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Abstract

In this communication, we present a method to model the light absorption in a

resonant photoconductor based on a photoconductive layer sandwiched between

a metallic grating in front side and a metallic backside mirror. We started

from a modal expansion formalism previously developed in order to model the

transmission and the reflection of an infinite array of holes and we added the

effect of a stack of homogeneous layers ended by a metallic mirror. It is finally

shown that the electromagnetic response of the structure calculated with this

numerical method is in good agreement with a more rigorous method such as

the rigorous coupled wave analysis, whereas it requires a much lower computing

power.
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Diffraction Gratings
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1. Introduction

Ultrafast photodetectors are key devices for the generation and the detection

of THz waves based on the laser and optoelectronics technologies[1],[2]. As far

as now, the devices which present suitable properties for these applications,
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1. INTRODUCTION

i.e. a THz frequency bandwidth and a high saturation photocurrent, are uni-5

travelling carrier photodiodes[3] (UTC-PD) pumped by 1550 nm lasers and

ultrafast photoconductors based on photoconductive materials presenting sub-

picosecond carrier life time. This second class of devices is dominated by THz

photoconductors using GaAs epitaxial layers grown at low temperature (200 ◦

C )[4] and pumped by 780-nm-lasers [5]. Last years, it has been shown that10

their properties could be greatly improved by using resonant optical cavities

in which metallic layers serve in the same time as bias electrodes and mirrors

of the cavity [6],[7]. Concerning the THz photoconductors, the optical cavity

allows for reducing the thickness of the absorption layer while keeping constant

the quantum efficiency (defined here as the ratio of the number of charge carrier15

generated in the device to the number of incident photons by unit of time)

resulting in an increase of the photoresponse. This concept can also be adapted

to the UTC-PD in order to reduce the thickness of the p-doped absorbing layer,

and then improve the frequency bandwidth without loss in quantum efficiency.

The front mirror of the optical cavity is semi-transparent and consisted of a thin20

(20 nm) gold layer in the first attempts[6], however this solution suffers from

some drawbacks such as high optical losses and high sheet electrical resistivities.

In a second step, front mirrors consisting of a one dimensional array of slits has

been considered, allowing for a better transmission and a lower effective sheet

electrical resistivity[8]. In this work, we present a simplified modal expansion25

formalism (SMEF) based on the work of De Leon-Perez and co-workers [9],[10],

in order to design such an optical cavity which needs a very low computing power

as compared with more standard methods such as the rigorous coupled wave

method.The SMEF is similar to a coupled mode analysis [11], but with some

simplification coming from the use of waveguide modes in the slits patterned in30

the metallic sheet. Here, in a first part, we will remind the method as presented

by De Leon-Perez and coworkers with the addition of some missing steps. In

a second part we will present the extension the additional steps allowing for

modeling model not only a metallic grating, but a also Fabry-Pérot cavity based

on such a grating.35
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2. SCATTERING OF LIGHT BY AN ARRAY OF METALLIC HOLES

2. Scattering of light by an array of metallic holes

In this first part, we are going to remind the main steps of the SMEF method as

presented in Ref. [9] allowing for the calculation of the electromagnetic response

of an infinite two-dimensional array to an incident plane wave. The array is

assumed to be in the x− y plane and has a finite thickness h, as we can see in40

Figure 1.The lattice parameters are Lx and Ly. The analysis is performed by

using the CGS system and only the transverse components of the electric field E

and magnetic field H , which are used in the boundary conditions at the interface

between different media, are taking into account. The dirac notation is used,

such that 〈r‖|E〉 = E(r‖) = (Ex(r‖), Ey(r‖))t where t stand for transposition45

and r‖ = (x, y). Regions I and III are dielectric semi-spaces characterized by

the real dielectric constant ε1 and ε3, respectively. Region II represents the

corrugated metal film with a wavelength-dependent dielectric function εm. We

assume that the system is illuminated by an incident wave coming from region I.

We expand the EM fields on the eigenmodes of each region, and match them at50

the boundaries. In region I, the fields are expanded into an infinite set of plane

waves with parallel wavevector k‖ = (kx, ky) and polarization σ. The incident

radiation is labeled by the superscript 0. The fields can be written in terms of

Figure 1: Schematic of a two dimensional array of holes perforated on a metal film of

thickness h illuminated by p-polarized radiation. For the case of s-polarized

incident radiation, vectors E and H are interchanged
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2. SCATTERING OF LIGHT BY AN ARRAY OF METALLIC HOLES

reflection amplitude ρk‖σ as

|Ei〉 = eik0
zz |k0

‖σ
0〉+

∑
kσ

ρk‖σe
−ikzz |k‖σ〉 (1)

|−uz ×H i〉 = Yk0
‖σ

0eik0
zz |k0

‖σ
0〉 −

∑
k‖σ

Yk‖σρk‖σe
−ikzz |k‖σ〉 (2)

where uz is the unitary vector along the z-direction and the summation runs

over parallel wavevectors such as k‖ = k0
‖ + KR, KR being a vector of the

reciprocal lattice. The real space representation of the plane waves is given by

〈r‖|k‖σ〉 =
exp(ik‖ · r)
k‖
√
LxLy

(kx, ky)t, p-polarization

(−ky, kx)t, s-polarization

where we assume a ||k‖σ〉 independent normalization 〈k‖σ|k‖σ〉 = 1 The electric55

and magnetic field are related through the admittance Yk‖p = kωε1/kz and

Yk‖s = kz/kω where kω = 2π/λ0 (λ0 is the free space wavelength of the incident

radiation, and k2
‖ + k2

z = ε1k
2
ω (see Appendix A for further details).

2.1. Expansion of the fields in the 3 regions

We have already seen in equation (1) the expansion on a basis of plane waves60

in the region I. In this first part, we assume that the Region III (z ≥ h) is

semi-infinite, so the EM fields can also be expanded in plane waves and expressed

in terms of transmission amplitudes tk‖σ:

|Eiii〉 =
∑
kσ

tk‖σe
ik′
z(z−h) |k‖σ〉 (3)

|−uz ×H iii〉 =
∑
k‖σ

Y ′k‖σ
tk‖σe

ik′
z(z−h) |k‖σ〉 (4)

Now, we are going to expand the EM fields in Region II on a waveguide modes

basis corresponding to the geometry of the holes. Noting |α〉 a certain waveguide65

mode, and Cα and Dα the expansion coefficient, we can write:

|Eii〉 =
∑
α

(Cαeikαzz +Dαe
−ikαzz) |α〉 (5)

|−uz ×H ii〉 =
∑
α

Yα(Cαeikαzz −Dαe
−ikαzz) |α〉 (6)

where Yα = kωε2/kαz and Yα = kαz/kω for TE and TM modes respectively.
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2. SCATTERING OF LIGHT BY AN ARRAY OF METALLIC HOLES

2.2. Application of the boundary conditions at each region

interface

Following Ref. [9], we use the crude approximation in order to take into account

the real properties of the metal sheet forming the grating.It establishes the

following relation between the tangential components of the EM fields at the

horizontal interface: E = zsH×un, where un is the vector normal to the surface

and pointing to the interioir of the metal and zs = 1/√εM . This continuity

equation must be satisfied at each interface. In Region I un = uz and the

continuity equation gives :

zsH × uz =
zsHx

zsHy

zsHz

×
0

0

1

=
zsHy

−zsHx

0

= zs Yk‖σ ·
Ex

Ey

0

(7)

2.2.1. Continuity of the Electric Field in z=070

In z = 0 and with the dirac notations, it gives:

|Ei〉 = zs Yk‖σ |Ei〉 (8)

⇐⇒

|k0
‖σ

0〉+
∑
kσ

ρk‖σ |k‖σ〉 = zs Yk0
‖σ

0 |k0
‖σ

0〉 −
∑
k‖σ

zs Yk‖σρk‖σ |k‖σ〉 (9)

Now, if we project on the plane waves basis〈k‖σ|, we obtain:

δk‖,k0
‖
δσ,σ0 + ρk‖σ = zs Yk0

‖σ
0δk‖,k0

‖
δσ,σ0 − zs Yk‖σρk‖σ (10)

In Region II, in z = 0+, with also un = uz, it gives∑
α

(Cα +Dα) |α〉 =
∑
α

zs Yα(Cα −Dα) |α〉 (11)

And once projected on the 〈k‖σ| basis:∑
α

(Cα +Dα) 〈k‖σ|α〉 =
∑
α

zs Yα(Cα −Dα) 〈k‖σ|α〉 (12)
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2. SCATTERING OF LIGHT BY AN ARRAY OF METALLIC HOLES

If we have the continuity of the Electric Field in z = 0, we must equalize both

terms of equation (10) and equation (12). Then it gives:

∑
α

(Cα +Dα 〈k‖σ|α〉 = δk‖,k0
‖
δσ,σ0 + ρk‖σ (13)∑

α

zs Yα(Cα −Dα) 〈k‖σ|α〉 = zs Yk0
‖σ

0δk‖,k0 δσ,σ0 − zs Yk‖σρk‖σ (14)

(13)-(14) gives:∑
α

〈k‖σ|α〉Eα = δk‖,k0
‖
δσ,σ0(1− zs Yk‖σ) + ρk‖σ(1 + zs Yk‖σ) (15)

⇐⇒

ρk‖σ =
1

f+
k‖σ

∑
α

〈k‖σ|α〉Eα −
f−k‖σ

f+
k‖σ

δk‖,k
0
‖
δσ,σ0 (16)

where Eα = Cαf
−
α +Dαf

+
α and f±α = 1± zs Yα.

2.2.2. Continuity of the Electric Field in z=h

In z = h−, un = −uz and we have:∑
α

(Cαeikαzh +Dαe
−ikαzh) |α〉 = −

∑
α

zs Yα(Cαeikαzh −Dαe
−ikαzh) |α〉 (17)

In z = h+, ∑
k‖σ

tk‖σ |k‖σ〉 = −
∑
k‖σ

zs Y
′
k‖σ

tk‖σ |k‖σ〉 (18)

Once projected on the 〈k‖σ|, (18)− (17) gives:

tk‖σ−
∑
α

(Cαeikαzh +Dαe
−ikαzh) 〈k‖σ|α〉 = −zs Y ′k‖σ

tk‖σ+
∑
α

zs Yα(Cαeikαzh −Dαe
−ikαzh) 〈k‖σ|α〉

(19)

⇐⇒

tk‖σ = −
1

f
′+
k‖σ

∑
α

〈k‖σ|α〉E′α (20)

where E′α = −Cαf+
α e

ikαzh −Dαf
−
α e
−ikαzh.75
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2. SCATTERING OF LIGHT BY AN ARRAY OF METALLIC HOLES

2.2.3. Continuity of the Magnetic Field

Let us now impose the continuity of the tangential component of the magnetic

field which has to be fulfill only in the slits. This is done by projecting the fields

on the |α〉 basis. In z = 0, we obtain:

Yk0
‖σ

0 |k0
‖σ

0〉 −
∑
k‖σ

Yk‖σρk‖σ |k‖σ〉 =
∑
α

Yα(Cα −Dα) |α〉 (21)

and once projected in the |α〉, it becomes:

Yk0
‖σ

0 〈α|k0
‖σ

0〉 −
∑
k‖σ

Yk‖σρk‖σ 〈α|k‖σ〉 = Yα(Cα −Dα) (22)

In z = h, once projected on |α〉 we obtain:∑
k‖σ

Y ′k‖σ
tk‖σ 〈α|k‖σ〉 = Yα(Cαeikαzh −Dαe

−ikαzh) (23)

If we put the expressions of ρk‖σ and tk‖σ given in equations (16) and (20) in

theses expressions, we obtain for equation (22):

Yk0
‖σ

0 〈α|k0
‖σ

0〉−
∑
k‖σ

Yk‖σ

( 1
f+
k‖σ

∑
β

〈k‖σ|β〉Eβ −
f−k‖σ

f+
k‖σ

δk‖,k
0
‖
δσ,σ0

)
〈α|k‖σ〉 = Yα(Cα−Dα)

(24)

⇐⇒

〈α|k0
‖σ

0〉Yk0
‖σ

0(1 +
f−k‖σ

f+
k‖σ

)−
∑
β

∑
k‖σ

Yk‖σ

f+
k‖σ

〈k‖σ|β〉 〈α|k‖σ〉Eβ = Yα(Cα −Dα)

(25)

⇐⇒

Iα −
∑
β 6=α

GαβEβ −GααEα = Yα(Cα −Dα) (26)

where Gαβ =
∑
k‖σ

Yk‖σ

f+
k‖σ

〈α|k‖σ〉 〈k‖σ|β〉 and Iα = 2
Yk0

‖
σ0

f+
k0

‖
σ

〈α|k0
‖σ

0〉.

7



2. SCATTERING OF LIGHT BY AN ARRAY OF METALLIC HOLES

Now, let’s show that Yα(Cα −Dα) = −ΣαEα −GVαE′α where

Σα = Yα
f+
α e

ikαzh + f−α e
−ikαzh

f+2
α eikαzh − f−2

α e−ikαzh
(27)

GVα = 2Yα
f+2
α eikαzh − f−2

α e−ikαzh
(28)

−ΣαEα −GVαE′α = −Yα
Cαe

ikαzh
(
f+
α f
−
α − 2f+

α

)
+ Cαe

−ikαzhf−2
α

f+2
α eikαzh − f−2

α e−ikαzh
(29)

− Yα
Dαe

−ikαzh
(
f+
α f
−
α − 2f−α

)
+Dαe

ikαzhf+2
α

f+2
α eikαzh − f−2

α e−ikαzh

−ΣαEα −GVαE′α = −Yα
Cαe

−ikαzhf−2
α − Cαf2+

α eikαzh

f+2
α eikαzh − f−2

α e−ikαzh
(30)

− Yα
Dαe

ikαzhf+2
α −Dαf

2−
α e−ikαzh

f+2
α eikαzh − f−2

α e−ikαzh

= Yα(Cα −Dα) (31)

We have used in the previous equation

f+
α f
−
α − 2f+

α = f+
α (f−α − 2)

= (1 + zsYα)(1− zsYα − 2)

= (1 + zsYα)(−1− zsYα)

= −f2+
α (32)

Concerning the second continuity equation (23), we obtain straightly:∑
γ 6=ν

G′γνE
′
ν +G′γγE

′
γ = −Yγ(Cγeikγzh −Dαe

−ikγzh) (33)

It remains to prove that ΣγE′γ +GVγ Eγ = −Yγ(Cγeikγzh −Dγe
−ikγzh)80
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3. SCATTERING ON A 1D PERIODIC ARRAY OF INFINITE SLITS

ΣαE′α +GVαEα = Yα

(
f+
α e

ikαzh + f−α e
−ikαzh

)(
− Cαf+

α e
ikαzh −Dαf

−
α e
−ikαzh

)
f+2
α eikαzh − f−2

α e−ikαzh

+ 2Yα
Cα +Dα

f+2
α eikαzh − f−2

α e−ikαzh

ΣαE′α +GVαEα = Yα
−Cαf2+

α e2ikαzh −Dαf
2−
α e−2ikαzh + Cα(2f−α − f−α f+

α ) +Dα(2f+
α − f−α f+

α )
f+2
α eikαzh − f−2

α e−ikαzh

= Yα
Cα
[
f−2
α − f+2

α e2ikαzh
]

+Dα

[
f+2
α − f−2

α e−2ikαzh
]

f+2
α eikαzh − f−2

α e−ikαzh

= Yα
Cαe

ikαzh
[
f−2
α e−ikαzh − f+2

α eikαzh
]

+Dαe
−ikαzh

[
f+2
α eikαzh − f−2

α e2ikαzh
]

f+2
α eikαzh − f−2

α e−ikαzh

= −Yα
(
Cαe

ikαzh −Dαe
−ikαzh)

As in [9], we obtain eventually the set of coupled equations for Eα and E′α which

are essentially the modal amplitudes of the electric field at the input and output

interfaces of the holes, respectively:

(Gαα − Σα)Eα +
∑
β 6=α

GαβEβ −GVαE′α = Iα (34)

(G′γγ − Σγ)E′γ +
∑
ν 6=γ

G′γνE
′
ν −GVγ Eγ = 0 (35)

Once Eα and E′α are known, all the other quantities can be calculated.

3. Scattering on a 1D Periodic array of infinite slits85

3.1. With only the TM0 mode of the slit taken into account

The problem is greatly simplified in the case of an array of infinite slits with a

period p = Lx and a width a perpendicular to the incidence plane (x− z plane,

i.e. k‖ = kxx as seen in 2) of a p-polarized plane wave, if we consider only the

TM0 in the slit, we obtain:90

|α = 0〉 =


1√
a
(1 0)t if |x| ≤ a/2

0 if |x| > a/2

9



3. SCATTERING ON A 1D PERIODIC ARRAY OF INFINITE SLITS

Figure 2: Cross section of one-dimensional array of infinite slits of width a perforated

on a metal film of thickness h illuminated by a p-polarized radiation

The normalization factor ensures that 〈0|0〉 =
∫ x=Lx/2

x=−Lx/2

1
a
dx = 1. Furthermore,

by considering that the metal is perfect along the slit, we can assume that

k0z = kω.So, it is now possible to evaluate easily the overlap integral G00 in the

case of p-polarized incident wave because:

〈0|k‖σ〉 = (1 0)(kx 0)t 1
kx
√
ap

∫ x=p/2

x=−p/2
exp(ikxx) dx

= 1
√
ap

exp(ikxa/2)− exp(−ikxa/2)
ikx

=
√
a

p

sin(kxa2 )
kxa

2

And then95

G00 =
∑
k‖σ

Yk‖σ

f+
k‖σ

| 〈0|k‖σ〉 |2

=
∑
k‖σ

Yk‖σ

f+
k‖σ

a

p

sin2(kxa2 )(
kxa

2
)2

Here the metallic sheet is assumed to be a perfect electric conductor allowing for

an analytical expression of the overlap integration. Nevertheless it is possible to

use a first order correction to improve the accuracy of the model [12] According

the Bloch theorem, the sum runs over k‖ = kxx where kx = k0
x + n 2π

p , n being

10



3. SCATTERING ON A 1D PERIODIC ARRAY OF INFINITE SLITS

an integer. The system of equations to be solved becomes:100

(G00 − Σ0)E0 −GV0 E′0 = I0 (36)

(G′00 − Σ0)E′0 −GV0 E0 = 0 (37)

where

G00 =
∑
k‖σ

Yk‖σ

f+
k‖σ

a

p

sin2(kxa2 )(
kxa

2
)2

I0 = 2
√
a

p

Yk0
‖σ

0

f+
k0

‖σ

sin(k
0
xa
2 )(k0

xa
2
)

Σ0 = Y0
f+

0 e
ik0zh + f−0 e

−ik0zh

f+2
0 eik0zh − f−2

0 e−ik0zh

GV0 = 2Y0

f+2
0 eik0zh − f−2

0 e−ik0zh

The solution of this set of equation is: E′0 = I0G
V
0 /D and E0 = (G′00 − Σ0)/D,

where D = (G00−Σ0)(G′00−Σ0)− (GV0 )2. Once E′0 and E0 are obtained, we can

calculate the transmission tk‖p and reflection coefficients ρk‖pf or each diffracted

order and then the transmitted and reflected power are given by:

T =
propag∑
k‖p

Y ′k‖p
|tk‖p|2

R =
propag∑
k‖p

Yk‖p|ρk‖p|
2

propag indicates that only the propagative plane waves solutions should be taken

into account.

3.2. With the TM0 and the TM1 modes of the slit taken into

account105

When the width of the slit becomes close to λ/2, the second TM1 mode in the

slit has to be also taken into account. This mode is noted here |α = 1〉 and is

defined as follows, if we consider perfect metal walls:

|α = 1〉 =


√

2√
a

sin (πax)(1 0)t if |x| ≤ a/2

0 if |x| > a/2

11



4. SCATTERING ON A 1D PERIODIC ARRAY OF SLITS FORMING THE
TOP MIRROR OF A FABRY-PEROT CAVITY PHOTODETECTOR

The normalization factor ensures that 〈1|1〉 =
∫ x=Lx/2

x=−Lx/2

2
a

sin2 (π
a
x) dx = 1.

Furthermore, k1z =
√
k2
ω − (π/a)2.

So, it is now possible to evaluate G11 in the case of p-polarized incident wave

because:

〈1|k‖σ〉 = (1 0)(kx 0)t
√

2
kx
√
ap

∫ x=p/2

x=−p/2
sin (π

a
x) exp(ikxx) dx

=



i cos (akx2 ) (2a)3/2

(π2 − k2
xa

2)√p if |kx| 6= π
a

i
√

2π
√
p|kx|3/2 if |kx| = π

a

And then we can evaluate G11, G01, G10, GV1 , Σ1 and resolve the system of110

equations given below in order to obtain E0, E1, E′0 and E′1 and then T and R.

(G00 − Σ0)E0 +G01E1 −GV0 E′0 = I0

(G11 − Σ1)E1 +G10E0 −GV1 E′1 = I1

(G′00 − Σ0)E′0 +G01E
′
1 −GV0 E0 = 0

(G′11 − Σ1)E′1 +G10E
′
0 −GV1 E1 = 0

4. Scattering on a 1D Periodic array of slits form-

ing the top mirror of a Fabry-Perot cavity pho-

todetector

Now, we are interesting in the reflection and absorption of the system shown in115

Figure 3, where the periodic array of slits is backed by a stack of dielectric layers

finished by a semi-infinite metallic layer serving as back-mirror of the cavity. We

have to consider the waves reflected by the stacked of the layers and then the

expression of the field in the region iii (here we insure that ε3 defined in the case

of a grid without cavity is equal to εn defined here). The field in the region iii120

12



4. SCATTERING ON A 1D PERIODIC ARRAY OF SLITS FORMING THE
TOP MIRROR OF A FABRY-PEROT CAVITY PHOTODETECTOR

period p a

E0

k0

H0

εn dn

d2

d1

ε2

ε 1

metallic layer εm

Figure 3: Schematic of an array of slits of width a perforated on a metal film of

thickness h on the top of a stack of dielectric layers of dielectric constants

εi ended by a metallic mirror.
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becomes (see equation (3)) expressed in terms of transmission amplitudes tk‖σ:

|Eiii〉 =
∑
kσ

(tk‖σeik′
z(z−h) + Πk‖σe−ik′

z(z−h)) |k‖σ〉 (38)

|−uz ×H iii〉 =
∑
k‖σ

Y ′k‖σ
(tk‖σeik′

z(z−h) −Πk‖σe−ik′
z(z−h)) |k‖σ〉 (39)

4.1. Continuity of the Electric Field in z=h

The continuity equation of the Electric Field in z = h (same method as in

equation (17) and (18)) gives once projected on the 〈k‖σ|:

In z = h−, un = −uz and we have:∑
α

(Cαeikαzh +Dαe
−ikαzh) |α〉 = −

∑
α

zs Yα(Cαeikαzh −Dαe
−ikαzh) |α〉 (40)

In z = h+,∑
k‖σ

(tk‖σ + Πk‖σ) |k‖σ〉 =
∑
k‖σ

−zsY ′k‖σ
(tk‖σ −Πk‖σ) |k‖σ〉 (41)

Once projected on the 〈k‖σ|, (41)− (40) gives:125

(tk‖σ + Πk‖σ)−
∑
α

(Cαeikαzh +Dαe
−ikαzh) 〈k‖σ|α〉 =

−zs Y ′k‖σ
(tk‖σ −Πk‖σ) +

∑
α

zs Yα(Cαeikαzh −Dαe
−ikαzh) 〈k‖σ|α〉

⇐⇒

f
′+
k‖σ

tk‖σ + f
′−
k‖σ

Πk‖σ = −
∑
α

〈k‖σ|α〉E′α (42)

The dielectrics layers below the scattering grid are assumed to be uniform and

then the set of |k‖σ〉 is a subset of the orthogonal eigenmode basis (plane waves)

which is independent of the layer. Therefore, as in a basic 1D uniform multilayer

problem, no scattering occurs and we can calculate for each |k‖σ〉 the reflection

coefficient Rk‖σ brought by the cavity which is defined by:

Rk‖σ =
Πk‖σ

tk‖σ
(43)
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t
k

z

z=h

t
k
metal

εm ε 1

Πk

t
k

Πk
metal

t
k

Figure 4: Forward and backward waves at the limits of the entire stack of layer

The reflection coefficient of a stack of uniform dielectric layers ended by a

semi infinite layer (the metallic mirror here) is easily obtained by a transfer

matrix method or a scattering matrix method (which is more robust, in terms

of numerical stability, see [11] for example). We define the total S matrix as just

below: ∣∣∣∣∣∣t
metal
k‖σ

Πk‖σ

∣∣∣∣∣∣ =

∣∣∣∣∣∣S11 S12

S21 S22

∣∣∣∣∣∣ ·
∣∣∣∣∣∣Π

metal
k‖σ

tk‖σ

∣∣∣∣∣∣
Once the total scattering matrix obtained (see fig. 4 for the definition of forward

and backward waves ) which gives the linear dependency between the waves

right after the metallic grid and at the beginning of the semi-infinite gold layer

Rk‖σ is easily calculated. Indeed, the backward wave in the metallic layer, Πk‖σ

is null and then:

Rk‖σ = S11 (44)

Now if we come back to eq. 42, we can obtain an equation similar to eq. 20

15
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found in the case of a grid without cavity but with a slight different factor.

−
∑
α

〈k‖σ|α〉E′α = f
′+
k‖σ

tk‖σ + f
′−
k‖σ

tk‖σRk‖σ

= tk‖σ(f
′+
k‖σ

+ f
′−
k‖σ

Rk‖σ) (45)

which gives:

tk‖σ = −
1

Fk‖σ

∑
α

〈k‖σ|α〉E′α (46)

where Fk‖σ = f
′+
k‖σ

+ f
′−
k‖σ

Rk‖σ

4.2. Continuity of the Magnetic Field in z=h130

Now, it remains to use the second continuity equation at the backside interface

where the problem is different from the grid without cavity. The continuity of

the magnetic field gives after projection on |α〉:∑
k‖σ

Y ′k‖σ
(tk‖σ −Πk‖σ) 〈α|k‖σ〉 = Yα(Cαeikαzh −Dαe

−ikαzh) (47)

⇐⇒

∑
k‖σ

Y ′k‖σ
tk‖σ(1−Rk‖σ) 〈α|k‖σ〉 = Yα(Cαeikαzh −Dαe

−ikαzh) (48)

If we put the expressions of tk‖σ given in equation (46) in theses expressions,

we obtain:∑
k‖σ

Y ′k‖σ

1
Fk‖σ

∑
β

〈k‖σ|β〉E′β(1−Rk‖σ) 〈α|k‖σ〉 = −Yα(Cαeikαzh −Dαe
−ikαzh)

⇐⇒

∑
β

G
′c
αβE

′
β = −Yα(Cαeikαzh −Dαe

−ikαzh)

where:

G
′c
αβ =

∑
k‖σ

Y ′k‖
(1−Rk‖σ)
Fk‖σ

〈α|k‖σ〉 〈k‖σ|β〉E′β (49)
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Eventually, we have a similar set of equations to the one obtained in the case of

the grid without cavity (eq. (34) and eq.(35)). We have only to use G′c instead

of G′. Once the Eα and E′α are calculated by resolving the two-equation (if only

one waveguide mode is taken into account) linear system, the electromagnetic

fields can be derived in the structure and then for a given incident optical power,135

the power reflected by the whole structure and the amount of power absorbed in

each layer can be easily calculated.

4.3. Comparison with results obtained by Rigorous Coupled

Wave Analysis

Figure 5: Resonant photoconductor using a 1D array of slits as front mirror. λ =

800 nm.

The SMEF has been implemented to study the electromagnetic response140

to a normally incident plane wave (wavelength λ = 800 nm) of a resonant

photoconductor as shown in Figure 5. In Figure 6 are compared the absorbance

of the GaAs layer as calculated by the SMEF and by a rigorous coupled wave

analysis (RCWA)[13] as a function of the layer thickness and the period (the

width of the slit a = 0.5p). The 400 simulation points required to plot the145

figures have needed a 13 times longer duration by using the RCWA method
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Figure 6: Absorbance in the GaAs layer as a function of the thickness and the period

of the array of slits wiyh h = 0.15 µm and a = 0.5 p; a) calculated by

the simplified modal expansion formalism, b) by the rigorous coupled wave

analysis.

(despite the use of a small number of harmonics n = 20) , than by using the

SMEF (number of waveguide mode ns = 1, number of diffracted mode nD =

1) implemented on the same platform (SCILAB). It is easily explained by the

fact that each simulation point requires the inversion of a 2x2 matrix for the150

SMEF instead of a 20x20 matrix for the RCWA. It can be seen on Figure 6

that the numerical results obtained by both analysis are similar, nevertheless

it can be noticed that the absorbance is overestimated by the SMEF. This is

consistent with the fact that in we have considered here that the metal was a

perfect metallic conductor (PEC) inside the slit in order to keep the very simple155

analytic form of the waveguide mode. Then the losses induced by the metal and

the effective width of the slit are underestimated. As already mentioned before

[12], the accuracy of this method could be improved by taking into account of

the effect of the non perfect metal on the waveguide modes in the slits.
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5. Appendix A. Calcul of the admittance Yk‖σ165

Here, we demonstrate the relation between Et and Ht in the s and p-polarization.

In both case, it is based on the Maxwell-Faraday equation in CGS:

−→
rotE = −1

c

∂B

∂t

where c is the speed of light in free space. Furthermore, if we assume that the

materials have no magnetization,then H = B.

5.1. s-polarization

For a s-polarized incident plane wave, (i.e. Ez = 0, φ(r, t) = k · r − ωt) of

pulsation ω and of wave vector k = (kx, ky, kz)t

−→
rotE = −1

c

∂B

∂t

becomes:
jkx

jky

jkz

×
Ex

Ey

0

= 1
c
·
jωHx

jωHy

jωHz

(50)

⇐⇒

−kzEy
kzEx

kxEy − jkyEx

=
kωHx

kωHy

kωHz

(51)
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Now, if we are only interested by the transverse parts of E and H, we have

indeed:

|−uz ×H〉 =
0

0

−1

×
Hx

Hy

Hz

=
Hy

−Hx

0

= Yk‖s ·
Ex

Ey

0

(52)

with Yk‖s = kz
kω

.170

5.2. p-polarization

For a p-polarized incident plane wave, (i.e. Hz = 0, φ(r, t) = k · r − ωt) of

pulsation ω and of wave vector k = (kx, ky, kz)t

−→
rotE = −1

c

∂B

∂t

becomes:
jkx

jky

jkz

×
Ex

Ey

Ez

= 1
c
·
jωHx

jωHy

0

(53)

⇐⇒

kyEz − kzEy
kzEx − kxEz
kxEy − kyEx

=
kωHx

kωHy

0

(54)

So, it gives that kxEy = kyEx and we know that without electric charge:kxEx +

kyEy + kzEz = 0. It gives for the x term:

kyEz − kzEy = −kykx
kz

Ex −
k2
y

kz
Ey − kzEy

= −
k2
y

kz
Ey −

k2
y

kz
Ey − kzEy

= − 1
kz

(k2
‖ + k2

z)Ey

= − 1
kz
ε1k

2
ωEy (55)
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So for the x-term: kyEz − kzEy = kωHx ⇐⇒ 1
kz
ε1kωEy = −Hx

Now, if we are interested by the y term:175

kzEx − kxEz = kxky
kz

Ey + k2
x

kz
Ex + kzEx

=
k2
y

kz
Ex + k2

x

kz
Ex + kzEx

= 1
kz

(k2
‖ + k2

z)Ex

= − 1
kz
ε1k

2
ωEx (56)

Eventually, for the y-term: kzEx − kxEz = kωHy ⇐⇒
ε1kω

kz
Ex = Hy

Now, if we are only interested by the transverse parts of E and H, we have

indeed:

|−uz ×H〉 =
0

0

−1

×
Hx

Hy

Hz

=
Hy

−Hx

0

= Yk‖p ·
Ex

Ey

0

(57)

with Yk‖p = kωε1
kz

.

References

[1] M. Tonouchi, Cutting-edge terahertz technology, Nature Photonics 1 (2)

(2007) 97–105. doi:10.1038/nphoton.2007.3.

URL http://dx.doi.org/10.1038/nphoton.2007.3180

[2] J. Capmany, D. Novak, Microwave photonics combines two worlds, Nature

Photonics 1 (6) (2007) 319–330. doi:10.1038/nphoton.2007.89.

URL http://dx.doi.org/10.1038/nphoton.2007.89

[3] T. Ishibashi, Y. Muramoto, T. Yoshimatsu, H. Ito, Unitraveling-

Carrier Photodiodes for Terahertz Applications, IEEE Journal185

of Selected Topics in Quantum Electronics 20 (6) (2014) 79–88.

doi:10.1109/JSTQE.2014.2336537.

URL http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=

6861939

21

http://dx.doi.org/10.1038/nphoton.2007.3
http://dx.doi.org/10.1038/nphoton.2007.3
http://dx.doi.org/10.1038/nphoton.2007.3
http://dx.doi.org/10.1038/nphoton.2007.89
http://dx.doi.org/10.1038/nphoton.2007.89
http://dx.doi.org/10.1038/nphoton.2007.89
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6861939
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6861939
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6861939
http://dx.doi.org/10.1109/JSTQE.2014.2336537
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6861939
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6861939
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6861939


5. APPENDIX A. CALCUL OF THE ADMITTANCE YK‖σ

[4] A. Krotkus, Semiconductors for terahertz photonics applications, Jour-190

nal of Physics D: Applied Physics 43 (27) (2010) 273001. doi:10.1088/

0022-3727/43/27/273001.

URL http://stacks.iop.org/0022-3727/43/i=27/a=273001

[5] E. Brown, K. McIntosh, Photomixing up to 3.8 THz in low-temperature-

grown GaAs, Applied Physics Letters 66 (3) (1995) 285–287.195

URL http://scholar.google.com/scholar?hl=en{&}btnG=

Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+

low-temperature-grown+GaAs{#}0http://ieeexplore.ieee.org/

xpls/abs{_}all.jsp?arnumber=4885867

[6] E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau,200

G. Mouret, J.-F. Lampin, Milliwatt-level output power in the sub-terahertz

range generated by photomixing in a GaAs photoconductor, Applied Physics

Letters 99 (22) (2011) 223508. doi:10.1063/1.3664635.

URL http://link.aip.org/link/APPLAB/v99/i22/p223508/s1{&}Agg=

doi205

[7] E. Peytavit, P. Latzel, F. Pavanello, G. Ducournau, J.-F. Lampin, CW

Source Based on Photomixing With Output Power Reaching 1.8 mW

at 250 GHz, IEEE Electron Device Letters 34 (10) (2013) 1277–1279.

doi:10.1109/LED.2013.2277574.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?210

arnumber=6588588

[8] P. Latzel, F. Pavanello, E. Peytavit, M. Zaknoune, G. Ducournau,

X. Wallart, J.-F. Lampin, Optically-pumped continuous-wave terahertz

sources, in: M. Razeghi, E. Tournié, G. J. Brown (Eds.), Quantum Sensing

and Nanophotonic Devices XII, International Society for Optics and215

Photonics, 2015, p. 937008. doi:10.1117/12.2080756.

URL http://proceedings.spiedigitallibrary.org/proceeding.

aspx?doi=10.1117/12.2080756

22

http://stacks.iop.org/0022-3727/43/i=27/a=273001
http://dx.doi.org/10.1088/0022-3727/43/27/273001
http://dx.doi.org/10.1088/0022-3727/43/27/273001
http://dx.doi.org/10.1088/0022-3727/43/27/273001
http://stacks.iop.org/0022-3727/43/i=27/a=273001
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+low-temperature-grown+GaAs{#}0 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4885867
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+low-temperature-grown+GaAs{#}0 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4885867
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+low-temperature-grown+GaAs{#}0 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4885867
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+low-temperature-grown+GaAs{#}0 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4885867
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+low-temperature-grown+GaAs{#}0 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4885867
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+low-temperature-grown+GaAs{#}0 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4885867
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+low-temperature-grown+GaAs{#}0 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4885867
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+low-temperature-grown+GaAs{#}0 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4885867
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+low-temperature-grown+GaAs{#}0 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4885867
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Photomixing+up+to+3+.+8+THz+in+low-temperature-grown+GaAs{#}0 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4885867
http://link.aip.org/link/APPLAB/v99/i22/p223508/s1{&}Agg=doi
http://link.aip.org/link/APPLAB/v99/i22/p223508/s1{&}Agg=doi
http://link.aip.org/link/APPLAB/v99/i22/p223508/s1{&}Agg=doi
http://dx.doi.org/10.1063/1.3664635
http://link.aip.org/link/APPLAB/v99/i22/p223508/s1{&}Agg=doi
http://link.aip.org/link/APPLAB/v99/i22/p223508/s1{&}Agg=doi
http://link.aip.org/link/APPLAB/v99/i22/p223508/s1{&}Agg=doi
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6588588
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6588588
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6588588
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6588588
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6588588
http://dx.doi.org/10.1109/LED.2013.2277574
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6588588
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6588588
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6588588
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2080756
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2080756
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2080756
http://dx.doi.org/10.1117/12.2080756
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2080756
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2080756
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2080756


5. APPENDIX A. CALCUL OF THE ADMITTANCE YK‖σ

[9] F. de León-Pérez, G. Brucoli, F. J. García-Vidal, L. Martín-Moreno, Theory

on the scattering of light and surface plasmon polaritons by arrays of holes220

and dimples in a metal film, New Journal of Physics 10 (10) (2008) 105017.

doi:10.1088/1367-2630/10/10/105017.

URL http://stacks.iop.org/1367-2630/10/i=10/a=105017

[10] F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers, Light

passing through subwavelength apertures, Reviews of Modern Physics 82 (1)225

(2010) 729–787. doi:10.1103/RevModPhys.82.729.

URL http://link.aps.org/doi/10.1103/RevModPhys.82.729

[11] P. Bienstman, Rigorous and efficient modelling of wavelength scale photonic

components, Ph.D. thesis, Gent University (2001).

[12] R. Gordon, A. G. Brolo, Increased cut-off wavelength for a sub-230

wavelength hole in a real metal, Optics Express 13 (6) (2005) 1933.

doi:10.1364/OPEX.13.001933.

URL https://www.osapublishing.org/oe/abstract.cfm?uri=

oe-13-6-1933

[13] M. G. Moharam, D. a. Pommet, E. B. Grann, T. K. Gaylord, Stable235

implementation of the rigorous coupled-wave analysis for surface-relief

gratings: enhanced transmittance matrix approach, Journal of the Optical

Society of America A 12 (5) (1995) 1077. doi:10.1364/JOSAA.12.001077.

URL http://www.opticsinfobase.org/abstract.cfm?URI=

josaa-12-5-1077240

23

http://stacks.iop.org/1367-2630/10/i=10/a=105017
http://stacks.iop.org/1367-2630/10/i=10/a=105017
http://stacks.iop.org/1367-2630/10/i=10/a=105017
http://stacks.iop.org/1367-2630/10/i=10/a=105017
http://stacks.iop.org/1367-2630/10/i=10/a=105017
http://dx.doi.org/10.1088/1367-2630/10/10/105017
http://stacks.iop.org/1367-2630/10/i=10/a=105017
http://link.aps.org/doi/10.1103/RevModPhys.82.729
http://link.aps.org/doi/10.1103/RevModPhys.82.729
http://link.aps.org/doi/10.1103/RevModPhys.82.729
http://dx.doi.org/10.1103/RevModPhys.82.729
http://link.aps.org/doi/10.1103/RevModPhys.82.729
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-6-1933
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-6-1933
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-6-1933
http://dx.doi.org/10.1364/OPEX.13.001933
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-6-1933
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-6-1933
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-6-1933
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-12-5-1077
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-12-5-1077
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-12-5-1077
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-12-5-1077
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-12-5-1077
http://dx.doi.org/10.1364/JOSAA.12.001077
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-12-5-1077
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-12-5-1077
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-12-5-1077

	Introduction
	Scattering of light by an array of metallic holes
	Expansion of the fields in the 3 regions
	Application of the boundary conditions at each region interface
	Continuity of the Electric Field in z=0
	Continuity of the Electric Field in z=h
	Continuity of the Magnetic Field


	Scattering on a 1D Periodic array of infinite slits
	With only the TM0 mode of the slit taken into account
	With the TM0 and the TM1 modes of the slit taken into account

	Scattering on a 1D Periodic array of slits forming the top mirror of a Fabry-Perot cavity photodetector
	Continuity of the Electric Field in z=h
	Continuity of the Magnetic Field in z=h
	Comparison with results obtained by Rigorous Coupled Wave Analysis

	Appendix A. Calcul of the admittance Yk
	s-polarization
	p-polarization


