ĩ2 − Ī2| =
∣∣∣∣ ∫ 1

0

∫
Q

∫
R

∫
B(0,R)

E

[ ∫ s

n1kr

X̃(x, t, α, y, s)dt

]
dxdκdydsdα

∣∣∣∣ ≤ C pkδ .
Using the fact that ‖η′′′δ ‖∞ =

π2

4δ2
, we get:

|Ī2 − Ī2,1| =
∣∣∣∣ ∫ 1

0

∫
Rd

∫
R

∫
QR

E

[
η′′δ (ν(x, t, α)− uT ,k(y, t) + ξ)g(ν(x, t, α))g(uT ,k(y, t))ϕ(x, t)ρl(ξ)ρ̃q(x− y)

]
dtdxdξdydα

−
∫ 1

0

∫
Rd

∫
QR

E

[
η′′δ (ν(x, t, α)− uT ,k(y, t))g(ν(x, t, α))g(uT ,k(y, t))ϕ(x, t)ρ̃q(x− y)

]
dtdxdydα

∣∣∣∣
≤C 1

lδ2
.

Therefore, one has:

|I2 − Ī2,1| ≤C
(
l2k1/2δ +

pk

δ
+

1

lδ2

)
.
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Now let us show that |A6 +B6 + Ī2,1| → 0 when passing to the limit successively with respect to r, l, δ, q. Using the
parity of η′′δ and ρl we decompose A6 and B6 in the following way:

A6 = (A6 −A6,1) + (A6,1 −A6,2) +A6,2 and B6 = (B6 −B6,1) + (B6,1 −B6,2) +B6,2,

where:

A6,1 =
1

2
E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

η′′δ (ν(x, t, α)− uT ,k(y, t) + ξ)g2(ν(x, t, α))ϕ(x, t)ρ̃q(x− y)ρl(ξ)dαdxdtdξdy

]
,

A6,2 =
1

2
E

[ ∫
Rd

∫
Q

∫ 1

0

η′′δ (ν(x, t, α)− uT ,k(y, t))g2(ν(x, t, α))ϕ(x, t)ρ̃q(x− y)dαdxdtdy

]
and B6,1 =

1

2
E

[ ∫ 1

0

∫
Rd

∫
R

∫
Q

η′′δ (ν(x, t, α)− uT ,k(y, t) + ξ)g2(uT ,k(y, t))ϕ(x, t)ρ̃q(x− y)ρl(ξ)dxdtdξdydα

]
,

B6,2 =
1

2
E

[ ∫ 1

0

∫
Rd

∫
Q

η′′δ (ν(x, t, α)− uT ,k(y, t))g2(uT ,k(y, t))ϕ(x, t)ρ̃q(x− y)dxdtdydα

]
.

The idea is to show that |A6 −A6,2|, |B6 −B6,2| and |A6,2 +B6,2 + Ī2,1| tend to 0.

We start by rewriting A6,1 = Ã6,1 + Ā6,1, where

Ã6,1 =
1

2
E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

∫ T

0

η′′δ (ν(x, s, α)− uT ,k(y, s) + ξ)g2(ν(x, s, α))ϕ(x, s)ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dtdαdxdsdξdy

]
and

Ā6,1 =
1

2
E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

η′′δ (ν(x, s, α)− uT ,k(y, s) + ξ)g2(ν(x, s, α))ϕ(x, s)

(
1−

∫ T

0

ρ̄p(t− s)dt
)
ρ̃q(x− y)ρl(ξ)dαdxdsdξdy

]
.

Using the same type of arguments as previously, the change of variables κ = ξ − uT ,k(y, s) in A6 and the fact that

‖η′′′δ ‖∞ =
π2

4δ2
, we obtain the following estimates:

2|A6 − Ã6,1| ≤E
[ ∫

Q

∫
R

∫
QR

∫ 1

0

∣∣∣η′′δ (ν(x, t, α)− uT ,k(y, s) + ξ)− η′′δ (ν(x, s, α)− uT ,k(y, s) + ξ)
∣∣∣ϕ(x, t)g2(ν(x, t, α))

× ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdtdξdyds

]
+ E

[ ∫
Q

∫
R

∫
QR

∫ 1

0

|η′′δ (ν(x, s, α)− uT ,k(y, s) + ξ)|
∣∣∣ϕ(x, t)− ϕ(x, s)

∣∣∣g2(ν(x, t, α))

× ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdtdξdyds

]
+ E

[ ∫
Q

∫
R

∫
QR

∫ 1

0

|η′′δ (ν(x, s, α)− uT ,k(y, s) + ξ)|ϕ(x, s)
∣∣∣g2(ν(x, t, α))− g2(ν(x, s, α))

∣∣∣
× ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dαdxdtdξdyds

]
≤ π2

4δ2
‖ϕ‖∞‖g‖2∞E

[ ∫ T

0

∫ 1

0

∫
QR

∣∣∣ν(x, t, α)− ν(x, s, α)
∣∣∣ρ̄p(t− s)dxdtdαds]

+
π

2δ
‖∂tϕ‖∞‖g‖2∞|B(0, R)|E

[ ∫ T

0

∫ T

0

|t− s|ρ̄p(t− s)dtds
]

+
π

δ
‖ϕ‖∞‖g‖∞CgE

[ ∫ T

0

∫ 1

0

∫
QR

∣∣∣ν(x, t, α)− ν(x, s, α)
∣∣∣ρ̄p(t− s)dxdtdαds]

≤C
(ε(2/p, ν,QR)

δ2
+

1

pδ

)
,

where ε(2/p, ν,QR) = sup
{
‖ν − ν(., .− τ, .)‖L1(Ω×QR×(0,1)); |τ | ≤ 2/p

}
.

Since
∫ T

0

ρ̄p(t− s)dt = 1 if s ≥ 2/p, one gets:

2|Ā6,1| ≤

∣∣∣∣∣E
[ ∫

Rd

∫
R

∫
B(0,R)

∫ 2/p

0

∫ 1

0

η′′δ (ν(x, s, α)− uT ,k(y, s) + ξ)g2(ν(x, s, α))ϕ(x, s)ρ̃q(x− y)ρl(ξ)dαdxdsdξdy

]∣∣∣∣∣
≤‖ϕ‖∞‖g‖2∞‖η′′δ ‖∞E

[ ∫
Rd

∫
R

∫ 2/p

0

∫
B(0,R)

ρ̃q(x− y)ρl(ξ)dxdsdξdy

]
≤C 1

pδ
.
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Moreover:

2|A6,1 −A6,2| =
∣∣∣∣E[ ∫

Rd

∫
R

∫
Q

∫ 1

0

η′′δ (ν(x, t, α)− uT ,k(y, t) + ξ)g2(ν(x, t, α))ϕ(x, t)ρ̃q(x− y)ρl(ξ)dαdxdtdξdy

]
− E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

η′′δ (ν(x, t, α)− uT ,k(y, t))g2(ν(x, t, α))ϕ(x, t)ρ̃q(x− y)ρl(ξ)dαdxdtdξdy

]∣∣∣∣
≤π

2

4
‖ϕ‖∞‖g‖2∞T |B(0, R)| × 1

lδ2
.

Finally,

|A6 −A6,2| ≤ |A6 − Ã6,1|+ |Ā6,1|+ |A6,1 −A6,2| ≤ C
(ε(2/p, ν,QR)

δ2
+

1

pδ
+

1

lδ2

)
.

As previously, we start by decomposing B6,1 in the following way: B6,1 = B̃6,1 + B̄6,1, where:

B̃6,1 =
1

2
E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

η′′δ (ν(x, s, α)− uT ,k(y, s) + ξ)g2(uT ,k(y, s))ϕ(x, s)ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dxdsdξdydα

]
and

B̄6,1 =
1

2
E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

η′′δ (ν(x, s, α)− uT ,k(y, s) + ξ)g2(uT ,k(y, s))ϕ(x, s)

(
1−

∫ T

0

ρ̄p(t− s)dt
)
ρ̃q(x− y)ρl(ξ)dxdsdξdydα

]
.

We have then:

2|B6 − B̃6,1| ≤E
[ ∫ 1

0

∫
Q

∫
R

∫
QR

∣∣∣η′′δ (ν(x, t, α)− uT ,k(y, s) + ξ)− η′′δ (ν(x, s, α)− uT ,k(y, s) + ξ)
∣∣∣g2(uT ,k(y, s))ϕ(x, t)

× ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dxdtdξdydsdα

]
+ E

[ ∫ 1

0

∫
Q

∫
R

∫
QR

|η′′δ (ν(x, s, α)− uT ,k(y, s) + ξ)|g2(uT ,k(y, s))
∣∣∣ϕ(x, t)− ϕ(x, s)

∣∣∣
× ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dxdtdξdydsdα

]
≤‖η′′′δ ‖∞‖ϕ‖∞‖g‖2∞E

[ ∫ 1

0

∫
Q

∫
R

∫
QR

∣∣∣ν(x, t, α)− ν(x, s, α)
∣∣∣ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dxdtdξdydsdα

]
+ ‖η′′δ ‖∞‖∂tϕ‖∞‖g‖2∞E

[ ∫ 1

0

∫
Q

∫
R

∫
QR

|t− s|ρ̄p(t− s)ρ̃q(x− y)ρl(ξ)dxdtdξdydsdα

]
≤C
(ε(2/p, ν,QR)

δ2
+

1

pδ

)
,

and, as for the estimate of |Ā6,1|, we obtain: |B̄6,1| ≤ C
1

pδ
. Moreover,

2|B6,1 −B6,2| =
∣∣∣∣E[ ∫

Rd

∫
R

∫
Q

∫ 1

0

η′′δ (ν(x, t, α)− uT ,k(y, t) + ξ)g2(uT ,k(y, t))ϕ(x, t)ρ̃q(x− y)ρl(ξ)dαdxdtdξdy

]
− E

[ ∫
Rd

∫
R

∫
Q

∫ 1

0

η′′δ (ν(x, t, α)− uT ,k(y, t))g2(uT ,k(y, t))ϕ(x, t)ρ̃q(x− y)ρl(ξ)dαdxdtdξdy

]∣∣∣∣
≤π

2

4
‖ϕ‖∞‖g‖2∞T |B(0, R)| × 1

lδ2
.

Finally,

|B6 −B6,2| ≤ |B6 − B̃6,1|+ |B̄6,1|+ |B6,1 −B6,2| ≤ C
(ε(2/p, ν,QR)

δ2
+

1

pδ
+

1

lδ2

)
.

In order to study |A6,2 +B6,2 + Ī2,1|, we start by noticing that:

A6,2 +B6,2 + Ī2,1 =− E
[ ∫

Rd

∫
Q

∫ 1

0

∫ T

0

η′′δ (ν(x, t, α)− uT ,k(y, t))g(ν(x, t, α))g(uT ,k(y, t))ϕ(x, t)ρ̃q(x− y)dαdxdtdy

]
+

1

2
E

[ ∫
Rd

∫
Q

∫ 1

0

∫ T

0

η′′δ (ν(x, t, α)− uT ,k(y, t))g2(ν(x, t, α))ϕ(x, t)ρ̃q(x− y)dαdxdtdy

]
+

1

2
E

[ ∫
Rd

∫
Q

∫ 1

0

∫ T

0

η′′δ (ν(x, t, α)− uT ,k(y, t))g2(uT ,k(y, t))ϕ(x, t)ρ̃q(x− y)dαdxdtdy

]
=

1

2
E

[ ∫
Rd

∫
Q

∫ 1

0

∫ T

0

η′′δ (ν(x, t, α)− uT ,k(y, t))
(
g(ν(x, t, α))− g(uT ,k(y, t))

)2

ϕ(x, t)ρ̃q(x− y)dαdxdtdy

]
.
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Then, using the compact support of η′′δ , we obtain:∣∣∣A62 +B62 + Ī2,1

∣∣∣
≤1

2
‖ϕ‖∞C2

gE

[ ∫
Rd

∫
QR

∫ 1

0

∫ T

0

|η′′δ (ν(x, t, α)− uT ,k(y, t))|
∣∣∣ν(x, t, α)− uT ,k(y, t)

∣∣∣2ρ̃q(x− y)dαdxdtdy

]
≤π

4
‖ϕ‖∞C2

gT |B(0, R)| × δ.

Finally, one has:

|A5 +B5 +A6 +B6| ≤ |I1|+ |I3|+ |I2 − Ī2,1|+ |A6 −A6,2|+ |B6 −B6,2|+ |A6,2 +B6,2 + Ī2,1|

≤ C ×
(
h1/2
r + l2h21/2

r δ +
h16
r

δ
+

1

lδ2
+
ε(2h5

r, ν,QR)

δ2
+
h5
r

δ
+ δ
)
,

which gives, after passing successively to the superior limits with respect to r, l, δ, q:

lim
q→+∞

lim
δ→0

lim
l→+∞

lim
r→+∞

A5 +B5 +A6 +B6 = 0.

4.2.7 Study of the rest R
Remind that R is defined by:

R = E

[ ∫ 1

0

∫
Q

∫
R
Rh,k,ηδ(·−κ),Ψx,tρl(ν(x, t, α)− κ)dκdαdxdt

]
.

Using (54), we deduce that:

|R| ≤ CCE
∫
Q

[
‖η′′δ ‖∞‖Ψx,t‖∞

k1/2

h1/2
+ ‖η′δ‖∞‖∇yΨx,t‖∞h1/2 + (‖∂sΨx,t‖∞‖η′‖∞ + ‖Ψx,t‖∞‖η′′δ ‖∞)k1/2

+ ‖η′′′δ ‖∞‖Ψx,t‖∞k +

∫
B(0,R)

|u0(z)− uT ,0(z)|dz + (‖η′δ‖∞‖∂s∇yΨx,t‖∞ + ‖η′′δ ‖∞‖∂sΨx,t‖∞)k
]
dxdt. (57)

Note that if we combine directly this estimate on |R| with standard ones on ρ̄p, ρ̃q and ηδ, the right hand-side

term
∣∣∣∣ ∫
Q

‖∇yΨx,t‖∞‖η′δ‖∞h1/2dxdt

∣∣∣∣ will be bounded by C
qd+1

h
9/2
r

which blows up when r goes to infinity, then it

is, in our case, a useless estimate. For each (x, t) ∈ Q, this term comes from the estimation (35) in the proof of
Proposition 4. Let us improve such an estimate in the particular case where the function ϕ in (35) is replaced by
the function Ψx,t: for each (x, t) ∈ Q, using the notations introduced in the proof of Proposition 4, we get:

B
hr,kr,ηδ,Ψx,t
G −Bhr,kr,ηδ,Ψx,tΦ = T̄1 − T1 − (T̄2 − T2)

=

N−1∑
n=0

∑
(K,L)∈In

R

kr|σK,L|
{
GnK,L(unK , u

n
L)− ΦnK,L(unK)

}
ϕ(x, t)ρ̄p(t− nkr)

(
1

|K|

∫
K

ρ̃q(x− y)dy − 1

|σK,L|

∫
σK,L

ρ̃q(x− y)dγ(y)

)

+

N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)kr

nkr

∫
σK,L

{
Φηδ(·−κ)(y, s, u

n
K , 0).nK,L − ΦnK,L(unK)

}
ϕ(x, t)ρ̄p(t− nk)ρ̃q(x− y)dγ(y)ds

−
N−1∑
n=0

∑
(K,L)∈In

R

kr|σK,L|
{
GnK,L(unK , u

n
L)− ΦnK,L(unL)

}
ϕ(x, t)ρ̄p(t− nk)

(
1

|L|

∫
L

ρ̃q(x− y)dy − 1

|σK,L|

∫
σK,L

ρ̃q(x− y)dγ(y)

)

+

N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)k

nkr

∫
σK,L

{
Φηδ(·−κ)(y, s, u

n
L, 0).nK,L − ΦnK,L(unL)

}
ϕ(x, t)ρ̄p(t− nk)ρ̃q(x− y)dγ(y)ds

=U
hr,kr,p,q,ηδ(.−κ)
1 (x, t) + V

hr,kr,p,q,ηδ(.−κ)
1 (x, t) + U

hr,kr,p,q,ηδ(.−κ)
2 (x, t) + V

hr,kr,p,q,ηδ(.−κ)
2 (x, t).

Let us study each term of this sum separately. By multiplying them by ρl(ν(x, t, α) − κ) then integrating with
respect to κ, x, t, α and using the estimates (29)-(31), we have:∣∣∣∣∣E

[∫ 1

0

∫
Q

∫
R
U
h,k,p,q,ηδ(·−κ)
1 (x, t)ρl(ν(x, t, α)− κ)dκdxdtdα

]∣∣∣∣∣
≤h‖∇ρ̃q‖∞E

[∫
QR

N−1∑
n=0

∑
(K,L)∈In

R

k|σK,L|
∣∣∣GnK,L(unK , u

n
L)− ΦnK,L(unK)

∣∣∣ϕ(x, t)ρ̄p(t− nk)dxdt

]

≤Chqd+1E

[
N−1∑
n=0

∑
(K,L)∈In

R

k|σK,L| max
un
L
≤c≤d≤un

K

∣∣∣FnK,L(d, c)− FnK,L(d, d)
∣∣∣].
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Similarly, one gets:∣∣∣∣∣E
[∫ 1

0

∫
Q

∫
R
U
h,k,p,q,ηδ(·−κ)
2 (x, t)ρl(ν(x, t, α)− κ)dκdxdtdα

]∣∣∣∣∣
≤Chqd+1E

[
N−1∑
n=0

∑
(K,L)∈In

R

k|σK,L| max
un
L
≤c≤d≤un

K

∣∣∣FnK,L(d, c)− FnK,L(c, c)
∣∣∣].

Using the same arguments as for the obtention of the estimates (32)-(34), which gives in our particular case:∣∣∣Φηδ(·−κ)(x, t, a, 0)− Φηδ(·−κ)(y, s, a, 0)
∣∣∣ ≤2(CTf k + CRf h) ≤ Ch,

for all (x, y) ∈ σK,L2, (t, s) ∈ (nk, (n+ 1)k), a ∈ R, and if we denote by yσ the center of the edge σK,L, we have:∣∣∣∣∣E
[∫ 1

0

∫
Q

∫
R
V
h,k,p,q,ηδ(.−κ)
1 (x, t)ρl(ν(x, t, α)− κ)dκdxdtdα

]∣∣∣∣∣
=

∣∣∣∣∣E
[∫

QR

N−1∑
n=0

∑
(K,L)∈In

R

∫ (n+1)k

nk

∫
σK,L

{
Φηδ(·−κ)(y, s, u

n
K , 0).nK,L − ΦnK,L(unK)

}
ϕ(x, t)ρ̄p(t− nk)ρ̃q(x− y)dγ(y)dsdxdt

]∣∣∣∣∣
=

∣∣∣∣∣E
[∫

QR

N−1∑
n=0

∑
(K,L)∈In

R

ϕ(x, t)ρ̄p(t− nk)

k|σK,L|

∫
[nk,(n+1)k]2

∫
(σK,L)2

{
Φηδ(·−κ)(y, s, u

n
K , 0)− Φηδ(·−κ)(z, s̃, u

n
K , 0)

}
.nK,L

×
{
ρ̃q(x− y)− ρ̃q(x− yσ)

}
dγ(z)ds̃dγ(y)dsdxdt

]∣∣∣∣∣
≤‖ϕ‖∞|B(0, R)|Cρqd+1h× Ch× E

[
N−1∑
n=0

∑
(K,L)∈In

R

k|σK,L|

]

≤Cqd+1h2.

Using the same arguments one gets∣∣∣∣∣E
[∫ 1

0

∫
Q

∫
R
V
h,k,p,q,ηδ(.−κ)
2 (x, t)ρl(ν(x, t, α)− κ)dκdxdtdα

]∣∣∣∣∣ ≤ Cqd+1h2.

Therefore, using Proposition 2, we find that:∣∣∣∣∣E
[∫ 1

0

∫
Q

∫
R

(
B
hr,kr,ηδ(·−κ)
G (x, t)−Bhr,kr,ηδ(·−κ)

Φ (x, t)
)
ρl(ν(x, t, α)− κ)dκdxdtdα

]∣∣∣∣∣ ≤ Cqd+1h1/2.

Finally, using this estimate which enables us to improve (57), Lemma 3, the bound (44) and the fact that we have
chosen to take p = h−5

r , kr = h21
r , one gets:

|R| ≤ CCE
∫
QR

[
‖η′′δ ‖∞‖Ψx,t‖∞

k1/2

h1/2
+ (‖∂sΨx,t‖∞‖η′‖∞ + ‖Ψx,t‖∞‖η′′δ ‖∞)k1/2

+ ‖η′′′δ ‖∞‖Ψx,t‖∞k +

∫
B(0,R)

|u0(z)− uT ,0(z)|dz + (‖η′δ‖∞‖∂s∇yΨx,t‖∞ + ‖η′′δ ‖∞‖∂sΨx,t‖∞)k
]
dxdt+ Cqd+1h1/2

≤C

(
k

1/2
r prq

d

h
1/2
r δ

+ qd+1h1/2 + p2
rq
dk1/2
r +

prq
dk

1/2
r

δ
+
prq

dkr
δ2

+ p2
rq
d+1kr +

p2
rq
d

δ
kr +

∫
B(0,R)

∣∣uT ,0(z)− u0(z)
∣∣dz)

≤C
(h5

rq
d

δ
+ qd+1h1/2

r + qdh1/2
r +

qd+1h2
r

δ
+
qdh16

r

δ2
+ qd+1h11

r +
qdh11

r

δ
+

∫
B(0,R)

∣∣uT ,0(z)− u0(z)
∣∣dz).

Using the fact that u0 ∈ L2(Rd) and the compactness of B(0, R), we deduce that lim
r→+∞

R = 0.

4.2.8 End of the proof of Kato inequality

By summing (52) and (53), one gets:

(A1 +B1) + (A2 +B2) + (A3 +B3) + (A4 +B4) + (A5 +B5) + (A6 +B6) + (A7 +B7) ≥ R,

by passing to the limit successively with respect to r, l, δ, q and due to the previous computations, we get

E

[ ∫
Q

∫
(0,1)2

{∣∣∣ν(x, t, α)− µ(x, t, β)
∣∣∣∂tϕ(x, t) + Φ

(
x, t, ν(x, t, α), µ(x, t, β)

)
.∇xϕ(x, t)

}
dαdβdxdt

]
≥ 0.
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4.3 Uniqueness result
Proposition 9 Assume that hypotheses H1 to H7 hold, then Problem (1) admits a unique measure-valued entropy
solution, which is moreover a stochastic entropy solution in the sense of Definition 1.

Proof. Arguing as in [BVW12], we take R > CfT and set ψ ∈ C1
c (R+, [0, 1]) such that ψ(r) = 1 if r ∈ [0, R+CfT ],

ψ(r) = 0 if r ∈ [R+CfT + 1,∞) and ψ′(r) ≤ 0 on R+. Thanks to a regularization procedure, we apply Proposition
8 to the following test function:

ϕ(x, t) =


ψ(|x|+ Cf t)

T − t
T

if x ∈ Rd and t ≤ T ,

0 if x ∈ Rd and t > T .

(58)

We obtain then:

E

[ ∫
Q

∫
(0,1)2

{
|µ(x, t, α)− ν(x, t, β)|

(T − t
T

Cfψ
′(|x|+ Cf t)−

1

T
ψ(|x|+ Cf t)

)
+ Φ(x, t, µ(x, t, α), ν(x, t, β))

T − t
T

ψ′(|x|+ Cf t)
x

|x|

}
dαdβdxdt

]
≥ 0.

Since ψ′ ≤ 0 and thanks to (47), we deduce that:

E

[ ∫
Q

∫
(0,1)2

|µ(x, t, α)− ν(x, t, β)|(− 1

T
ψ(|x|+ Cf t))dαdβdxdt

]
≥ 0

and hence

E

[ ∫ T

0

∫
B(0,R+CfT )

∫
(0,1)2

|µ(x, t, α)− ν(x, t, β)|dαdβdxdt
]

= 0.

Then, since R is arbitrary large, one concludes thanks to Proposition 8 that on the one hand µ(x, t, α) = ν(x, t, β)
for a.a. x, t, α, β and P-a.s, which proves that there exists a unique measure-valued entropy solution. On the other
hand, setting

u(x, t) =

∫ 1

0

µ(x, t, β)dβ =

∫ 1

0

µ(x, t, α)dβ,

then P-a.s and for almost all α, we have µ(x, t, α) = u(x, t), thus µ is independent of α, hence u is the unique
stochastic entropy solution in the sense of Definition 1, which concludes the proof of Theorem 9.

Proof of Theorem 1. The proof of the main result is a direct consequence of Proposition 7 and Proposition
9. Firstly, the uniqueness of the stochastic entropy solution is given by Proposition 9. Secondly, we know from
Proposition 7 that, up to a subsequence, the finite volume approximation converges (in the sense of Young mea-
sures) to a measure-valued entropy solution. Using again Proposition 9 (and arguing as in [BVW12]), we deduce
that the whole sequence converges to a stochastic entropy solution in L1

loc(Ω × Q), which gives in particular the
existence of a stochastic entropy solution. To conclude, since (uT ,k) is bounded in L2(Ω × Q), we deduce that it
converges to the unique stochastic entropy solution in Lploc(Ω×Q) for any 1 ≤ p < 2.

A Appendix

A.1 Proof of Corollary 1
Proof. Set a, b ∈ R such that a < b. Let u be the unique stochastic entropy solution of (1) and suppose that
u0(x) ∈ [a, b] for almost every x in Rd and that supp(g) ⊂ [a, b]. Since u is a stochastic entropy solution, we have
by definition for any η ∈ A and any ϕ ∈ D+

(
Rd × [0, T )

)
0 ≤

∫
Rd
η(u0)ϕ(x, 0)dx+

∫
Q

η(u)∂tϕ(x, t)dxdt+

∫
Q

Φη(x, t, u, 0).∇xϕ(x, t)dxdt

+

∫ T

0

∫
Rd
η′(u)g(u)ϕ(x, t)dxdW (t) +

1

2

∫
Q

g2(u)η′′(u)ϕ(x, t)dxdt. (59)

We consider an entropy η ∈ A such that for any x ∈ [a, b], η(x) = 0 and for any x /∈ [a, b], η(x) > 0. We also
consider R > CfT , and the test function ϕ defined by (58). Note that for any (x, t) ∈ Q and v ∈ R we have

0 6 Cfη(v) + Φη(x, t, v, 0) · x|x| .
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Then using the assumptions on g and u0 and the properties of the chosen entropy and test functions, by applying
the above inequality (59) (thanks to a regularization procedure since ϕ is not smooth enough), one gets:

0 ≤
∫
Q

η(u(x, t))∂tϕ(x, t) + Φη(x, t, u(x, t), 0).∇xϕ(x, t)dxdt

≤
∫
Q

(
η(u(x, t))Cf + Φη(x, t, u(x, t), 0) · x|x|

)
ψ′(|x|+ Cf t)

T − t
t
− 1

T
η(u(x, t))ψ(|x|+ Cf t)dxdt

≤− 1

T

∫
Q

η(u(x, t))ψ(|x|+ Cf t)dxdt ≤ −
1

T

∫ T

0

∫
B(0,R)

η(u(x, t))dxdt ≤ 0.

We deduce that, for arbitrary large R and for any (x, t) ∈ B(0, R) × [0, T ], we have η(u(x, t)) = 0 which implies
that u(x, t) ∈ [a, b] for almost all (ω, x, t) ∈ Ω×Q.
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