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Transcriptional coordination is a fundamental component of prokaryotic and eukaryotic
cell biology, underpinning the cell cycle, physiological transitions, and facilitating
holistic responses to environmental stress, but its overall dynamics in eukaryotic
algae remain poorly understood. Better understanding of transcriptional partitioning
may provide key insights into the primary metabolism pathways of eukaryotic algae,
which frequently depend on intricate metabolic associations between the chloroplasts
and mitochondria that are not found in plants. Here, we exploit 187 publically
available RNAseq datasets generated under varying nitrogen, iron and phosphate
growth conditions to understand the co-regulatory principles underpinning transcription
in the model diatom Phaeodactylum tricornutum. Using WGCNA (Weighted Gene
Correlation Network Analysis), we identify 28 merged modules of co-expressed genes
in the P. tricornutum genome, which show high connectivity and correlate well with
previous microarray-based surveys of gene co-regulation in this species. We use
combined functional, subcellular localization and evolutionary annotations to reveal
the fundamental principles underpinning the transcriptional co-regulation of genes
implicated in P. tricornutum chloroplast and mitochondrial metabolism, as well as the
functions of diverse transcription factors underpinning this co-regulation. The resource
is publically available as PhaeoNet, an advanced tool to understand diatom gene
co-regulation.

Keywords: stramenopile, transcriptomics, sigma factors, aureochromes, epigenetics, chloroplast-mitochondria

INTRODUCTION

The biology of prokaryotic and eukaryotic cells is dependent on elaborate metabolic, regulatory
and gene expression pathways, consisting of multiple interacting components. The successful
operation of these pathways depend on the coordinated expression of genes that underpin them,
which allow the stoichiometric assembly of their constituent components and enable discrete and
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appropriate regulatory responses to changes in physiological
conditions (Gasch and Eisen, 2002; Teichmann and Babu,
2002). In prokaryotes and bacteria-derived genomes (e.g.,
“plastids” including chloroplasts and mitochondria) gene co-
regulation is possible via the co-transcription of linked genes
as part of the same transcriptional operon (Teichmann and
Babu, 2002). In contrast, gene order plays a limited role
in eukaryotic nuclear gene co-expression (Michalak, 2008),
which depends instead on the simultaneous transcription,
or transcriptional stabilization, of multiple discrete genomic
loci. This may occur through common transcription factors
(Teichmann and Babu, 2002; Reja et al., 2015); epigenetic
modifications based around characteristic histone and DNA
marks (Bird, 2002; Bártová et al., 2008); co-ordinated transcript
processing events (Norbury, 2010); and the activity of small
and long regulatory non-coding RNAs (Tsai et al., 2010;
Kim and Sung, 2012).

The degree to which gene co-regulation is shared between
different species is debated, with different studies identifying
shared co-regulatory trends in between 8% (Teichmann and
Babu, 2002) and 70% (Snel et al., 2004) of orthologous gene pairs
between Saccharomyces cerevisiae (yeast) and Caenorhabditis
elegans (nematode) genomes. Nonetheless, there is substantial
merit to understanding gene co-regulation patterns in novel
species. Since their origins over two billion years ago, the
eukaryotes have radiated into a diverse range of different lineages,
many of which are unicellular; and distantly related to model
organisms in the animals, fungi and plants, with different
underlying cellular biology and transcriptional dynamics (Walker
et al., 2011). Identifying what gene co-regulation processes occur
in microbial eukaryotes may allow us to better understand the
biology underpinning the base of planetary food webs; and
to better model the robustness of eukaryotic communities to
environmental change.

The diatoms are a major group of predominantly marine
algae, believed to be responsible for nearly one-fifth of total
planetary photosynthesis (Field et al., 1998). Diatoms sit within
the stramenopile supergroup, and are distantly related to
animals, fungi and plants. Photosynthetic members of the
stramenopiles, including diatoms, possess a chloroplast acquired
through secondary endosymbiosis, unlike the primary plant
chloroplast, which is of primary endosymbiotic origin (Walker
et al., 2011). Previous genomic and functional investigations of
model diatoms, for example Phaeodactylum tricornutum, have
identified divergent features in their cellular biology, compared
to more well-understood eukaryotic groups (Bowler et al.,
2010). These include intricate metabolic connections between
the diatom chloroplast, mitochondria and cytoplasm (Prihoda
et al., 2012; Bailleul et al., 2015); and a wide range of different
histone structural modifications (Veluchamy et al., 2013, 2015),
many of which have not yet been detected in more established
eukaryotic models.

Previously, microarray data from over 100 different
conditions, including illumination regimes and pollutant
stress (Osborn and Hook, 2013; Valle et al., 2014), have been
generated from P. tricornutum; which have been assembled
into a searchable interface, DiatomPortal that divides the
P. tricornutum genome into 500 co-regulated gene clusters

(Ashworth et al., 2016). Alongside this, a suite of RNA sequencing
libraries exploring cellular responses to phosphorus, iron and
nitrogen limitation have now been generated (Maheswari
et al., 2010; Cruz de Carvalho et al., 2016; Smith et al., 2016;
McCarthy et al., 2017) and inspecting these data may allow
more precise integration of quantitative differences in transcript
abundance than would be possible through microarray analyses.
Furthermore, co-expression networks are a powerful tool for
functional prediction and annotation of unknown genes in the
absence of prior knowledge, which is the case for a significant
number of genes in P. tricornutum (Rastogi et al., 2018). Co-
expression networks can furthermore enrich our understanding
of the more sparse co-expression networks generated for other
marine algal species with secondary chloroplasts (principally,
the distantly related diatom Thalassiosira pseudonana, the
distantly related stramenopile Nannochloropsis oceanica and
the haptophyte Emiliania huxleyi; Ashworth et al., 2016;
Ashworth and Ralph, 2018).

Here, we use a tool of gene co-expression network analysis,
WGCNA (Weighted Gene Correlation Network Analysis
(Langfelder and Horvath, 2008; Guidi et al., 2016), to build
PhaeoNet, an advanced tool for transcriptional understanding
of the P. tricornutum genome. PhaeoNet is composed of 28
co-regulated gene modules, each with different expression
dynamics. Considering the repartition of genes within these
modules; functional, epigenetic and localization information
from the third version annotation of the P. tricornutum genome
(Phatr3; Rastogi et al., 2018); and annotated lists of diatom
transcription factors (Rayko et al., 2010), we identify core
features underpinning the transcriptional partitioning of diatom
primary metabolism, including probable metabolic links between
the diatom mitochondria and chloroplast; and dissect the diverse
ranges of different transcriptional drivers of this co-regulation,
notably in the case of chloroplast-targeted sigma factors. The
raw data underpinning PhaeoNet have been made publically
accessible via https://osf.io/42xmp.

MATERIALS AND METHODS

Dataset Curation and Abundance
Calculations
A total of 187 publically available RNA-seq datasets from
P. tricornutum, generated from three studies exploring,
respectively, phosphorus (Cruz de Carvalho et al., 2016), iron
(Smith et al., 2016) and nitrogen (McCarthy et al., 2017) stress
transcriptional responses, were collected from the sequence
read archive (SRA)1 (Wheeler et al., 2006). The 182 libraries
that passed through quality control steps, were included in
the final version of the WGCNA performed, are named per
their names respective studies in Supplementary Table 1, sheet
1. Data provided in the phosphate and nitrogen conditions
were obtained using an Illumina Genome Analyzer (Bentley
et al., 2008), while the iron study used SOLiD technology
sequencing (Morey et al., 2013). P. tricornutum transcript IDs
from each study were mapped to gene models based on the

1http://www.ncbi.nlm.nih.gov/Traces/sra/
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Phatr3 annotation of the genome (Supplementary Table 1, Sheet
2; Rastogi et al., 2018).

Raw data were reprocessed using FastQC version v0.11.52.
Low quality reads (Phred quality score below 20) were filtered-
out using trim-galore version 0.5.03. The remaining sequences
were aligned to the reference genome with the software
package STAR version 2.5.3a (Dobin et al., 2013) (STAR –
outFilterMismatchNmax 2 –outFilterMultimapNmax 1000 –
alignIntronMin 20 –alignIntronMax 2000). The iron data derived
from the SOLiD technology were first mapped using the Life
Technologies LifeScope software suitable for data from such
technology. For homogeneity purposes, the reads were remapped
using the pre-cited version of STAR.

Expression levels of individual genes were obtained using
featureCounts version 1.6.1 (Liao et al., 2014). Quality checks
of datasets were performed using methods provided in DESeq2
version 1.19.37 (Love et al., 2014), with a PCA projection
and a hierarchical dendrogram using Spearman correlation
between library-normalized gene counts (Glasser and Winter,
1961). These subsequent analyses and results visualizations were
performed using R package version 3.4.4.

Weighted Gene Correlation Network
Analysis (WGCNA) and Network
Visualization
The WGCNA R package (Langfelder and Horvath, 2008) was
used to identify network modules from library-normalized gene
expression values. First, a signed adjacency matrix (accepting
oppositely correlated gene expression values to be clustered in
the same modules) was obtained by calculating the pairwise
Bi-weight mid-correlation coefficient from rij (Langfelder and
Horvath, 2008), that represent expression values of genes i
and j. A connectivity measure (k) per gene set was calculated
by summing the connection strengths with other gene sets.
Subsequently, the weighted adjacency matrix was obtained by
raising the absolute value of the pairwise gene expression
correlations to the soft-thresholding parameter β (Zhao et al.,
2010). This achieved the scale-free topology criterion for
WGCNA and typical for biological networks, emphasizing high
correlations and minoring low ones, in which most nodes are
not connected and only a few nodes are highly connected
(Barabási, 2009).

The scale-free topology of PhaeoNet was evaluated by the
Scale-Free Topology Fitting Index (R2), which was the square of
the correlation between log[p(k)] and log(k). A β coefficient of
12 with R2 of 0.9 was used during the network building from
the signed weighted adjacency matrix. The weighted adjacency
matrix was finally used to calculate the Topological Overlap
Matrix (TOM). Subsequently, modules were detected on the
basis of the Topological Overlap measure using the following
parameters: minModuleSize = 40 and mergeCutHeight = 0.25.

Graphical representations of the network were performed
using Cytoscape (Shannon et al., 2003). All code used for the

2https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

construction of PhaeoNet and interactive diagrams of each
merged module are publically available through the following
link: https://osf.io/42xmp.

Biological Interpretation of Merged
Modules
The distribution of P. tricornutum genes in each transcriptional
module was compared to the distribution of orthologous gene
models (Phatr2.0 genome annotation) in microarray-derived
transcriptional clusters generated as part of the DiatomPortal
project (Ashworth et al., 2016). Only gene models that showed
a one-to-one gene mapping (i.e., gene models that were neither
split or merged, but including gene models that were truncated
or extended) between version 2 (Phatr2) and version 3 (Phatr3)
annotations of the P. tricornutum genome (Bowler et al., 2008;
Rastogi et al., 2018) were considered.

Biological functions within the merged modules were
identified using gene functional annotations from the Phatr3
annotation of the P. tricornutum genome (Bowler et al., 2008;
Rastogi et al., 2018). These included: GO terms, using the
R package TopGO (Aibar et al., 2015); PFAM domains and
biological processes (Rastogi et al., 2018); probable evolutionary
affinities inferred by BLAST top hit analyses (Rastogi et al.,
2018); histone and DNA modifications associated with cells
grown in replete media (Veluchamy et al., 2013, 2015);
Polycomb group protein marks (Zhao et al., 2020); and KEGG
orthology predictions, obtained with BLASTkoala, Kofamkoala
and GHOSTkoala servers (Moriya et al., 2007; Kanehisa, 2017;
Aramaki et al., 2019; Kanehisa and Sato, 2020). In silico targeting
predictions were performed for all N-complete protein sequences
(i.e., protein sequences inferred to start in a methionine) within
the dataset, using HECTAR (Gschloessl et al., 2008); ASAFind
v2.0 (Gruber et al., 2015), in conjunction with SignalP v3.0
(Bendtsen et al., 2004); MitoFates, with a threshold detection
value of 0.35 (Fukasawa et al., 2015; Dorrell et al., 2017);
and WolfPSort, taking the consensus best-scoring prediction
using animal, fungi and plant reference datasets (Horton
et al., 2007). Enrichments in each category were analyzed both
qualitatively/manually and by a simple pivot table and chi-
squared test. Tabulated lists of all annotations are presented in
Supplementary Table 2.

Core chloroplast and mitochondria-associated functions were
assembled from a list of 524 KEGG ortholog numbers based
on previously identified chloroplast and mitochondria functions
in photosynthetic eukaryotes (Dorrell et al., 2017; Nonoyama
et al., 2019; Novák Vanclová et al., 2020). Where multiple
candidate proteins were detected, proteins were assigned to either
the chloroplast, mitochondria, or dual chloroplast/mitochondria
(Gile et al., 2015; Dorrell et al., 2017) based on in silico targeting
predictions. Where no clear targeting predictions could be
obtained, proteins were identified based on BLAST similarity to
orthologous chloroplast- or mitochondria-targeted proteins from
other algal and stramenopile species (Dorrell et al., 2017; Río
Bártulos et al., 2018). Disregarding 135 query proteins coded by
organellar genomes in diatoms (Yu et al., 2018) and 17 query
proteins encoded by nuclear genes with no PhaeoNet module
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assigned, the final set comprised of 372 unique proteins targeted
to the chloroplast and/or mitochondrion, encoded by nuclear
genes that belong to one of the 28 merged modules. The main
metabolic pathways and complexes and quantitative pathway
associations, are presented in Supplementary Table 3.

A complete list of P. tricornutum transcription factors (TF)
was assembled from a previous dataset (Rayko et al., 2010) and an
updated list specifically of aureochromes (Banerjee et al., 2016),
which were mapped to the version 3 genome annotation by
BLASTp analysis. A total of 188 candidates, from 18 TF families
(HSF, Myb, Zn_finger_C2H2, bZIP, Zn_finger_CCCH, bHLH,
Sigma-70, Zn_finger_TAZ, CBF/NF, E2F-DP, CSF, Aureochrome,
TRF, CCAAT-binding, AP2-EREBP, TAF9, CXC, Homeobox)
corresponded to genes assigned to a PhaeoNet merged module
(Figure 5 and Supplementary Table 4). Given that the regulation
of gene expression by transcription factors play a key role in the
growth and progression of the cell cycle, the distribution within
merged modules genes implicated in the cell cycle (cyclins) and in
light perception events (e.g., phytochrome, cryptochrome) were
additionally investigated, as well as genes implied in transcription
and histone-related processes (Figure 5 and Supplementary
Table 4; Huysman et al., 2013; Annunziata et al., 2019).

Phylogenetics
A tree of sigma factor proteins from P. tricornutum and
orthologous diatom and non-diatom sequences was constructed
using a pipeline adapted from previous studies (Dorrell et al.,
2017; Rastogi et al., 2018). Briefly, the complete peptide
sequences of each sigma factor protein (eight total) in the
Phatr3 annotation of the P. tricornutum genome (Rastogi et al.,
2018) were searched using BLASTp against a composite library
consisting of 110 diatom genomes, MMETSP (Marine Microbial
Eukaryote Transcriptome Sequencing Project, Keeling et al.,
2014) and independent transcriptomes; and a reference set
of 59 additional eukaryotic genomes, sampled from across
the tree of life (Supplementary Table 5). Orthologs with an
e-value of 10−05 or lower were extracted and searched against
the complete protein sequences encoded within the Phatr3
annotation of the P. tricornutum genome via reciprocal BLASTp
searches. Sequences which retrieved a single best hit against
a P. tricornutum sigma factor protein were aligned using
MAFFT v 8.0 (Katoh et al., 2002) under the –auto setting
(BLOSUM62 matrix, gap open penalty 1.53, offset value 0) and
the in-house alignment program in GeneIOUS v 10.0.9 (Kearse
et al., 2012) using a more stringent set of conditions (65%
similarity cost matrix, gap open penalty 12, gap extension penalty
3, two rounds of refinement). Poorly aligned or incomplete
sequences were removed at each step. The 771 protein sequences
retained were manually curated to retain a representative
series of 86 diatom and non-diatom sequences related to each
P. tricornutum sigma factor and trimmed using trimal with
the –gt 0.5 setting (Capella-Gutiérrez et al., 2009) to yield a
453 aa alignment. The best-scoring tree topology was inferred
from the alignment using RAxML v8.2, 100 bootstrap replicates
and the PROTGAMMAJTT substitution model (Stamatakis,
2014); and MrBayes v3.2.7 over 600,000 generations, burnin
fractions of 0.5 and the Jones amino acid substitution model

(Huelsenbeck and Ronquist, 2001). Alignment and tree outputs
are provided in Supplementary Table 5.

RESULTS AND DISCUSSION

Construction of an Optimized WGCNA
Gene Expression Dataset for
P. tricornutum
We harnessed 187 publically available RNAseq datasets derived
from diverse physiological conditions and genotypes (Cruz de
Carvalho et al., 2016; Smith et al., 2016; McCarthy et al., 2017)
to build an integrative model of gene co-regulation for the model
diatom species P. tricornutum (Figure 1A and Supplementary
Table 1, sheet 1). We chose to build a dataset focusing on one
species only, as even closely related diatom species may contain
very different protein orthogroups (Parks et al., 2018; Sato et al.,
2020) and even orthologous proteins may perform different
physiological functions between different diatom species, with
presumably different co-regulatory dynamics (Lampe et al.,
2018). P. tricornutum was selected as a model system for this
study as vastly greater amounts of gene expression data have
been generated for this species than any other marine alga
(Ashworth and Ralph, 2018); and as its genome annotation
(currently in third version form and verified by comparison to
over forty RNAseq libraries generated under varied conditions,
Rastogi et al., 2018) is arguably the most complete of any alga
known, allowing unprecedented insight into protein diversity,
including variant protein forms generated by alternative splicing,
protein sub-cellular localization and epigenetic modifications.
The use of RNAseq data for this analysis allows us to advance on
previous (e.g., microarray-based, Ashworth et al., 2016) analyses
by allowing us to consider absolute rather than relative changes
in expression levels between different datasets, and therefore
exclude distorting effects caused by low absolute levels of the
expression of specific genes in the P. tricornutum genome.

We optimized our data through several key pre-processing
steps, for example removing batch effects (Supplementary
Figure 1A) and five samples showing strong outlier effects
(exemplar shown in Supplementary Figure 1B) prior to network
construction, retaining 182 datasets for the final network
construction. We also excluded genes that were found to
be lowly expressed (median expression < 10 reads) in all
inspected conditions, retaining 10,650/12,177 genes in the Phatr3
annotation (Rastogi et al., 2018) of the P. tricornutum genome
(Supplementary Table 1, sheet 2). All pairwise gene correlations
were calculated and then converted into connectivity strengths by
raising their values to the power β = 12 for PhaeoNet. This power
makes it possible to work in a scale-free condition and to avoid
weak correlations (Supplementary Figure 2).

By applying the dynamic tree cut function on the
dendrogram obtained by a hierarchical clustering with the
method average, we identified 50 WGCNA modules with
similar connection force profiles (Figures 1B,C). This was
reduced to a subset of 28 merged modules with internal
correlations above 0.75 (Figure 1D, Supplementary Table 1,
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FIGURE 1 | Construction and topology of PhaeoNet. (A) Workflow diagram of the steps performed to construct PhaeoNet. (B) A Multi-Dimensional Scaling (MDS)
plot of PhaeoNet. The dots correspond to genes and the colors correspond to the WGCNA modules. The tips of the plot correspond to hub genes of PhaeoNet.
(C) Heatmap plot showing the TOM supplemented by the WGCNA module colors prior to merging. (D) Gene dendrogram of all incorporated PhaeoNet genes,
obtained by average linkage hierarchical clustering. The first color row underneath the dendrogram shows the WGCNA module assignment obtained by the Dynamic
Tree Cut method. The bottom color row shows the merged modules based on a correlation threshold of 0.75.

sheet 2; and Supplementary Figure 3), in accordance with
other WGCNA studies (Langfelder and Horvath, 2008; Zhao
et al., 2010) and following validation by cross-referencing
to independently derived gene co-regulation datasets for
P. tricornutum (described below). The final version of
PhaeoNet showed good overall cohesion within the merged

modules, as inferrable by multi-dimensional-scaling projection
(Figure 1C) and correlation heatmaps of gene co-expression
interconnectedness (Figure 1B).

We present an exemplar merged module output
(paleturquoise) in Figure 2. A density heatmap, divided
vertically by condition and horizontally by gene expression

Frontiers in Plant Science | www.frontiersin.org 5 October 2020 | Volume 11 | Article 590949

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-590949 October 12, 2020 Time: 15:54 # 6

Ait-Mohamed et al. Transcriptional Co-regulation in Diatoms

FIGURE 2 | Visualization and analysis of an exemplar PhaeoNet merged module (paleturquoise). (A) Density heatmap of all genes assigned to the paleturquoise
merged module. The y-coordinate positions in the graph relate to density distribution of gene expression in each sample (shown on the left y-axis); the four middle
dashed lines (indicated by horizontal arrows on either side of the graph) correspond to the median, first and third quantiles (shown on the right y-axis). The majority of
the genes in this specific module show limited variation in expression profiles over different conditions samples. (B) A topological representation of connectedness
within the paleturquoise merged module, visualized with Cytoscape (version 3.6.1). Each node represents a gene. Edges represent pairwise correlations between
genes. The network shows all the paleturquoise module genes with a correlation value over a threshold of 0.20.

profile, shows a cohesive module as illustrated by stable values
of first quantile, median, and third quantile values (Figure 2A)
and is defined by high levels of expression across the majority of
the conditions explored (Supplementary Figure 3B). Cytoscape
(Shannon et al., 2003) visualization of the network with a
correlation threshold of 0.2 (Figure 2B) demonstrates that the
paleturquoise merged module is highly connected, showing
a cluster of hub genes with high connectivity located in the
central part of the network and only a small number of genes
with limited connectivity. We provide detailed expression
and Cytoscape data for each PhaeoNet merged module via
https://osf.io/42xmp.

PhaeoNet Merged Modules Show
Concordance With Microarray
Co-regulation Data
We tested the reproducibility of our assignations, which may
be considered as an independent measure of their robustness,
by comparing the repartition of all P. tricornutum genes
assigned to a PhaeoNet merged module with their corresponding
distributions in 500 co-regulated clusters previously assembled
from microarray data within the DiatomPortal server (Ashworth
et al., 2016; Supplementary Figure 4A and Supplementary
Table 2). Across 7,751 assessable genes with both PhaeoNet
and DiatomPortal assignations, we identified 4,127 (53%) that

occurred in the same PhaeoNet merged module as another
gene with the same DiatomPortal cluster assignation; and 2,751
genes (35%) that occurred within the single PhaeoNet merged
module incorporating the greatest number of genes from the
same DiatomPortal cluster. Both of these frequencies were judged
to be significantly greater than expected through a random
distribution (P = 0, one-tailed chi-squared test), suggesting strong
concordance between both datasets.

From the 461 (83%) DiatomPortal clusters for which we
could identify corresponding PhaeoNet merged modules, 369
(80%) were preferentially distributed in one PhaeoNet merged
module only, with the greatest number of clusters associated
with the darkgray merged module (79 clusters), blue (46
clusters) and cyan (44 clusters) merged modules, reflecting
the greater size of each merged module (Supplementary
Figure 4A and Supplementary Table 2). No DiatomPortal
clusters were found to be incorporated preferentially into
the bisque4, darkmagenta, greenyellow, gray, lightsteelblue1
and mediumpurple3 PhaeoNet merged modules. It is possible
that these merged modules represent transcriptional networks
not visualized within DiatomPortal due to the different
source datasets, generated using different techniques (e.g.,
microarray versus RNAseq data, assembled with hierarchical
clustering versus WGCNA; Ashworth et al., 2016), which may
influence what genes are inferred to be coexpressed using
each analysis.
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We also verified the number of associations independently
found between pairs of genes in DiatomPortal clusters and
PhaeoNet modules generated with independent merging
thresholds, as an independent test of the appropriateness of our
selected 0.75 merging threshold (Supplementary Figure 4B).
We found greater concordance between DiatomPortal and
PhaeoNet modules generated with a 0.75 merging threshold, as
in our methodology, than in unmerged WGCNA modules, or
modules merged with higher (0.8) or lower (0.7) threshold values
(Supplementary Figure 4B).

Different PhaeoNet Merged Modules
Perform Different Biological Activities in
the P. tricornutum Cell
Next, we profiled the predominant biological activities associated
with each merged module by calculating enrichment scores
for different functional, subcellular targeting and evolutionary
annotations across the P. tricornutum genome (Rastogi et al.,
2018; Figure 3 and Supplementary Figure 5). A full set
of protein annotations P. tricornutum, including PhaeoNet
module assignations, inferred functions, predicted localization
and inferred evolutionary origin, is provided for user exploration
in Supplementary Table 2.

We identified seven major subsets of merged modules with
different biological properties. The first subset consists of merged
modules (blue, lightcyan1, lightsteelblue1 and salmon) associated
with the chloroplast [either genes encoding chloroplast-targeted
proteins, inferred with ASAFind (Gruber et al., 2015) or
HECTAR (Gschloessl et al., 2008), or of inferred red algal origin
in a previous BLAST top hit analysis of the P. tricornutum
genome (Rastogi et al., 2018)]. We included proteins of red
algal origin as an independent estimator of chloroplastic origin,
as the vast majority of red algal protein in P. tricornutum
likely derive from the diatom chloroplast endosymbiont (Dorrell
et al., 2017) and to allow us to detect chloroplast-associated
proteins that elude in silico targeting prediction (Nonoyama
et al., 2019; Schober et al., 2019). These merged modules
were also enriched (as inferred with KEGG analysis (Kanehisa,
2017) in genes related to photosynthesis, carbon-fixation and
core biosynthetic pathways (e.g., amino acid and pigment
biosynthesis) associated with diatom chloroplasts (Figure 3 and
Supplementary Figure 5; Nonoyama et al., 2019). Nearly all
of the merged modules within this subset were enriched in
activating histone marks (e.g., H3K9Ac and H3K14Ac) and
depleted in repressive marks (e.g., H3K9me2 and H3K27me3)
in cultures grown under replete media conditions (Figure 3 and
Supplementary Figure 5; Veluchamy et al., 2015; Zhao et al.,
2020), consistent with high levels of expression. Each of the
chloroplast-enriched modules contained enrichments in different
KEGG functions (discussed below), although only one of these
modules (blue) was enriched in proteins containing at least one
KEGG annotation (Supplementary Figure 5); and, in any case,
all merged modules contain substantial numbers (between 18%,
bisque4; and 54%, violet).

A second parallel set of merged modules (floralwhite,
magenta, mediumpurple3, and orangered4), which was also

FIGURE 3 | Biological properties associated with PhaeoNet merged modules.
This Figure provides an overview of enrichments of different organelle targeting
(Horton et al., 2007; Gschloessl et al., 2008; Fukasawa et al., 2015; Gruber
et al., 2015), epigenetic (Veluchamy et al., 2013, 2015; Zhao et al., 2020),
evolutionary (Rastogi et al., 2018) and KEGG pathway annotations (Kanehisa,
2017) enriched in merged modules. The first seven (shaded) columns provide
a score for different conditions, aggregated from chi-squared P-values of
multiple enrichment predictors (defined beneath): enrichments in each
condition carry a score of +1 if significant to P < 0.05 and +2 if significant to
P < 10−05; and depletions in each condition carry a score of –1 if significant
to P < 0.05 and –2 if significant to P < 10−05, assessed by chi-squared test
against a null hypothesis of a random distribution of these features across all
genes assigned to a PhaeoNet merged module. The final column lists all
metabolic pathways enriched to P < 0.05, or P < 10−05 (asterisked) for each
merged module, assessed by chi-squared test as above. Verbose outputs for
each set of conditions are provided in Supplementary Figure 5. Additional
annotations, e.g., enrichments in inferred evolutionary origins of each merged
module, are provided for user exploration in Supplementary Table S2.

found to be enriched in activating histone marks, was enriched
in genes encoding mitochondria-targeted proteins (inferred
with MitoFates, HECTAR and WolfPSort (Horton et al., 2007;
Gschloessl et al., 2008; Fukasawa et al., 2015) and mitochondria-
associated functions (e.g., oxidative phosphorylation and
pyruvate metabolism; Figure 3 and Supplementary Figure 5).
Of note, the paleturquoise merged module was uniquely enriched
in genes encoding both chloroplast and mitochondria-targeted
proteins, suggesting a probable hub between both organelle
functions (Figure 3).
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We identified three further subsets of merged modules that
were enriched in cytoplasmic or nuclear processes involved in
metabolism (black, cyan, orange, and tan); genome-associated
processes including transcription, translation and genome repair
(bisque4, steelblue, ivory and violet); or cellular processes
including protein modification, protein trafficking and the cell
cycle (brown4, darkgray, and red; Figure 3 and Supplementary
Figure 5). Certain merged modules contained a mixture of genes
encoding both metabolic and non-metabolic proteins: amongst
other examples, the steelblue merged module was found to
be enriched both in genes encoding proteins associated with
ribosome and tRNA biogenesis and also in genes encoding
enzymes involved in purine and pyrimidine metabolism,
suggesting a probable transcriptional coordination of nucleotide
biosynthesis to translational activity in P. tricornutum cells
(Figure 3 and Supplementary Figure 5). A sixth subset of merged
modules (darkgreen, darkmagenta and darkslateblue) showed
no obvious enrichment in any KEGG function or organelle
localization, except for a possible enrichment in peroxisomal
functions in the darkgreen merged module (Davis et al., 2017).

The final merged module subset (brown, green, greenyellow,
gray, and skyblue) was uniquely enriched in repressive histone
marks and depleted in activating histone marks, in cultures
grown on replete media (Figure 3; Veluchamy et al., 2015).
These merged modules may either be constitutively repressed
in P. tricornutum cells, or might lose their repressive histone
marks and be expressed in alternative conditions to the replete
culture conditions in which the epigenetic datasets were collected
(Zhao et al., 2020). We noted that the greenyellow merged
module, for example, was enriched in proteins with at least one
KEGG annotation; and the skyblue merged module was found
to be significantly enriched in genes encoding proteins involved
in carbon fixation, the TCA cycle and propionate metabolism
(Figure 3 and Supplementary Figure 5). Further studies of the
epigenetic marks associated with these modules, including under
physiological conditions in which they are most highly expressed
(Supplementary Figure 3) will be necessary to determine under
what circumstances the genes they contain make significant
contributions to P. tricornutum biology.

PhaeoNet Merged Modules Reveal
Transcriptional Co-regulation in
P. tricornutum Chloroplast and
Mitochondrial Metabolism
Having noticed specific biases in the distribution of
mitochondria- and chloroplast-targeted proteins within our
dataset and given the distinctive organelle metabolism noted
in diatoms compared to plants (Kroth et al., 2008; Nonoyama
et al., 2019; Smith et al., 2019), we wished to identify which
key chloroplast and mitochondrial functions are revealed
by PhaeoNet to be transcriptionally coordinated with one
another. We searched the distribution of 372 manually
curated nuclear-encoded proteins with known chloroplast- and
mitochondria-associated functions and localizations (Figure 4,
Supplementary Figure 6, and Supplementary Table 3). At least
one gene encoding one such protein of each merged module was

present in this set, however, only 12 merged modules contained
more than 10 genes and amounted to 83% of the set.

The most abundantly represented merged module (blue, 69
chloroplast or mitochondrial occurrences) was clearly associated
with genes encoding chloroplast anabolic reactions, containing
enzymes associated with the Calvin–Benson–Bassham (CBB)
cycle, chloroplast-targeted glycolysis/gluconeogenesis (Kroth
et al., 2008) and fatty acid synthesis (Maréchal and Lupette,
2020), along with theta-class carbonic anhydrases that
mediate biophysical carbon concentrating mechanisms in
diatom chloroplasts (Figure 4 and Supplementary Figure 6;
Kikutani et al., 2016; Nonoyama et al., 2019). The blue merged
module additionally contained genes encoding chloroplast-
targeted proteins implicated in photoprotection, including
the diatom xanthophyll cycle (e.g., Phatr3_J51703 encoding
violaxanthin de-epoxidase; Frommolt et al., 2008; Dautermann
and Lohr, 2017), tocopherol synthesis (e.g., Phatr3_J20470,
encoding tocopherol cyclase; Dłużewska et al., 2016; Nonoyama
et al., 2019) and two genes (Phatr3_J27278 and Phatr3_J44733)
encoding LhcX-class chlorophyll-binding proteins,
associated with high- and low-light adaptation responses in
diatoms (Supplementary Tables 2, 3; Taddei et al., 2016;
Buck et al., 2019).

Genes encoding photosynthetic metabolism enzymes
were concentrated in the lightcyan1 (41 occurrences) and
lightsteelblue1 merged modules (19 occurrences). The
lightcyan1 merged module included genes encoding LhcF-,
LhcR-, and chlorophyll a/b-binding proteins, which are
typically considered not to be involved in light stress responses
(Gundermann et al., 2013; Büchel, 2015) and nucleus-encoded
subunits of photosystems I, II and cytochrome c6 (Grouneva
et al., 2011; Roncel et al., 2016); whereas the lightsteeblue1
merged module contained the majority of genes involved
in diatom chlorophyll and isoprenoid synthesis (Bertrand,
2010; Cihlar et al., 2016). We noted the presence of two
genes encoding enzymes involved in pigment biosynthesis,
respectively carotenoids (Phatr3_J21829, encoding 2-C-methyl-
D-erythritol 4-phosphate cytidylyltransferase) and chlorophyll
(Phatr3_J30690, encoding 3,8-divinyl protochlorophyllide-a
8-vinyl reductase (Wang et al., 2010) in the lightcyan1 merged
module (Supplementary Figure 6). We also noted the presence
of the gene Phatr3_J47674 encoding the iron stress-induced
protein ISIP3 within the lightcyan1 merged module, which
may point to a functional role for this protein in chloroplast
photosystem assembly (Supplementary Figure 6; Allen et al.,
2008; Chappell et al., 2015).

Genes encoding mitochondrial respiratory chain proteins
were concentrated toward the orangered4 merged module (27
occurrences), whereas, genes encoding TCA cycle enzymes were
concentrated toward the cyan merged module (34 occurrences).
The orangered4 merged module also contained large numbers
of genes encoding mitochondrial ribosomal proteins, which
may relate to redox-state dependent regulation of mitochondrial
biogenesis pathways (Allen, 2003). In contrast, most genes
encoding chloroplast biogenesis-related proteins were identified
in separate PhaeoNet merged modules to genes encoding
proteins of the photosystem core, with significant enrichments
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FIGURE 4 | Main metabolic pathways and functional complexes of P. tricornutum plastid (left) and mitochondrion (right) and their composition in regard to PhaeoNet merged modules. Each square represents a
gene encoding a protein identified either from N-terminal targeting predictions to function in the chloroplast or mitochondrion. Clusters of adjacent squares pertain to genes encoding different components of a
specific multi-unit enzyme or complex; and split squares pertain to genes encoding functional homologs of one specific protein. The assigned merged modules are indicated as their respective colors, with the 16
most abundant merged modules shown in the legend. Additionally, proteins coded in organellar genomes (Oudot-Le Secq et al., 2007; Oudot-Le Secq and Green, 2011; Yu et al., 2018) are shown as dotted green
or red; proteins for which chloroplast- or mitochondria-targeted isoforms or merged modules could not be assigned are shown as light gray; and enzymatic steps not identified in the genome are shown as light
gray squares without borders. Dual-localized proteins (Gile et al., 2015; Dorrell et al., 2017) are marked by checkered yellow boxes; while orange boxes highlight potential connection points between the two
organelles. Abbreviations are as follows: CAs, carbonic anhydrases; MEP/DOXP, mevalonate and non-mevalonate pathways for isoprenoid biosynthesis; SUF, iron-sulfur complex assembly; MPP,/TPP/SPP,
mitochondrial, thylakoid and stromal processing peptidases; TAT, twin-arginine-dependent thylakoid protein import pathways; AOX/PTOX, mitochondrial and chloroplast alternative oxidases; TCA, Citric Acid cycle;
Orn, ornithine; GCS, glycine shuttle; GS-GOGAT, glutamine synthetase/glutamate synthase shuttle. Detailed enzyme distributions for each pathway are shown in Supplementary Figure 6.
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of genes encoding chloroplast ribosomal proteins in the ivory
merged module (otherwise enriched in chloroplast branched-
chain amino acid and lysine biosynthesis (Bromke, 2013). It
remains to be determined to what extent the expression of the
chloroplast- and mitochondrial-genomes of P. tricornutum are
regulated in response to the redox state, versus metabolic fluxes
experienced in both organelles.

Finally, we considered the repartition of functionally
uncharacterized, but conserved domains across chloroplast-
targeted proteins in our dataset, focusing on DUFs (Domains of
Unknown Function). We found 30 chloroplast-targeted proteins
containing at least one DUF and 8 DUFs assigned to at least two
chloroplast-targeted proteins (Supplementary Table 3, Sheet 2).
Amongst these recurrent chloroplast-associated DUFs were two
examples (DUF1995 and DUF3493), which have previously been
implicated to function in photosystem assembly within thylakoid
membranes (Chi et al., 2012; Bohne et al., 2016; Li et al., 2019).
Both of these DUFs were found amongst chloroplast-targeted
proteins in the paleturquoise merged module (Phatr3_J38149,
Phatr3_J40136, and Phatr3_J46926, containing DUF1995; and
Phatr3_EG02444, containing DUF3493); in the blue module
(Phatr3_J44212, containing DUF1995; and Phatr3_J45569,
containing DUF3494); and DUF1995 furthermore occurred in
chloroplast-targeted proteins in the lightcyan1 (Phatr3_J44529)
and lightsteelblue (Phatr3_J40199) modules (Supplementary
Table 3, Sheet 2). Each of these modules are enriched in different
chloroplast-targeted metabolism pathways (Figures 3, 4),
suggesting complex connections between the regulation of
chloroplast anabolism and photosystem assembly.

Amongst the other DUFs associated with more than one
chloroplast-targeted protein were DUF814, which is implicated
in RNA quality control and amongst P. tricornutum chloroplast-
targeted protein includes one (Phatr3_J45207, within the
paleturquoise module) with some structural homology to a
ferrous iron transporter (Maxwell Burroughs and Aravind, 2014);
and DUF563, which contains a carbohydrate-active domain (Park
et al., 2010) and includes at least one chloroplast-targeted protein
(Phatr3_EG00581) within the blue module, otherwise implicated
in chloroplast carbon metabolism (Figures 3, 4). It remains to
be determined if either of these proteins has novel functions,
e.g., respectively in iron status sensing or in the diversification of
carbohydrate metabolism in the P. tricornutum chloroplast, via
the generating and phenotyping of mutant lines.

PhaeoNet Merged Modules Identify
Complex Crosstalk between the
Chloroplast and Mitochondrion in
P. tricornutum
Previously, intricate metabolic connections have been observed
between P. tricornutum chloroplasts and mitochondria, which
are distinctive to those found in plants (Prihoda et al., 2012;
Bailleul et al., 2015; Broddrick et al., 2019; Murik et al.,
2019). We wished to determine which of these connections
were visible within our data, noting multiple, transcriptionally
independent connections between the predicted proteomes of
chloroplasts and mitochondria in PhaeoNet data (highlighted

in Supplementary Figure 6). These included the presence of
genes encoding chloroplast-targeted protein import subunits
(e.g., Phatr3_J32195 encoding Tic20, Phatr3_EG02421 encoding
Tic21) within the otherwise predominantly mitochondrial
orangered4 merged module and the presence of large numbers
of amino-acyl tRNA synthetase genes (which are typically dual-
targeted to the chloroplasts and mitochondria in diatoms (Gile
et al., 2015; Dorrell et al., 2017, 2019) in the otherwise chloroplast-
associated blue merged module.

We furthermore noted the presence of multiple chloroplast-
targeted proteins associated with chloroplast division (e.g.,
Phatr3_J34093, Phatr3_J42361, and Phatr3_J14995, encoding
FtsZ-type division proteins) in the blue module, potentially
linking the synthesis of chloroplast and mitochondrial
tRNAs to chloroplast replication. A further two proteins
implicated in chloroplast replication (e.g., Phatr3_J21455,
encoding a dynamin-related DRPB85-class protein and
Phatr3_J14426, encoding a further FtsZ protein)—were
found in the darkgray module, which was also populated by
proteins involved in mitochondrial protein import (MPP, TIM,
OXA1; Supplementary Table 3), suggesting probable links
between chloroplast and mitochondrial biogenesis. Of note,
at least two of the FtsZ proteins (Phatr3_J34093, within the
blue module and Phatr3_J14426, within the darkgray module)
were inferred to possess both chloroplast and mitochondrial-
targeting sequences, underpinning the likely coordination of
biogenesis of both organelles (Supplementary Table 3). This
coordination may underpin the close topological associations
and synchronized division cycles observed between the
P. tricornutum mitochondrion and chloroplast observed in vivo
(Tanaka et al., 2015; Dorrell and Bowler, 2017).

Alongside these more general links, we identified
specific points of co-regulation between each organelle. The
paleturquoise merged module, as the only merged module found
to be enriched in both chloroplast and mitochondria functions
(Figure 3) was of particular interest and contained genes
encoding enzymes participating in several different chloroplast
and mitochondria metabolic pathways. These included genes for
mitochondria-targeted glycine dehydrogenase (Phatr3_J22187)
and serine hydroxymethyltransferase (Phatr3_J32847) and a
gene for a chloroplast-targeted dihydrolipoamide dehydrogenase
(Phatr3_J30113), which participate (as part of the glycine
shuttle) in metabolic recycling of 2-P-glycolate produced
through photosynthesis (Supplementary Figure 6; Zheng et al.,
2013; Davis et al., 2017). The paleturquoise merged module
additionally contains a gene encoding mitochondria-targeted
malate dehydrogenase (Phatr3_J54082), which may additionally
participate in the photorespiratory metabolism of glycolate by
allowing the recycling of mitochondrial serine (via pyruvate) in
the TCA cycle (Davis et al., 2017; Broddrick et al., 2019). Genes
encoding at least three further plastidial oxidative stress-related
proteins (Phatr3_J12583, encoding Fe-Mn family superoxide
dismutase; Phatr3_J45252, encoding a plastidial thioredoxin; and
Phatr3_J31436, encoding a plastidial ortholog of peroxisomal
membrane protein 2, Davis et al., 2017; Dorrell et al., 2017)
belong to the paleturquoise merged module, underlining its
importance in oxidative stress responses.
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Genes encoding both glutamine synthase (GS) and glutamate
synthase/glutamine oxoglutarate aminotransferase (GOGAT),
which have distinct plastidial and mitochondrial homologs in
P. tricornutum (Broddrick et al., 2019; Smith et al., 2019), belong
to different PhaeoNet merged modules (cyan, tan, steelblue and
magenta), suggesting a relatively complex regulation of this hub.
The plastid-localized GS (encoded by Phatr3_J51092) belongs to
the magenta merged module, which also contains the subsequent
genes encoding enzymes mediating the entry of GS-produced
NH3 into the mitochondrial ornithine-urea cycle (Phatr3_J42398
encoding malate dehydrogenase; Phatr3_J30145 encoding citrate
synthase; Phatr3_J22913 encoding pyruvate kinase), suggesting
this co-regulated pathway may have roles in recycling excess NH3
produced in the chloroplast, in accordance with previous studies
(Levering et al., 2016; Broddrick et al., 2019; Smith et al., 2019).

Finally, we noted the presence of genes encoding chloroplast-
targeted plastoquinol terminal oxidase (Phatr3_J4283) and
mitochondria-targeted alternative oxidase (Phatr3_EG02359),
which are both associated with the photoprotective removal of
excess metabolic reducing potential in the skyblue merged
module (Bailleul et al., 2015; Murik et al., 2019). This
merged module, as discussed above, contains genes encoding
three successive enzymes associated with the TCA cycle
(Phatr3_J40430 encoding α-ketoglutaryl dehydrogenase;
Phatr3_J42015 encoding succinyl-CoA synthetase and
Phatr3_J41812 encoding succinate dehydrogenase; Kroth et al.,
2008), along with methylmalonyl-CoA mutase (Phatr3_J51830),
which may allow excess succinyl-CoA to be diverted into lipid
synthesis via propionyl-CoA (Helliwell et al., 2011; Valenzuela
et al., 2012). This co-regulation underlines the importance of
the succinate hub, and presumably both the glyoxylate cycle and
ornithine shunt (as sources of mitochondrial α-ketoglutarate),
as routes for the mitochondrial dissipation of excess chloroplast
reducing potential (Bailleul et al., 2015; Broddrick et al., 2019).

Transcriptional Regulators of
Chloroplast-Targeted Proteins Show
Separate Expression Dynamics,
Informed by Evolutionary History
Finally, given the complex transcriptional partitioning of
genes encoding components of chloroplast and mitochondrial
metabolism pathways across PhaeoNet data, we investigated what
transcriptional drivers might be implicated in the co-regulation
of different metabolism-enriched pathway clusters. First, we
considered the repartition of a manually curated list of genes
encoding proteins implied in histone and transcription-related
processes (including transcription factors, TFs; Rayko et al., 2010;
Banerjee et al., 2016) across all merged modules (Supplementary
Figure 7 and Supplementary Table 4). These genes were most
frequently observed (>5% of total merged module genes) in the
darkgray, brown and steelblue merged modules (Supplementary
Figure 7 and Figure 3). The brown and darkgray merged
modules were additionally enriched in KEGG merged modules
related to cytoskeleton proteins (Supplementary Figure 4),
pointing to close links between cytoskeletal organization and
transcriptional regulation in diatoms (for example, within

organization of the cell cycle (Huysman et al., 2013; Tanaka
et al., 2015). The single most abundant TF family, heat shock
factor family (HSF) proteins (Rayko et al., 2010), were most
frequently detected in the brown, brown4, cyan and skyblue
merged modules (> 5 HSFs each, Supplementary Figure 7).
Notably, both the brown and brown4 merged modules are also
enriched in KEGG functions associated with stress responses
(protein ubiquitinylation, autophagy and membrane trafficking)
(Supplementary Figure 5), consistent with previously inferred
functions of specific P. tricornutum HSFs in the maintenance of
cellular fitness (Chen et al., 2014; Egue et al., 2015).

We also found specific repartitions of genes encoding
proteins implicated in light- and circadian-dependent
transcriptional responses in P. tricornutum, e.g., aureochromes
and cryptochromes (Takahashi et al., 2007; Banerjee et al.,
2016). These proteins typically have cytoplasmic localizations,
but through the perception of light and translocation to
the nucleus can regulate the expression of core chloroplast
metabolic pathways (Kroth et al., 2017). The circadian-
regulated Aureochrome 1c (Phatr3_J12346; Banerjee et al.,
2016; Kroth et al., 2017) and a cryptochrome-like blue
light receptor (Phatr3_J34592) were both found in the blue
merged module, implicated in anabolic metabolism; and
the light-regulated Aureochrome 1b (Phatr3_J15977) and
the blue-light-dependent protochlorophyllide reductase 1
(Phatr3_J12155; Hunsperger et al., 2016; Mann et al., 2017) were
both found in the lightsteelblue1 merged module, alongside
the majority of genes encoding other pigment biosynthesis
enzymes. In contrast, the gene encoding Aureochrome 1a
(Phatr3_J49116), which is essential for high light acclimation but
appears to be under exclusively circadian (light-independent)
regulation, falls within the lightcyan1 merged module of
core photosystem-associated genes (Supplementary Table 4
and Supplementary Figure 7; Banerjee et al., 2016; Mann
et al., 2017); while RITMO1 (Phatr3_J44962), associated with
the P. tricornutum circadian clock, falls within the skyblue
merged module, which contains limited chloroplast-related
functions except for alternative electron flow pathways
(Supplementary Table 4 and Supplementary Figure 7;
Annunziata et al., 2019). The separate distributions of light-
and circadian-regulated chloroplast regulators might reflect
a circadian-entrained synthesis of the core photosynthetic
machinery (via Aureochrome 1a), independent of light status,
with chloroplast biosynthesis pathways upregulated both by
circadian signaling (via Aureochrome 1c) and as a function
of light availability (via Aureochrome 1b). This is reminiscent
of circadian gene expression patterns visualized in plant and
other algal lineages (e.g., the green alga Ostreococcus and the
dinoflagellate Lingulodinium), in which photosynthesis and
plastid biogenesis proteins are either expressed at separate
times of the day, or show different regulatory responses to
circadian and light signals (Wang et al., 2005; Monnier et al.,
2010; Noordally et al., 2013). Finally, the gene encoding
the Aureochrome 2 protein (Phatr3_J8113), which lacks the
conserved flavin-binding domain required for light perception
(Takahashi et al., 2007; Kroth et al., 2017), falls within the
greenyellow merged module of generally transcriptionally
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repressed proteins (Figure 3), underlining its independence of
chloroplast functions.

Finally, we wished to consider within our dataset what
transcriptional dynamics within the nuclear genome may
underpin chloroplast gene expression in P. tricornutum.
Chloroplast transcription in P. tricornutum, as in other diatoms,
is performed by a plastid-encoded RNA polymerase, unlike the
situation in plants in which both plastid- and nuclear-encoded
and plastid-targeted polymerases participate (Oudot-Le Secq
et al., 2007; Yu et al., 2018). Plastid-encoded RNA polymerases
in plants typically interact with nucleus-encoded sigma factors,
which may direct them to specific target genes, in response to
different regulatory and physiological signals (Shimizu et al.,
2010; Noordally et al., 2013). Eight genes are annotated in the
P. tricornutum nuclear genome to encode sigma factor related
proteins (Rayko et al., 2010; Supplementary Table 4), but the
functions of each protein with regard to the expression of the
chloroplast genome remain unclear.

We investigated the functions of P. tricornutum sigma factors
by combining the repartition of each sigma factor in PhaeoNet
with predicted in silico localizations of P. tricornutum proteins
and their closest homologs from other diatom species, as resolved
with a single-gene (RAxML) tree (Figure 5). Three of the sigma
factor genes in P. tricornutum possess chloroplast-targeting
sequences, as inferred by in silico prediction with HECTAR
and ASAFind (Gschloessl et al., 2008; Gruber et al., 2015). One
of these proteins (Phatr3_J14599, SIGMA1a) falls within the
paleturquoise merged module, which is otherwise enriched in
chloroplast-related functions pertaining to carbon concentration
and the glycine shunt (Figures 3–5); while the two remaining
chloroplast-targeted proteins (Phatr3_J3388, SIGMA1b;
Phatr3_J17029, SIGMA3) fall within the steelblue module, which
otherwise lacks obvious enrichments in chloroplast-targeted
functions and instead seems to be most closely connected to
nucleotide metabolism (Figures 3, 5). Phylogenetic analysis
of these three sigma factors indicate that many of their closest

FIGURE 5 | Phylogenetic and transcriptional dynamics of P. tricornutum sigma factors. This Figure shows an unrooted best-scoring tree topology for an 86 taxa x
453 aa alignment of subsampled diatom and non-diatom sigma factors and realized using MrBayes v 3.2.7a with the Jones substitution matrix, 600,000
generations, two start chains and 0.5 burnin thresholds (Huelsenbeck and Ronquist, 2001); and RAxML v 8.2 with the PROTGAMMAJTT substitution model with
300 bootstrap replicates (Stamatakis, 2014). Chloroplast-targeting predictions were performed using ASAFind with SignalP v 3.0 (Gruber et al., 2015); and HECTAR
(Gschloessl et al., 2008) under default conditions. Branches are colored by phylogenetic affiliation and bootstrap values of nodes recovered with > 40% support are
shown. Eight P. tricornutum sigma factors are labeled with PhaeoNet merged module repartition and chloroplast targeting sequences were predicted by HECTAR or
ASAFind (Gruber et al., 2015).
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relatives are sequences with chloroplast-targeting signals from
other diatoms, and indeed SIGMA1a and SIGMA1b appear to be
recently derived paralogs of one another (Figure 5), indicating
that they are likely to be conserved parts of the diatom chloroplast
transcriptional machinery. The repartition of SIGMA1b and
SIGMA3 within a transcriptional module that is largely related
to non-chloroplast processes may allow hierarchical control of
chloroplast transcription in response to non-chloroplast signals
in P. tricornutum (e.g., coordination with circadian or cell cycles,
Noordally et al., 2013; Tanaka et al., 2015).

The remaining five P. tricornutum sigma factors were not
predicted to be targeted to the chloroplast and phylogenetic
analysis indicated that their closest diatom relatives primarily also
lacked chloroplast-targeting signals (Figure 5). One of these non-
chloroplast-associated sigma factors (Phatr3_J5537, SIGMA2)
fell within the largely chloroplast-independent brown module,
suggesting that it has non-chloroplastic functions. In contrast,
the remaining non-chloroplast targeted sigma factors fell within
modules otherwise enriched in chloroplast-associated functions;
either lightsteelblue (Phatr3_J9312, SIGMA4), or paleturquoise
(Phatr3_J14908, Phatr3_J9855, Phatr3_J50183; SIGMA 5-7;
Figures 3, 5). It remains to be determined whether these
sigma factors are targeted to the P. tricornutum chloroplast, but
using alternative methods to those recognized by HECTAR or
ASAFind, as per certain other diatom proteins (Kazamia et al.,
2018; Schober et al., 2019); function in compartments other than
the chloroplast, but participate indirectly in the regulation, e.g., of
nucleus-encoded proteins implicated in chloroplast metabolism;
or have functions independent of the chloroplast, as has been
documented for some other eukaryotic sigma factors (Shadel and
Clayton, 1995; Beardslee et al., 2002). These different possibilities
may be best discriminated by the experimental characterization,
e.g., through mutagenesis and functional phenotyping, of
individual P. tricornutum sigma factor genes.

CONCLUDING REMARKS

In this project, we have used WGCNA to build an integrated
network of P. tricornutum gene co-regulation, which we name
“PhaeoNet.” Our model is able to retrieve well established
biological pathways (e.g., chloroplast photosynthetic, anabolic
metabolism; and mitochondrial respiration, Figure 4) and
compares favorably to existing (e.g., microarray-based; Ashworth
et al., 2016) studies of gene co-regulation for this species
(Ashworth et al., 2016; Figures 1, 2 and Supplementary
Figures 1–4). Moreover, our dataset carries the advantage
of decomposing the P. tricornutum genome into a smaller
number (28) of functionally distinct modules than produced by
DiatomPortal. We have integrated these data into previously
generated functional, targeting and evolutionary analyses of the
P. tricornutum genome, allowing us to gain holistic insights into
the processes underpinning the gene co-regulation of specific
biological processes and organelle metabolic pathways pertinent
to diatom biology (Figure 3 and Supplementary Figure 5).

Through a deeper inspection of genes encoding chloroplast
and mitochondria-targeted proteins within these data, we

identify PhaeoNet merged modules underpinning anabolic
(blue), photosynthetic (lightsteelblue 1, lightcyan1) and
respiratory (orangered4, cyan) metabolism, and identify
multiple metabolic connections between the chloroplast and
mitochondria. These include the glycine shunt within the
paleturquoise merged module; the ornithine-urea cycle within
the magenta merged module; and coordinated chloroplast
and mitochondrial alternative oxidase activities in the skyblue
merged module; Figure 4 and Supplementary Figure 6. Finally,
considering the repartition of transcription-related proteins
within our data, we identify probable cognate regulators for
different co-ordinated metabolic pathways (Figure 5 and
Supplementary Figure 7), demonstrating different associations
of aureochrome transcription factors with different chloroplast
metabolic pathways. We notably identify hidden diversity in
the range of sigma factor genes in the P. tricornutum genome,
some of which are likely to be involved in the transcriptional
regulation of different chloroplast-encoded genes in response
to different physiological signals, while others are likely to have
different functions to chloroplast gene expression.

The PhaeoNet dataset may be usable as a predictive tool
for the characterization of poorly understood proteins, either
directly in P. tricornutum, as a well-studied model diatom
species, or in other diatom or microalgal species for which
homologs of P. tricornutum proteins are known either from
genome or transcriptome datasets (e.g., Keeling et al., 2014;
Carradec et al., 2018; Sato et al., 2020). We stress that biological
processes elucidated in this species may not necessarily be directly
extrapolatable to other algal species; and examples are already
known of proteins (e.g., proteins involved in iron-stress tolerance
and C4 photosynthesis) that may have different physiological
functions even between different diatoms (Kustka et al., 2014;
Lampe et al., 2018). Cross-comparisons between PhaeoNet and
other data, e.g., gene coregulation datasets erected in other, less
well-studied species (Ashworth et al., 2016; Ashworth and Ralph,
2018); environmental expression trends (Carradec et al., 2018);
and the phenotypes of a wider range of mutant lines generated
in P. tricornutum will be essential to understanding the diversity
of functions performed by understudied proteins in diatoms
and other algae. Nonetheless, insights from our data, delivering
actors and signatures of metabolic co-regulation in diatoms, will
provide a useful community resource for subsequent directed
experimental investigation.
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