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Models for quantum computation with circuit connections subject to the quantum superposition princi-
ple have recently been proposed. In them, a control quantum system can coherently determine the order
in which a target quantum system undergoes N gate operations. This process, known as the quantum
N -switch, is a resource for several information-processing tasks. In particular, it provides a computa-
tional advantage—over fixed-gate-order quantum circuits—for phase-estimation problems involving N
unknown unitary gates. However, the corresponding algorithm requires an experimentally unfeasible
target-system dimension (super)exponential in N . Here, we introduce a promise problem for which the
quantum N -switch gives an equivalent computational speedup with target-system dimension as small as 2
regardless of N . We use state-of-the-art multicore optical-fiber technology to experimentally demonstrate
the quantum N -switch with N = 4 gates acting on a photonic-polarization qubit. This is the first obser-
vation of a quantum superposition of more than N = 2 temporal orders, demonstrating its usefulness for
efficient phase estimation.

DOI: 10.1103/PRXQuantum.2.010320

I. INTRODUCTION

Quantum mechanics allows for processes where two or
more events take place in a quantum superposition of dif-
ferent temporal orders. This exotic phenomenon results in
causal nonseparability [1–3], and it is likely to be espe-
cially relevant in quantum treatments of gravity [4–6]. In
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fact, quantum control of temporal orders could be real-
ized with quantum circuits exploiting hypothetical closed
timelike curves [7,8], and it would also arise naturally
due to the spacetime warping that macroscopic spatial
superpositions of massive bodies would cause [9].

From a more practical perspective, advanced quantum
computational models without definite gate orders have
sparked a great deal of fundamental interest, as they do
not fit into the usual paradigm of circuits with fixed gate
connections [6,7,10–13]. The best-known example is the
celebrated quantum N -switch gate SN , which coherently
applies a different permutation of N given gates on a
target quantum system conditioned on the state of a con-
trol quantum system [7,13,14]. The quantum N -switch
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has been identified as a resource for a number of excit-
ing information-theoretic tasks. For instance, for N = 2, it
allows one to deterministically distinguish pairs of com-
muting versus anticommuting unitaries [12]; remarkably,
this translates into an exponential advantage in a commu-
nication complexity problem [15,16].

In general, circuits that synthesize SN with a fixed
gate order are known, but at the expense of quadratically
more queries to (i.e., uses of) the gates [12–14,17]. As a
consequence thereof, SN allows one to solve a promise
problem [12,14] on the permutations of N unknown uni-
tary gates with quadratically fewer queries in N than all
known circuits with fixed gate order. More precisely, the
permutation sequences of the gates are promised to dif-
fer only by a phase factor, and SN efficiently estimates
these phase differences. However, the algorithm for this
problem [12,14] requires the target-system dimension to
grow (super)exponentially with N , making it experimen-
tally demanding. In fact, all experimental realizations of
the quantum N -switch reported so far are restricted to the
simplest case of N = 2 gate orders [16,18–22].

In this work, we introduce a novel algorithm that
exploits the quantum N -switch and experimentally demon-
strate it for N = 4 unitary gates. Specifically, we find a
variant of the above phase-estimation problem, which we
name the Hadamard promise problem, for which the quan-
tum N -switch is also a resource but with considerably
milder constraints on the target-system dimension. On the
one hand, this problem plays a role in computation with
indefinite gate orders analogous to Deutsch-Jozsa’s [23]
or Simon’s [24] problems in the beginnings of quantum
computation: a proof of principle of improvements over a
previous paradigm. On the other hand, there are reasons to
expect that practical applications of the Hadamard promise
problem will be developed, both because closely related
phase-estimation problems already have many applica-
tions, and because it involves the quantum Fourier trans-
form, which is an important subroutine for a variety of
quantum algorithms with practical applications [25]. The
problem’s promise is that the products of the N unknown
gates applied in P different orders differ only in + or
− signs that are encoded into one of the columns of a
given (P×P)-dimensional Hadamard matrix; the problem
consists of finding which column it is.

The algorithm to solve this problem exploits the quan-
tum N -switch—consuming N queries to the gates—to
deterministically find the column. This represents a
speedup quadratic in N in query complexity (i.e., number
of queries) with respect to all known algorithms exploiting
circuits with fixed gate orders (see Refs. [14,26,27] for a
discussion of how to count queries in a quantum switch).
Hence, the algorithm is not only an interesting compu-
tational primitive on its own but also a practical tool to
benchmark experimental realizations of SN , because the
quantum N -switch is the only known process for which the

algorithm succeeds with unit probability for all gates satis-
fying the promise while only consuming N gate queries.
To demonstrate the practicability of the algorithm, we
implement it with a quantum N -switch of N = 4 gates
using modern multicore optical-fiber technology [28–31].
The four gates are implemented on the target polarization
qubits using programmable liquid-crystal devices, and the
spatial degree of freedom of a single photon is used as
the control system. We obtain an average success prob-
ability for the algorithm, over different sets of gates, of
psucc ≈ 0.95. Our results represent the first demonstration
of the quantum N -switch gate for N larger than 2, as well
as of its efficiency for phase-estimation problems involving
multiple unknown gates.

II. PRELIMINARIES

A. Quantum control of gate orders

In quantum computation, a quantum switch can be
described by a special type of controlled operation that
applies a particular unitary gate �x to a target system (t)
for each different state of a control system (c). We define
the quantum N -switch gate as

SN |x〉c |�〉t = |x〉c �x |�〉t , (1)

where |x〉c is the xth member of the computational basis
of the control system and |�〉t is an arbitrary state of the
target system. The heart of the quantum N -switch is the
operator �x := Uσx(N−1) · · ·Uσx(1)Uσx(0), which is a prod-
uct of the N unitary gates in a fixed set U := {UA, UB, . . .}
in their xth ordering. More precisely, σx is a vector with N
elements specifying the xth permutation of the N gates in
U, i.e., it specifies the ordering sequence of the unitaries,
so that σx(j ) is the j th element in the xth permutation. To
control the implementation of P, different permutations of
gates requires a control system of at least dimension P.
The dimension of the target system can be arbitrary and
we denote it as d. With SN defined as in Eq. (1), it is clear
that c coherently controls the order of the N unitary gates
applied to system t, which explains the name “quantum
control of gate orders” (QCGO). We note that the usual
definition [13,14] of the quantum N -switch deals only with
the specific case of all N ! permutations of the gates in U.
However, here (as in Refs. [32,33]) we are interested in the
more general case P ≤ N !.

Clearly, the general definition of QCGO is indepen-
dent of the specific choice of gates in U. A conve-
nient mathematical tool to capture that is the quantum
N -switch process WN , which produces the quantum N -
switch gate SN when given the set of gates U as input.
For the technical definition of processes, we refer the
reader to Refs. [1–3,34]. Intuitively, one can think of a
process as the quantum evolution generated by an exper-
imental arrangement with open slots for gates on the
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(a) (b) (c)

FIG. 1. (a) Abstract representation of the quantum N -switch for the case of N = 4. The process, W4 (light-gray region), can be
thought of as an experimental setup (e.g., a quantum circuit or interferometer) through which the composite control-target system goes
and with open slots for target-subsystem gates Ui (dark-gray boxes) for i = A, B, C, or D to be inserted. Inside W4, the connections
between these gates are coherently controlled by the control subsystem, an effect known as quantum control of gate orders. This
property is a physical resource for certain quantum computations (phase-estimation problems), and W4 is the resourceful object that
bears it. The concatenation of W4 with the inserted gates yields the quantum 4-switch gate S4, a joint unitary operation on the composite
system. (b) Concrete schematics of the specific variant of the quantum 4-switch process experimentally implemented in this work. The
target subsystem undergoes the four-gate sequence in a quantum superposition (center) of P = 4 different orderings (permutations
of the string ABCD): ABCD, BADC, CBDA, DACB. Each permutation is shown individually in a different color and panel. (c) In the
abovementioned computations, the target-subsystem gates are unknown. For the purpose of complexity analysis, they can be thought
of as produced upon request by a quantum oracle O. This takes as input i = A, B, C, or D and outputs a black-box device implementing
the unknown gate Ui. Each such call to the oracle counts as an oracle query. The N -switch process allows one to solve computational
problems on the phase relationships between permutations of the black-box gates with considerably fewer oracle queries—i.e., lower
query complexity—than any process with fixed (or classically controlled) gate connections.

target system to be inserted [10,11], as represented in
Fig. 1(a). Inside the process, the connections between the
inserted gates may be subject to the quantum superpo-
sition principle. For instance, in Fig. 1(b) we pictorially
represent our experimental implementation of the quantum
4-switch gate S4, with a coherent quantum superposition
of P = 4 different gate connections (each one in a dif-
ferent color) for the particular choice of permutation set
{ABCD, BADC, CBDA, DACB}. Such superpositions give
rise to QCGO, which corresponds to a specific type of
quantum control of causal orders [35] (and both phenom-
ena are in turn contained within the general notion of
causal nonseparability [1–3]). In particular, QCGO takes
place when those gate connections are coherently con-
trolled by a control system, as in Eq. (1). Aside from being
a fundamentally interesting phenomenon, QCGO turns out
to be a physical resource for interesting phase-estimation
problems, as we discuss next.

B. The Araújo-Costa-Brukner algorithm

The quantum N -switch process provides an advantage
for solving a particular phase-estimation problem [12,14]
to which we here refer as the Fourier promise problem. In
this type of problem, one has access to a quantum oracle
O for U, i.e., a black-box device that delivers a gate Ui ∈
U every time it is queried. See Fig. 1(c). No information
about the gates is available except for the promise that, for
the constant phase factor ω := ei2π/P and all x ∈ [P], they

satisfy the property that

�x = ωxy�0 (2)

for some fixed, unknown y ∈ [P], where the shorthand
notation [P] := {0, 1, . . . , P − 1} has been introduced. The
task is to determine which one of the properties holds, i.e.,
to find y.

The Araújo-Costa-Brukner algorithm to solve this
problem is based on the standard Hadamard test [36],
and shares similarities with the Kitaev phase-estimation
algorithm [37]. The control system is initialized in the
computational-basis reference state |0〉c, while the target
system starts in an arbitrary state |�〉t. A P-dimensional
quantum Fourier transform FP on c maps it to a uniform
superposition of all computational-basis states. Then, the
quantum N -switch gate is applied. Because of property (2),
this introduces the phase factor ωxy to each computational-
basis state |x〉c in the superposition, while the state �0 |�〉t
of the target system factorizes. The value of y is thus
encoded into the phases of the superposition state of the
control system. To map it back to the computational basis,
one uncomputes the Fourier transform (applying its inverse
F−1

P = F†
P). In symbols [14],

F−1
P SN FP |0〉c |�〉t = |y〉c �0 |�〉t . (3)

Then, y is finally read out by a single-shot computational-
basis measurement on c.
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To apply SN , one must consume N queries to O. There-
fore, the query complexity—i.e., total number of ora-
cle queries—of the algorithm is Q = N for all P ≤ N !.
Remarkably, causally ordered processes (i.e., those pro-
duced by circuits with fixed, or classically controlled,
gate connections) require considerably more queries to
solve the same problem. For instance, for P = N !, the
best causally ordered process displays query complexity
Q = �(N 2) [13,14,17], i.e., quadratically higher in N . A
downside of the algorithm, however, is that the target-
system dimension d must grow with the number P of
gate orders. This can be seen [14] by taking the deter-
minant of both sides of Eq. (2). For y = 1, and since
det �x = det �0, this imposes det �0 = ωxd det �0 (and,
hence, 1 = ei2πxd/P) for all x ∈ [P], which is possible only
if d ≥ P. This constraint is especially significant for exper-
imental realizations, where coherently manipulating high-
dimensional target systems together with high-dimensional
control systems is challenging [16]. For example, this
limitation implies that, if the polarization of a single pho-
ton (d = 2) is used as the target system, the algorithm
is useful only for P = 2, despite the fact that the spatial
degree of freedom of the photon is amenable to encode
much higher-dimensional control systems [38]. To over-
come this, we next introduce another variant of the phase-
estimation problem that is considerably less sensitive to the
determinant constraint.

III. A NEW COMPUTATIONAL PRIMITIVE: THE
HADAMARD PROMISE PROBLEM

We consider a different promise on the gates that the ora-
cle O outputs. Given a known (P×P)-dimensional square
matrix MP of entries mx,y = ±1, we require that the black-
box unitaries in U satisfy, for all x ∈ [P], the property
that

�x = mx,y�0 (4)

for some fixed, a priori unknown matrix column y ∈ [P].
The task is, again, to find y. In contrast to the complex-
phase relation of Eq. (2), the constraint that this real-phase
relation imposes on d is much softer. As one can see taking
the determinant of both sides of Eq. (4), the only require-
ment that arises now is that (mx,y)

d = 1 for all x, y ∈ [P],
which is satisfied by any even d. With this, the promise
problem finds application even when the target system is
a simple qubit, regardless of the number of permutations
P. Instead of a single complex phase factor, the value of y
is now encoded in a string of P real phase factors (i.e., a
column of MP). The question, then, is how to decode that
information. Luckily, the value of y can be mapped back
onto the computational basis of c with a simple procedure,
similar to that in Eq. (3), provided that MP is a Hadamard
matrix [36].

A Hadamard matrix (of order P) is a (P×P)-
dimensional square matrix MP with entries mx,y = ±1
and whose columns (or, equivalently, whose rows) are
all mutually orthogonal. The transpose M T

P of MP is pro-
portional to its inverse: (1/P)MP ·M T

P = 1, with 1 the
identity matrix. Such matrices can only exist for P equal
to 1, 2, or integer multiples of 4, and are conjectured to
exist for all such dimensions. In fact, they can be gener-
ated recursively for any P = 2k with k ∈ N. Here we are
actually interested in the subset of Hadamard matrices with
all +1s in the first row (x = 0) and column (y = 0). The
former condition is required by Eq. (4), whereas the latter
condition is necessary in our algorithm below for correct
encoding (see Appendix A 1 for details). With this, we can
formally rephrase this promise problem as follows.

Problem 1 (Hadamard promise problem). Given a
Hadamard matrix MP with all +1 entries along its first
row and column and a unitary-gate oracle O fulfilling
the promise, i.e., Eq. (4) for some column y ∈ [P] of MP,
compute y.

The algorithm to solve it with the quantum N -switch
gate is similar to the Araújo-Costa-Brukner algorithm but
with the quantum Hadamard gate HP associated to MP
playing the role of FP. The matrix representation of HP
in the computational basis is HP := MP/

√
P. Then, the

following algorithm solves Problem 1.

Algorithm 1. Initialize the joint system in the state
|0〉c |�〉t, with |�〉t an arbitrary target state. Then, apply
HP on c. Then, apply SN on the joint control-target system.
Then, apply H−1

P (= HT
P ) on c. This gives the state

H−1
P SN HP |0〉c |�〉t = |y〉c �0 |�〉t . (5)

Finally, read out y as the outcome of a single-shot
computational-basis measurement on c.

This algorithm thus provides the desired phase relation
between the P different permutations of the N unknown
unitaries under consideration. The validity of Eq. (5) is
proven explicitly in Appendix A 1. The query complexity
of the algorithm is the same as that of the Araújo-Costa-
Brukner algorithm: Q = N for all P ≤ N !. The crucial
resource for Algorithm III is the quantum N -switch pro-
cess. Similarly to the Fourier promise problem [14], no
causally ordered process is known to solve Problem 1 in
general (i.e., for any arbitrary set U of unknown gates
fulfilling the promise) with a query complexity linear
in N . In fact, the (querywise) optimal causally ordered
processes known to solve the problem in general are
simply the fixed-gate circuits that simulate the quantum
N -switch exactly (see Sec. VII), but these require consid-
erably more queries [13,14,17]. For instance, in the case
where all gate permutations are considered (P = N !), sim-
ulating the quantum N -switch exactly in the black-box
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scenario requires Q = �(N 2) oracle queries, i.e., quadrat-
ically higher in N . Another concrete example is the quan-
tum 4-switch process for the P = 4 permutations in the
set {ABCD, BADC, CBDA, DACB} [shown in Fig. 1(b)],
whose experimental implementation we describe below.
The optimal circuit to simulate it exactly in the black-
box scenario requires Q = 9 oracle queries, i.e., more than
twice as many as with S4 (see Appendix A 2).

IV. EXPERIMENTAL QUANTUM CONTROL OF
THE ORDER OF MULTIPLE GATE OPERATIONS

The experiment is illustrated in Fig. 2(a). It is based on
multicore optical fibers and new related technology [28],
which was recently introduced as a toolbox for quantum
information processing [29–31]. In our implementation of
the quantum 4 switch, the control system corresponds to

the spatial mode of a single photon, while the target is
its polarization. Following Algorithm III, a conventional
illumination scheme (see Sec. VII) is used to generate sin-
gle photons propagating over a single-mode fiber in the
initial spatial mode state |0〉c. The photons are then sent
through a 4CF-BS, which has been shown to realize with
high fidelity the H4 = M4/2 Hadamard operation given by
[39]

H4 = 1
2

⎡
⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎤
⎥⎦ . (6)

Note that this matrix is self-inverse. The 4CF-BS is placed
between commercial spatial multiplexer/demultiplexer
units [40,41], which couple four single-mode fibers (yel-
low fibers) to the four cores of the multicore fibers (green

(a)

(b)

Hadamard
gate

Hadamard
gate

Quantum 4-switch gate

FIG. 2. (a) Illustration of our implementation of the quantum 4-switch gate (S4). An input photon is divided coherently between
four spatial modes using a four-core-fiber beam splitter (4CF-BS), placed between commercial multiplexer/demultiplexer (DMUX)
units, as shown in (b). The four output modes are then sent to the quantum 4-switch gate S4. Each spatial mode is related to a unique
permutation of the four unitary polarization operations applied by S4 and indicated by a different color. The photons enter through the
IN side (right) and exit through the OUT side (left), where, for example, the notation “← A” means “from A” and “A←” means “to
A.” One can follow a certain path by looking at the output labels. For instance, the green input mode enters in C and continues to
“B, then D, then A, and finally exits,” corresponding to the operation of the four polarization unitaries in the order CBDA. After S4,
the four spatial modes are then recombined using a second 4CF-BS. Each output 0–3 is connected directly to a single-photon detector
(APD). The detection of a single-photon in the yth (y = 0, 1, 2, 3) output detector identifies in a single shot the phase relation y of the
four unitaries implemented in the quantum 4-switch gate. See the main text and Sec. VII for further details.
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fibers). These units connect to the 4CF-BS through the
multicore fibers [see the details in Fig. 2(b)].

After transmission through the 4CF-BS, the photon is
sent to the quantum 4-switch gate S4, which will coherently
apply different permutations of four unitary operations Ui
on the target system (photon polarization), depending on
the spatial mode. To see this, note that each output of
the 4CF-BS routes the photon through a different ordering
of the polarization operations Ui, which are realized with
controllable liquid crystal retarders (LCRs). To control the
implementation order of the Ui, we take advantage of the
DMUX units. Each single-mode fiber input to the quantum
4-switch gate is connected to a different four-core fiber on
the IN side of S4 using a DMUX unit. The other end of
each 4CF is attached to a fiber launcher. The photon leaves
the launcher in free space passing through the LCR and is
coupled back into another 4CF on the OUT side. The OUT
4CF is connected (via another DMUX) to single mode
fibers, which are then connected to the next 4CF (exploit-
ing the already installed DMUXs) back on the 4-switch’s
IN side, following the ordering showed in Fig. 2(a). For
example, a photon in the green input undergoes the opera-
tion of the four unitaries in the order C→ B→ D→ A,
resulting in the product unitary �2 = UAUDUBUC. The
other three inputs lead the photon through one of the
other three permutations shown in Fig. 1(b). After S4, a
second Hadamard operation is applied to the control sys-
tem using a second set of DMUX+4CF-BS+DMUX, in
accordance with Algorithm III. The setup is thus a four-
arm interferometer with each output directly connected
to an InGaAs APD, working in gated mode and config-
ured with 10% overall detection efficiency, and 5 ns gate
width. The detection of a single photon in the yth (y =
0, 1, 2, 3) output detector univocally identifies in a single

TABLE I. Tables of polarization unitaries used for
the implementations of two different quantum 4-switch
gates (both with the same set of gate permutations
{ABCD, BADC, CBDA, DACB}; here 1 is the identity, Z
and X are the Pauli operators). For both tables, each column
provides a different set U of oracle gates. In turn, each such
set exhibits the phase relations encoded—via Eq. (4)—in the
corresponding column y of the matrix in Eq. (6). That is, the
implemented oracle gates fulfil the problem’s promise with
respect to the experimentally implemented Hadamard matrix
and the chosen set of permutations.

Table 1(a) Table 1(b)

y y

0 1 2 3 0 1 2 3

UA 1 Z 1 Z UA (Z + X )/
√

2 1 Z Z
UB X X X X UB (Z + X )/

√
2 X X X

UC 1 Z Z 1 UC 1 Z 1 1

UD X X X X UD 1 1 1 X

shot the property y, indicating the phase relations of the
four unitaries implemented in the quantum 4-switch gate.

Before implementing the quantum 4-switch process, an
initial alignment procedure using a polarimeter is per-
formed. In-fiber polarization controllers (not shown in
Fig. 2) are used in all single-mode fibers of the quan-
tum 4 switch to ensure that every fiber corresponds to an
identity operation on the polarization. They are also used
at the final set of DMUX+4CF-BS+DMUX to guaran-
tee the indistinguishability of the core modes, such that
there is no path information available that would compro-
mise the visibility of the interferometer [42,43]. The LCRs
implementing the unitaries can be adjusted between iden-
tity and a half-wave plate by controlling the input voltage.
In this way, we can toggle between an identity opera-
tion 1 and one of the Pauli operators Z, (Z + X )/

√
2 or

X , when the orientation angle of the LCR is 0◦, 22.5◦,
or 45◦, respectively. Importantly, we note that the LCRs
are placed at the far-field plane of the 4CF launchers

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

(b)

(a)

(c)

Measurement step

3 3 22210 0

Output detector (y)

Output detector (y)

0.2

0.0

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

3210 3210 3210 3210

3210 3210 3210 3210

FIG. 3. (a) A sequence of about 8 min of measurement results
with our quantum 4-switch process taken in real time. Measure-
ments of 0.1 s duration are taken continuously, realized within
the phase stabilization routine (see Sec. VII), in which the four
sets of unitaries given each by the yth column of Table 1(a) are
toggled randomly every minute. The number labels correspond to
the columns of Table 1(a). Summary of experimentally obtained
success probabilities to identify the commutation relations of the
unitary operations in Table 1(a) [panel (b)] and Table 1(b) [panel
(c)]. See the text for more details.
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and that this guarantees that the unitary operations Ui
are indistinguishable when applied in different orders (see
Sec. VII). A computer-controlled field-programmable gate
array (FPGA2) unit is used to control the LCRs.

In Table I we list the polarization operations Ui for two
different implementations of the quantum 4-switch pro-
cess. Table 1(a) corresponds to orthogonal operations (for
each given column), while Table 1(b) includes nonorthog-
onal operations, which makes it more difficult to mimic
the quantum N -switch with a causally ordered process (see
below and Appendix A 3). In each table, the yth column
defines a different set U of the target-system unitary gates
and corresponds to the yth column of the Hadamard matrix
in Eq. (6) (see Sec. VII). In our experiment, by exploit-
ing the controlled LCRs, we are able to toggle between the
different sets U of unitaries in real time. In Fig. 3(a) we
show an example of the results recorded while switching
randomly (with uniform probabilities) between operations
corresponding to different columns of Table 1(a), about
every minute. In each 0.1 s measurement we detected
a total of about 6000 events. In Figs. 3(b) and 3(c) we
show a summary of experimentally obtained success prob-
abilities (each obtained from about 3× 104 events) to
identify the relative-phase relations between the different
permutations of the unitary operations in Table 1(a) and
Table 1(b), respectively. For Table 1(a), we obtain an aver-
age success probability of psucc = 0.948± 0.005, whereas
for Table 1(b), we obtain psucc = 0.959± 0.008. Error bars
correspond to one standard deviation, and are obtained by
error propagation of the Poissonian count statistics. These
results demonstrate the successful implementation of the
quantum 4-switch process.

V. BENCHMARKING EXPERIMENTAL
QUANTUM CONTROL OF MULTIPLE GATE

ORDERS

To benchmark the realization of QCGO, it is useful to
imagine a verification scenario, in which a verifier controls
the oracle, while the process is implemented by a prover.
The prover wishes to prove to the verifier that the process
does display QCGO, and the verifier can test this by ask-
ing the prover to compute properties of oracles involving
different gates. The quantum N -switch process allows the
prover to solve the computations with considerably fewer
oracle queries than any process with fixed (or classically
controlled) gate connections. Indeed, it is the only process
known to provide a unit success probability for Problem
1 in general (i.e., for any set of black-box gates satisfy-
ing the promise) with only N queries to the oracle. This
can be used to give the verifier evidence in favor of the
prover’s honesty. However, if the table of oracle gates
has a small number of columns—e.g., as in Table I—a
dishonest prover with side information about the table

can attain psucc = 1 with a causally ordered process (see
Appendix A 3), thus deceiving the verifier.

One way to benchmark experimental quantum switches
with minimal assumptions is by measuring so-called causal
witnesses [2,44]. Interestingly, by increasing the num-
ber of columns in the oracle-gate table (i.e., of possible
choices for the gate sets U) and suitably choosing their
prior probability distribution, Algorithm III can be turned
into a causal witness for the quantum switch. That is,
for sufficiently large oracle-gate tables and an appropri-
ate prior distribution for the gate sets U, an upper bound
pCCGO

succ strictly smaller than 1 can be found for the prob-
ability of success attainable by processes with classical
control of gate orders (CCGO). This provides us with a
gap from the probability of success obtained by the quan-
tum switch, which always remains unity in the noiseless
case. Details on our search for witnesses are given in
Appendix A 4.

Unfortunately, the number of measurement settings
required to measure such witnesses is prohibitively high in
practice for this experimental setup. For instance, the best
witness for W4 we can obtain with the abovementioned
approach gives pCCGO

succ ≈ 0.89, but requires an oracle-gate
table with 300 columns. Alternatively, weaker witnesses
with pCCGO

succ ≈ 0.92 can also be found, but these still require
60 columns. Our LCR-based setup cannot switch among
so many gates in a practical way. Nevertheless, it is yet a
remarkable feature of our experiment that we do reach val-
ues of psucc significantly higher than both bounds, which
would conclusively benchmark W4 for a higher number of
settings. In addition, we note that witnesses with similarly
high numbers of settings (259) have indeed been measured
in other platforms, though with much slower switching
times [19].

Alternatively, smaller oracle-gate tables suffice if the
verifier can actively reduce the prover’s potential knowl-
edge about the tables. One way to do this is by allow-
ing the verifier to apply a random basis rotation to each
gate before delivering it to the prover. For instance,
in this scenario, an upper bound pCCGO

succ ≈ 0.84 can be
obtained for an oracle-gate table with only 30 columns (see
Appendix A 4). Unfortunately, implementing such a causal
witness would require the ability to switch among a con-
tinuum of gates, which is again experimentally infeasible.
Nevertheless, here we are mainly interested in bench-
marking our implementation of W4 against experimental
imperfections, rather than against hypothetical malicious
provers exploiting side information about the gates’ bases.
In this regard, the experimentally obtained values in Fig. 3
are in the range psucc ≈ 0.93–0.97, which suggests that
our setup should be capable of obtaining average success
probabilities that are larger than the thresholds mentioned
above, for a larger number of settings. Though not yet con-
clusive, this provides encouraging evidence for the QCGO
of the implemented process.
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VI. DISCUSSION

Here we introduce the “Hadamard promise prob-
lem,” a novel computational primitive involving the rel-
ative phases between different permutations of multiple
unknown gates. We present an algorithm to solve it effi-
ciently, illustrating a quantum computational advantage
associated to the coherent quantum control of the order
in which a sequence of N unitary operations is applied.
Our algorithm, which we implement experimentally for
N = 4, exploits the quantum N -switch process to solve the
problem with N applications of the unitary gates, whereas
the known methods exploiting fixed gate orders use the
gates O(N 2) times. Both the problem and algorithm have
the advantage that the target system needs only be two
dimensional, as opposed to N ! dimensional as in pre-
vious proposals. This could inspire new approaches for
exploiting indefinite causal order in quantum computa-
tion and communication, as well as for studying causal
nonseparability in physical systems.

We experimentally implement the algorithm by con-
structing a quantum 4-switch process that coherently
controls four different gate orderings with high fidelity,
showing success probabilities for the algorithm of approx-
imately 0.95. The all-optical setup involves a four-path
interferometer constructed with new multicore optical fiber
technology. As discussed in Sec. VII, the best-known
quantum circuit with fixed gate orders solves this problem
with 9 gate queries. Our experiment thus corresponds to a
five-query improvement. Moreover, this is, to the best of
our knowledge, the first report of a quantum superposition
of more than 2 temporal orders. In addition, our implemen-
tation presents some technical advantages as well. On the
one hand, it is versatile in that the gate orders can be mod-
ified in a practical fashion by switching the optical fiber
connections and that the unitary gates themselves can be
automatically controlled through the liquid crystal polar-
ization retarders. On the other hand, the setup can be scaled
up to higher control-system dimensions in a straightfor-
ward fashion. This work constitutes a key step towards
realizing and verifying causal nonseparability among a
large number of parties, and should play an important role
in developing methods to exploit this resource.

VII. METHODS

A. Query complexity analysis

One may argue that implementing SN is not the only
way to solve Problem 1 (which is also true for the Fourier
promise problem [14]). Here, we estimate the query com-
plexity of other plausible approaches.

A natural approach one may attempt is to tomograph-
ically reconstruct the N unitary gates and then multiply
them to estimate the �x, from which one can infer y.

Since each �x is an N -fold product of the Ui, the over-
all error ε in its estimation is ε = �(Nε), where ε is
the statistical error of the reconstruction of each Ui. To
attain a constant overall error, one thus needs ε = O(1/N ),
which, by virtue of Hoeffding’s bound, in turn requires
q = O(1/ε2) = O(N 2) queries to each Ui. Moreover, since
there are N gates to reconstruct, the overall query com-
plexity is Q = O(Nq) = O(N 3), i.e., cubically worse in
N than with the quantum N -switch. Another alternative
is to tomographically reconstruct each �x directly, and
from that infer y. However, to query each N -fold prod-
uct �x, one must query all N unitaries, and there are
P such products. Hence, the overall query complexity is
Q = O(NP) ≥ O(N 2) if one considers P ≥ N (as we did in
our experimental demonstration), i.e., quadratically worse
in N than with the quantum N -switch. A third possibility
could be to directly estimate the signs of the commuta-
tors between the �x, and from that infer y. A canonical
tool for that is the well-known Hadamard test [36]. This
allows one to estimate overlaps of the form 〈�|t �x |�〉t
or 〈�|t �†

x�x′�x |�〉t directly from queries to �x or �x
and �x′ , respectively, for any state |�〉t. As before, each
query to �x accounts for N queries to the gates, and the
overall query complexity is again Q = O(NP) ≥ O(N 2).

Finally, one can simulate SN exactly with a circuit
with fixed gate orders. For the usual case where all
P = N ! permutations are considered, the optimal causally
ordered circuit that synthesizes SN in the black-box sce-
nario displays complexity Q = �(N 2) [13,14,17]. For the
concrete case experimentally studied here, P = N = 4,
the optimal causally ordered circuit that synthesizes S4
requires 9 queries (see Appendix A 2). In fact, this is
the reason why we choose the particular permutation
set {ABCD, BADC, CBDA, DACB}. Through a brute-force
search, we find that, from all quartets of permutations,
most of them require 7 queries or less with the simulation
strategy presented in Appendix A 2, some other 8 queries,
and a few of them (including the one chosen here) require
the maximum of 9 queries. Thus, the specific version of
the quantum 4-switch process implemented here provides
a gap of 9− 4 = 5 queries with respect to all causally
ordered processes.

B. Experimental details

1. Single-photon source

The single-photon light source is composed of a
semiconductor distributed feedback telecom laser (λ =
1546 nm) connected to an external fiber-pigtailed ampli-
tude modulator (Mach-Zehnder interferometer, MZI). An
FPGA unit (FPGA1) is used with the MZI to exter-
nally modulate the laser and generate optical pulses 5
ns wide. Optical attenuators (ATTs) are used before the
MZI to create weak coherent states with a mean photon
number per pulse of μ = 0.2. In this case, 90% of the
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non-null pulses generated contain a single photon. Thus,
our source is a good approximation to a nondeterminis-
tic single-photon source, which is commonly adopted in
quantum communications [45]. FPGA1 also controls the
active phase stabilization of the system and registration of
single-photon counts at each of the four detectors during
the measurement procedure (see below).

2. Indistinguishability of the multigate operations in
different orders

The four unitary operators Ui (i = A, B, C, D) are real-
ized using birefringent liquid crystal retarders. An impor-
tant aspect of the experiment is to guarantee the realization
of the same unitary operation Ui for all different orders
considered. That is, the implementation of Ui must be
independent of the illuminated core on the correspond-
ing 4CF at the IN side of the oracle. To achieve this,
the LCRs are placed in the Fourier plane of the objec-
tive lenses of the 4CF fiber launchers [see Fig. 4(a)]. At
the exit face of this fiber, the output single mode of each
core is given by a Gaussian function g(r) centered at
the core position rc. At the Fourier plane of the launcher
lens, the spatial distribution of each core is given by the
Fourier transform F [g(r− rc)](s) ∝ exp(iks · rc/f )g(s).
Therefore, irrespective of the illuminated core, all core
modes overlap at the same central point with the inten-
sity proportional to |g(s)|2. This avoids spatial distinctions
as in certain implementations for N = 2 gates [18,19].
To guarantee this condition for our experiment, we used
a CCD camera to record the intensity distributions at
the Fourier plane (with the LCRs removed), as shown

(a)

(b)
0 1

23

0+1+2+3

4CF

4CF

LCR

Lens
Lens

Image
plane

FIG. 4. (a) Illustration of the 4CF launchers and the LCRs
implementing the unitaries Ui. The LCRs are placed at the
Fourier plane of the output coupling lenses. (b) Images recorded
at the LCRs plane, of each core alone, as well as the output when
all cores are connected, showing large spatial overlap between
the cores modes. This guarantees that the Ui are indistinguishable
when applied in different orders.

in Fig. 4(b). The images, obtained with an intense laser,
show the centering of the light distribution when a single
core is connected. The resulting interference pattern when
all cores are illuminated shows high visibility, confirming
spatial indistinguishability. This guarantees that the uni-
tary operations Ui are indistinguishable when applied in
different orders—a crucial requirement for a valid imple-
mentation of an N -switch [20].

3. Phase stabilization and measurement procedure

Phase (PHASE MOD) and intensity modulators (INT
MOD) are used after the first 4CF-BS, on each arm of
the interferometer [see Fig. 2(a)], to set the relative phases
between the four spatial modes to zero, and to adjust the
amplitudes. The FPGA1 unit is used to implement a con-
trol system to actively compensate phase drifts in the quan-
tum 4-switch process. The control is based on a perturb and
observe power point tracking method [39,46]. Basically,
the phase drift compensation algorithm will perturb the kth
phase modulator to cancel any phase noise using a high-
speed signal. The algorithm does this sequentially to each
phase modulator and in each step it maximizes the number
of photocounts in the output detector “0” with the LCRs
set to realize column y = 0 of one of the tables in Table I.
When the counts achieve a given threshold value for the
success probability, the voltages applied to the phase mod-
ulators are maintained constant, and an ON signal is sent to
FPGA2 to activate the LCRs by applying a constant volt-
age, realizing any one of the four columns of the respective
table in Table I, chosen by the user. After a 0.2 s deadtime
to allow for the LCRs voltages to reach the desired value,
a 0.1 s measurement stage is realized. After a single mea-
surement window, an OFF signal is sent to return the LCRs
to column 0. In this way, we can switch rapidly between
columns 0–3 of the tables. The control system monitors the
phase stabilization of the interferometer in real time after
every measurement.

We have used this phase stabilization routine in other
work [39], and obtained visibilities over 99%. Here, our
success probability is limited to about 95% due to slightly
imperfect polarization rotations of the LCRs, as well as
the difficulty in achieving proper alignment of the polar-
ization state for the different LCR combinations in each
path, which we observed in the initial alignment procedure
using the polarimeter (see Sec. IV).

ACKNOWLEDGMENTS

We thank Barbara Amaral, Johanna Barra, Fabio Costa,
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APPENDIX

1. Proof of Eq. (5)

First, note that (just like the Fourier transform) the
Hadamard gate HP maps |0〉c to the uniform superposition
of all computational-basis states (under the assumption
that the corresponding Hadamard matrix MP only has +1
values along the first column):

HP |0〉c |�〉t =
1√
P

∑
x∈[P]

|x〉c |�〉t . (A1)

Then, the quantum N -switch gate introduces the sign mx,y
to each computational-basis state |x〉c in the superposition

SN HP |0〉c |�〉t =
1√
P

∑
x∈[P]

|x〉c �x |�〉t

=
(

1√
P

∑
x∈[P]

mx,y |x〉c
)

�0 |�〉t , (A2)

where the second equality follows from Eq. (4). Now, by
definition, the state within the brackets is HP |y〉c. Hence,
applying H−1

P to both sides of Eq. (A2) yields Eq. (5).

2. Exact simulation of the quantum N -switch with a
fixed-gate-order circuit

It is possible to simulate the quantum N -switch—i.e.,
produce the same superposition of unitaries {�x}x∈[P]
as the quantum N -switch for whatever unitaries Ui are
inserted at its open slots—with a causally ordered circuit
at the cost of making more uses (queries) of each unitary.
The basic idea behind such a circuit is to apply the uni-
taries coherently controlled by a qudit. However, this is not
a straightforward task with black-box unitaries [26,47–51].
A workaround is to use ancillas and controlled swap gates
that coherently control whether each target-system gate is
effectively applied to the target system or to an ancilla. This
can be done with a circuit such as in Fig. 5, which uses a
P-dimensional control qudit and N d-dimensional ancilla
systems (one for each gate Ui). Importantly, as the reader
may verify, all N ancillas experience the same overall gate
sequence for all input states of the control register, which
guarantees that the ancillas disentangle from the target and
control systems by the end of the circuit. For instance,

FIG. 5. Fixed-gate-order circuit that simulates the quantum 4-switch process that is realized experimentally, i.e., with quantum
control of the four gate sequences �0 = UDUCUBUA, �1 = UCUDUAUB, �2 = UAUDUBUC, and �3 = UBUCUAUD. Before and
after each unitary Ui, a pair of controlled swap gates controls whether Ui is applied to the target system or to an ancilla; the control
qudit has dimension P = 4, here represented as two qubits (with x = 0, 1, 2, and 3 encoded as 00, 01, 10, and 11, respectively). Filled
circles indicate an operation conditioned on the |1〉c state; open circles indicate an operation conditioned on the |0〉c state. Conditioning
on negation of certain states is also needed, as exemplified in the legend below the circuit.
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for the circuit in Fig. 5, the final state of the ancillas is
U2

A |0〉anc,A UB |0〉anc,B UC |0〉anc,C UD |0〉anc,D.
With this circuit scheme, the problem of simulating

the superposition of unitaries produced by a quantum N -
switch reduces to finding a supersequence that includes all
the desired permutations as subsequences; the query com-
plexity of this scheme is then given by the length of the
shortest such supersequence [17,52]. In the experiment and
Fig. 5, ACBADACDB is the supersequence to the quar-
tet of permutations {ABCD, BADC, CBDA, DACB} (note
that the subsequences need not be contiguous). We have
made an extensive numerical search of all quartets of per-
mutations of A, B, C, D. There are (N !− 1 P − 1) =
(23 3) = 1771 unique quartets, where quartets that differ
only by relabeling are disconsidered (this amounts to, for
instance, only considering quartets that include some fixed
permutation, e.g., ABCD). Of those, most require a super-
sequence of length 8 or less (37 unique quartets require
length 6; 946 require length 7; 779 require length 8) and
only 9 require length 9. Since the higher the supersequence
length, the higher the query complexity of the simulation
by fixed-gate-order circuit, we chose one of the latter nine
quartets for our experiment (as well as Fig. 5). Note that all
nine black boxes are queried once, irrespective of whether
they are effectively used in the superposition or not; hence,
the query complexity of this simulation of the quantum
4-switch process is 9.

3. Fixed-gate circuit algorithms for the Hadamard
promise problem exploiting side information about the

gates

Let us revisit the adversarial scenario of a verifier who
controls the oracle and poses the Hadamard promise prob-
lem to a prover. The prover thus receives unknown (to
them) unitaries and uses them to the best of their abilities
to solve the problem and output the correct answer to the
verifier. As we showed, a prover in possession of a quan-
tum N -switch can solve the problem with 100% success
rate using only a single query from each unitary. We now
ask: can a prover solve the problem with access only to
fixed-gate-order circuits?

By performing the simulations in the previous section,
they are also able to solve the Hadamard promise problem
with 100% success rate. However, they must request addi-
tional queries of the oracle to the verifier, a tell-tale sign to
the latter that the quantum N -switch has not been realized.

We now explore the case of a prover with side informa-
tion on the unitaries from the oracle. More specifically, let
us suppose that they know the table of unitaries that the
verifier uses (Table I), but not which column is selected in
each run. This information aids the prover, who may no
longer need to produce the superposition of unitaries from
the previous section.

If Table 1(a) is used, the prover’s strategy is rela-
tively simple. By inputting a |+〉 := (|0〉 + |1〉)/√2 state
to black box UA, the output state will be either |+〉 if
UA = 1 or |−〉 := (|0〉 − |1〉)/√2 if UA = Z. With a mea-
surement of the output in the X basis, they can identify
UA (we call this an X -basis test on UA). Doing the same
procedure on UC, they identify this unitary as well and dis-
cover the column y of Table 1(a) being used. Since only 1
query or less of each unitary is needed, the prover can in
fact deceive the verifier in this case.

If instead Table 1(b) is used, the prover requires a
slightly more complex fixed-gate-order circuit to deceive
the verifier. It begins with an X -basis test applied to UC,
which reveals the content of that black box. In turn, UD is
revealed with an analogous Z-basis test, with input state |0〉
and measurement of output in the Z basis. If one of these
two black boxes is revealed to be a Pauli operator (Z or
X ) then that run of the promise problem has been solved
(y = 1 or 3, respectively). However, if both UC = 1 and
UD = 1, both y = 0 and y = 2 are possible, and the black
boxes UA, UB need to be used. Since the quantum N -switch
finds the correct value of y with probability 1, so is the goal
of the prover here. However, the two possible unitaries for
UA [(Z + X )/

√
2, Z] are not orthogonal, i.e., not perfectly

distinguishable, and the same happens with UB. No inde-
pendent use of UA and UB can tell the columns apart with
certainty. There is a viable strategy, though, using UA and
UB in sequence. Indeed, note that UBUA = 1 for column
0 and UBUA = −iY for column 2. A Z- or X -basis test
applied to the sequence of the two unitaries UA and UB
can distinguish these two possibilities, again solving the
problem with certainty.

If the prover does not know whether the verifier uses
Table 1(a) or 1(b), the former needs to first identify which
table is used. This table identification can be done with a Z-
basis test on UD, which reveals whether UD = X or UD =
1. The strategy for Table 1(a) is applied in the former case,
that for Table 1(b) in the latter case (note that column y =
3 is the same for both tables).

4. Causal witnesses for the 4-switch process

In order to certify, via the Hadamard promise prob-
lem, that a given process exhibits some QCGO, one may
look for the maximal probability of success pCCGO

succ that
processes with CCGO can reach: if this upper bound is
strictly smaller than 1, it becomes possible to experimen-
tally obtain a probability of success psucc > pCCGO

succ and thus
prove that these results cannot be explained by CCGO.

For a fixed choice of gate permutations and of the
Hadamard matrix under consideration, the “causal bound”
pCCGO

succ still depends on the specific choice of possible sets
U, and of the prior distribution with which each set is
chosen in each experimental run. Considering different
possible sets Uk, each satisfying the promise of Eq. (4)
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for some value y = yk and chosen with probability qk, the
probability of success (i.e., of obtaining the correct value
y = yk) of the Hadamard promise problem is obtained as

psucc =
∑

k

qkProb(y = yk | U = Uk). (A3)

To compute the above probabilities, and to obtain the
causal bound pCCGO

succ , we use the so-called “process matrix
framework” [1]. In this framework the process under con-
sideration (i.e., in our case, the circuit that connects the
four unitaries and the final measurement) is described by
the “process matrix” W, acting on the tensor product of all
input and output Hilbert spaces of the four unitaries and of
the final measurement. When the four qubit unitaries from
some quartet Uk = {U(k)

A , U(k)
B , U(k)

C , U(k)
D } are applied, the

probability Prob(y = yk | U = Uk) that the final measure-
ment in the computational basis {|y〉c}y∈[4] of Hc gives the
outcome yk for an arbitrary process matrix W is obtained
as

Prob(y = yk | U = Uk) = Tr[(|Uk〉〉〈〈Uk|� ⊗ |yk〉 〈yk|c)W]
(A4)

with

|Uk〉〉 := |U(k)
A 〉〉|U(k)

B 〉〉|U(k)
C 〉〉|U(k)

D 〉〉. (A5)

Here, “�” denotes the transposition in the computational
basis {|0〉 , |1〉} of Ht and |U(k)

i 〉〉 ∈ Ht ⊗Ht is the Choi
vector representation [53] of the ith unitary U(k)

i for i =
A, B, C or D, technically defined as |U(k)

i 〉〉 := 1⊗ U(k)
i |1〉〉,

with |1〉〉 := |0〉 |0〉 + |1〉 |1〉. According to Eq. (A3), the
success probability is then obtained as

psucc = Tr[GW]

with G =
∑

k

qk|Uk〉〉〈〈Uk|� ⊗ |yk〉 〈yk|c . (A6)

The process matrix describing the ideal 4-switch process
of Fig. 1(b) is given by W4 = |w4〉 〈w4| [2,3], where

|w4〉 = |0〉cp |1〉〉tp AI |1〉〉AOBI |1〉〉BOCI |1〉〉CODI |1〉〉DOtf |0〉cf

+ |1〉cp |1〉〉tp BI |1〉〉BOAI |1〉〉AODI |1〉〉DOCI |1〉〉COtf |1〉cf

+ |2〉cp |1〉〉tp CI |1〉〉COBI |1〉〉BODI |1〉〉DOAI |1〉〉AOtf |2〉cf

+ |3〉cp |1〉〉tp DI |1〉〉DOAI |1〉〉AOCI |1〉〉COBI |1〉〉BOtf |3〉cf

(A7)

and the superscripts indicate the Hilbert spaces in which
the various states are defined: cp , cf refer to the past and the
future of the control system, tp , tf refer to the past and the
future of the target system, AI and AO refer to the input and
output spaces of operation UA, and similarly for the other

parties. Note that, for the sake of clarity, in Fig. 1(a) we use
a simplified notation based on the necessary isomorphism
between tp , tf , AI , AO, and the other parties’ inputs and
outputs (as well as between cp and cf ).

In Algorithm III we input the initial control state HP |0〉
into cp , the initial target state |�〉 into tp , and apply
H−1

P to the resulting state of the control system in cf .
These fixed steps can be incorporated into the process-
matrix description. The resulting matrix that describes our
effective process is then W′4 = Trtf |w′4〉 〈w′4| with

∣∣w′4
〉 = 1

2 [|�〉AI |1〉〉AOBI |1〉〉BOCI |1〉〉CODI |1〉〉DOtf H−1
P |0〉c

+ |�〉BI |1〉〉BOAI |1〉〉AODI |1〉〉DOCI |1〉〉COtf H−1
P |1〉c

+ |�〉CI |1〉〉COBI |1〉〉BODI |1〉〉DOAI |1〉〉AOtf H−1
P |2〉c

+ |�〉DI |1〉〉DOAI |1〉〉AOCI |1〉〉COBI |1〉〉BOtf H−1
P |3〉c].

(A8)

Using this process matrix, we can verify that, for any
set Uk = {U(k)

A , U(k)
B , U(k)

C , U(k)
D } satisfying promise (4) for

some y = yk, one has Tr[(|Uk〉〉〈〈Uk|� ⊗ |yk〉 〈yk|c)W′4] =
1, so that the success probability of Algorithm III, using
the 4-switch process, is indeed unity.

Processes that display CCGO, on the other hand, are
described by process matrices from a particular subset
of all possible matrices, with some specific structure. In
Ref. [54], it was indeed shown that (in our scenario, with
four operations and a final measurement) CCGO process
matrices W must have a decomposition of the form

W =
∑

(i, j ,k,l)

W(i, j ,k,l),c (A9)

in terms of positive semidefinite matrices (not necessarily
valid process matrices) W(i, j ,k,l),c, for all 4! = 24 permuta-
tions (i, j , k, l) of {A, B, C, D} (hence with i �= j �= k �= l).
These must furthermore be such that the “reduced” matri-
ces W(i, j ,k,l) := Trc W(i, j ,k,l),c (where c refers to the space of
the final measurement), W(i, j ,k) := Trl W(i, j ,k,l) (where Trl
corresponds to the partial trace over the input and output
spaces of the operation Ul), W(i, j ) :=∑

k Trk W(i, j ,k), and
W(i) :=∑

j Trj W(i, j ) are of the form

W(i, j ,k,l) = W̃(i, j ,k,l) ⊗ 1lO , W(i, j ,k) = W̃(i, j ,k) ⊗ 1kO ,

W(i, j ) = W̃(i, j ) ⊗ 1jO , W(i) = W̃(i) ⊗ 1iO ,
(A10)

for some matrices W̃(·) in the appropriate spaces. Here 1lO

denotes the identity operator on the output space of the
operation Ul, and similarly for 1kO , 1jO , and 1iO .

To obtain the causal bound pCCGO
succ for all CCGO pro-

cesses—for a fixed choice of sets Uk and weights qk, and
hence a fixed operator G as defined in Eq. (A6)—one can
then optimize the value of psucc = Tr[GW] for all W in
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the class described by Eqs. (A9)–(A10) (which describes
a closed convex cone, which we denote by WCCGO) and
with the additional normalization condition [1,3,55] that
Tr W = 24:

pCCGO
succ = max

W
Tr[GW]

such thatW ∈WCCGO, Tr W = 24.
(A11)

As it turns out, this optimization is a semidefinite program-
ming (SDP) problem, which can in principle be solved
faithfully [2,44,55].

Another possible “dual” approach—now just for a fixed
choice of possible sets Uk—is to optimize the causal wit-
ness rather than the process matrix. Fixing the witness to
be of the form of G in Eq. (A6) allows us to optimize the
weights qk for each Uk: indeed, the optimization problem
can be written here (see Appendix H of Ref. [2]) as

pCCGO
succ = min

p ,{qk}k
p (A12a)

such that p1/24 − G ∈ SCCGO, (A12b)

G =∑
kqk|Uk〉〉〈〈Uk|� ⊗ |yk〉 〈yk|c ,

qk ≥ 0,
∑

k

qk = 1, (A12c)

where

SCCGO := (WCCGO)∗

:= {S | for all W∈WCCGO, Tr[SW] ≥ 0} (A13)

is the convex cone dual to WCCGO, which can, like the
latter, be described in terms of SDP constraints [2,44,55].

Let us note here that the above characterization of
WCCGO [via the decomposition of Eq. (A9), with the matri-
ces W(·) satisfying the constraints of Eq. (A10)] was shown
[55] to be a sufficient condition for the process matrix to be
“causally separable” [1,3,55]. It remains an open question
whether or not the class of causally separable processes is
strictly larger than that of CCGO. We nevertheless conjec-
ture that the “causal bounds” pCCGO

succ we obtain here hold
for all causally separable processes.

a. Causal witnesses with finitely many settings

As is clear from the discussion in Appendix A 3, if one
only uses the sets from Tables 1(a) and 1(b) in Table I, then
one can only get a trivial causal bound pCCGO

succ = 1. In order
to get a nontrivial bound, one needs to consider some other
possible sets of unitaries.

To this end, we consider unitaries taken from the set

G =
{
1, Z, X , Y,

Z + X√
2

,
Z + Y√

2
,

X + Y√
2

,

1+ iZ√
2

,
1+ iX√

2
,
1+ iY√

2

}
(A14)

(which have the nice property that their Choi matrices
|U〉〉〈〈U| span the full 10-dimensional space of all possible
Choi matrices for qubit unitaries), and looked for which
sets U = {UA, UB, UC, UD}with Ui ∈ G satisfy the promise
of Eq. (4). We find 460 different such sets: 316 satisfy-
ing the promise for y = 0, 60 for y = 1, 42 for y = 2, and
again 42 for y = 3.

SDP problem (A12) is large—indeed, G is a 210 × 210

matrix and the characterization of SCCGO imposes many
constraints—making it at the limits of tractability. To sim-
plify the problem further, we exploit an approach based on
“quantum superinstruments” introduced in Ref. [54]. To
this end, we first note that Eq. (A11) can be simplified by
rewriting Eq. (A6) in the form

psucc =
∑

y

Tr[G[y]W [y]] (A15a)

with G[y] =∑
kδy,yk qk|Uk〉〉〈〈Uk|�c ,

W [y] = Trc[(1⊗ |y〉 〈y|c)W] (A15b)

(where δy,yk is the Kronecker delta). Here, one now only
needs to optimize over the four smaller 28 × 28 matrices
W [y]. The fact that the W [y] must be obtained from some
CCGO process as in the second equation of Eq. (A15b)
implies similar SDP constraints as Eqs. (A9)–(A10) on
the W [y] directly [54]; more formally, one has {W [y]}y ∈
WCCGO

, where WCCGO
is again a closed convex cone.

Dual approach (A12) can then also be rewritten in the
simpler form

pCCGO
succ = min

p ,{qk}k
p (A16a)

such that {p1/24 − G[y]}y ∈ SCCGO
, (A16b)

G[y] =∑
kδy,yk qk|Uk〉〉〈〈Uk|�c ,

qk ≥ 0,
∑

kqk = 1, (A16c)

where the dual cone

SCCGO
:= (WCCGO

)∗

:=
{
{S[y]}y

∣∣∣∣ for all {W [y]}y∈WCCGO
,

∑
y

Tr[S[y]W [y]] ≥ 0
}

(A17)

can again be described by SDP constraints [54].
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We are able to solve the simpler SDP problem of
Eq. (A16) using the 460 sets of unitaries from G with
the splitting conic solver [56,57], obtaining a bound of
pCCGO

succ ≈ 0.92. We then progressively set to zero the small-
est weights and solve the SDP again, eventually reach-
ing 60 nonzero weights with no change in pCCGO

succ within
numerical precision (36 corresponding to sets satisfying
the promise for y = 0, 12 for y = 1, and 6 each for y = 2
and y = 3).

b. Causal witnesses with random rotations

The causal strategies described in Appendix A 3 exploit
knowledge of the basis that the unknown unitaries are
defined in. A possibility to obtain better bounds on pCCGO

succ
is therefore to allow the verifier to provide the unitaries in
an unknown basis. Given a set U = {UA, UB, UC, UD}, this
corresponds formally to providing the operations U(V) =
{VUAV†, VUBV†, VUCV†, VUDV†} for some unknown uni-
tary V. Note that if U obeys the promise of Eq. (4) then so
does U(V).

To construct better causal witnesses from this approach,
we start as before with a fixed choice of sets Uk and
then, in addition to choosing Uk with prior probability
qk, we randomly choose an unknown unitary V to be
applied according to the Haar measure. Equation (A6) then
becomes

psucc = Tr[GW]

with G =
∑

k

qk

∫
dμ(V)|U(V)

k 〉〉〈〈U(V)

k |� ⊗ |yk〉 〈yk|c ,

(A18)

where μ(V) is the normalized Haar measure over SU(2).
SDP problems (A11), (A12), and (A15) can then be solved
in the same way as described above.

We again consider the 460 sets of unitaries U with each
Ui ∈ G as in the previous section. The integration over
the Haar measure can be performed analytically by taking
an explicit parameterization of SU(2) unitaries. However,
since the |U(V)

k 〉〉〈〈U(V)

k |� are 28 × 28 matrices, this proce-
dure is nevertheless slow, even with automated symbolic
integration using, e.g., Mathematica. To simplify matters,

we exploit that fact that the Haar measure is unitary invari-
ant [i.e., d(V) = d(UV) = d(VU) for any unitary U], so
sets U and U′ that are equivalent up to a change of basis
give

∫
dμ(V)|U(V)〉〉〈〈U(V)| = ∫

dμ(V)|U′k(V)〉〉〈〈U′k(V)|. We
thereby find that there are 98 sets U that are inequivalent
in this way and that satisfy one of the properties yk.

Considering witnesses constructed from these sets, we
solved the dual SDP problem given in Eq. (A16). For
CCGO processes, we find the bound pCCGO

succ ≈ 0.84. Inter-
estingly, we find that the same bound can be reached by
considering the Haar randomization only over witnesses
using sets U containing only Pauli matrices, rather than
from the full set G. Indeed, this bound can be obtained by
randomizing over the 30 sets U given in Table II that we
found to have nonzero weights in the optimal witness we
obtained.

c. Derandomization

In order not to require the assumption that the prover
does not know in which basis the verifier provided each
set U, one could derandomize the approach above by using
a weighted quantum t design [58]. This is a finite set of
unitaries X together with weights w such that the aver-
age of any operator over them is equal to its average over
the Haar measure up to order t. Since |U(V)

k 〉〉 is an eighth-
order expression on V, an 8 design allows us to reproduce
exactly the witness with bound pCCGO

succ ≈ 0.84 with a finite,
fixed set of unitaries. Unfortunately, t designs are rather
large. It can be shown that the smallest size |X | of a
weighted 8 design for unitaries of dimension 2 is bounded
by 165 ≤ |X | ≤ 968, so the resulting witness would have
at least 4950 settings, and therefore be of little relevance
for experiments [59].

In order to obtain smaller witnesses, we instead sam-
pled five random qubit unitaries from the Haar measure,
and conjugated all 30 columns of Table II with these fixed
unitaries, obtaining a witness using 150 settings.

Solving the SDP in Eq. (A11) with the splitting conic
solver, fixing the prior probability of choosing each set
U(V)

k to be qk/5, where qk is the optimal weight obtained
for the full randomization of Uk in the previous section,
we obtained pCCGO

succ ≈ 0.96. By further optimizing over all

TABLE II. Table of 30 sets U = {UA, UB, UC, UD} involving the identity 1 and the orthogonal Pauli operators X , Y, Z only, satisfying
the promise of Eq. (4) (for some value of y, indicated in the first row) for the gate permutations � = {ABCD, BADC, CBDA, DACB}
and the Hadamard matrix of Eq. (6).

y

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 3 3 3 3

UA 1 1 1 Z 1 1 Z 1 Z Z 1 Z Z Z Z Z 1 Z Z Z Z Z 1 Z Z Z 1 Z Z Z
UB 1 1 Z 1 1 Z 1 Z 1 Z Z 1 Z Z Z X Z 1 Z X X X Z 1 X Z 1 X X X
UC 1 Z 1 1 Z 1 1 Z Z 1 Z Z 1 Z Z X X 1 X Z X Y X Z 1 X Z 1 Z Y
UD Z 1 1 1 Z Z Z 1 1 1 Z Z Z 1 Z Z 1 X X X Y Z Z X 1 Y X X 1 Y
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150 weights using the dual SDP, we find that this can be
improved to pCCGO

succ ≈ 0.93.
By using more than five random unitaries, this bound

can be lowered further. For example, with 10 random
unitaries we are able to obtain pCCGO

succ ≈ 0.89 (when opti-
mizing over all 300 weights).

[1] O. Oreshkov, F. Costa, and Č. Brukner, Quantum cor-
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