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Device-independent protocols based on Bell nonlocality, such as quantum key distribution and randomness
generation, must ensure no adversary can have prior knowledge of the measurement outcomes. This requires
a measurement independence assumption: that the choice of measurement is uncorrelated with any other
underlying variables that influence the measurement outcomes. Conversely, relaxing measurement independence
allows for a fully “causal” simulation of Bell nonlocality. We construct the most efficient such simulation, as
measured by the mutual information between the underlying variables and the measurement settings, for the
Clauser-Horne-Shimony-Holt (CHSH) scenario, and find that the maximal quantum violation requires a mutual
information of just ∼0.080 bits. Any physical device built to implement this simulation allows an adversary to
have full knowledge of a cryptographic key or “random” numbers generated by a device-independent protocol
based on violation of the CHSH inequality. We also show that a previous model for the CHSH scenario, requiring
only ∼0.046 bits to simulate the maximal quantum violation, corresponds to the most efficient “retrocausal”
simulation, in which future measurement settings necessarily influence earlier source variables. This may be
viewed either as an unphysical limitation of the prior model or as an argument for retrocausality on the grounds
of its greater efficiency. Causal and retrocausal models are also discussed for maximally entangled two-qubit
states, as well as superdeterministic, one-sided, and zigzag causal models.
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I. INTRODUCTION

Quantum information protocols that promise the secure
distribution of cryptographic keys, or the generation of guar-
anteed randomness, must rely on the validity of certain
physical assumptions. The strongest protocols, in the sense
of requiring the weakest assumptions, are both device and
theory independent—they have no reliance on internal details
of preparation and measurement devices, nor even on whether
quantum mechanics is valid. Instead, their promise is based
on witnessing the phenomenon of Bell nonlocality, indepen-
dently of the physical means by which it is generated [1,2].

In particular, if some set of statistical correlations between
spacelike separated observers violates a Bell inequality [3],
then any model of the correlations must either (1) permit
superluminal influences between the observation regions, (2)
include underlying variables that influence both the mea-
surement outcomes and the choice of measurements, or (3)
have intrinsically random and unpredictable measurement
outcomes [1]. Thus, if one rules out the first two options by
assumption, then intrinsic randomness is guaranteed. There
can, therefore, be no eavesdropper or adversary holding
a list of predetermined measurement outcomes, leading to
the promised security of protocols based on such correla-
tions [1,2,4–9].

It follows that the assumptions ruling out options (1) and
(2) above require very careful scrutiny. Can observers who
wish to make secure transactions trust the assertion of a device
manufacturer that there are no (possibly hidden) superluminal

influences nor any subtle influences on the choice of measure-
ments (“measurement independence”)—particularly if these
choices are determined by random number generators sup-
plied by the manufacturer? Or is there a loophole that an
adversary can exploit to generate lists of predetermined mea-
surement outcomes?

In regard to no superluminal influences the observers can
be easily reassured: it is simply not known how to build
classical devices that can influence each other superluminally
(even if this might one day be possible, e.g., via some future
wormhole technology). However, the case of measurement
independence is not so reassuring: it is certainly possible to
build devices that exhibit Bell nonlocality by violating this
assumption, with no superluminal effects and with all mea-
surement outcomes being predetermined [10–13].

Surprisingly, however, not all measurement-dependent
models of Bell nonlocality can be implemented “causally”—
where by “causal” we mean here that it should be the
underlying variables (which we consider to originate from
a source in the past) that influence the (future) choice of
measurement settings, rather than the other way around.
Indeed, we will show here that the most efficient models
can be implemented only “retrocausally,” with future mea-
surement selections influencing past source variables. Thus,
similarly to superluminal models, they cannot be imple-
mented with known technology. We are therefore led to
seek models suitable for implementing Bell nonlocality in a
fully causal manner, and to find the minimum information-
theoretic resources that they require. An adversary with such
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FIG. 1. Examples of causal structures, for separable models of
Bell nonlocality as per Eq. (2). Each box is labeled by a corre-
sponding random variable, with arrows indicating allowed causal
influences between the boxes. Thus, the values of a source variable
� and measurement selection variable X (Y ) can causally influence
measurement outcome A (B) (solid arrows). Two types of measure-
ment dependence are indicated by the dotted arrows. (a) Causal
measurement dependence: the source variable can influence the mea-
surement selections. (b) Retrocausal measurement dependence: the
source variable can be influenced by the measurement selections.
Note that while causal structures do not inherently have a direction
of time [21], it is convenient here (particularly when considering
practical implementations of causal structures), to regard them as
being embedded in a relativistic spacetime, so that the upwards and
horizontal directions in the figure are timelike and spacelike, respec-
tively. This allows “causal,” “retrocausal,” and “superluminal” causal
influences to be unambiguously distinguished. Other examples are
given in Sec. III.

resources can then build physical devices that subvert device-
independent protocols.

In Sec. II we review models for Bell nonlocal correlations
between two observers, the quantification of measurement
dependence via mutual information, and the fundamental
distinction between causal and retrocausal models of mea-
surement dependence (see Fig. 1). In Sec. III we specialize to
the Clauser-Horne-Shimony-Holt (CHSH) scenario, in which
each observer has two unbiased measurement choices with bi-
nary outcomes [1,14]. We determine measurement-dependent
models that require the least possible mutual information to
model a given arbitrary violation of the CHSH Bell inequality,
for several causal structures of interest. These models have
deterministic measurement outcomes and no superluminal in-
fluences. The corresponding minimal informations are found
to increase progressively for retrocausal, causal, one-sided,
zigzag, and superdeterministic measurement dependence as
we consider here. In particular, retrocausal measurement de-
pendence requires strictly less mutual information than any
other type. The results also verify a recent optimality conjec-
ture made in Ref. [15].

In Sec. IV we show, by explicit construction, that biased
measurement choices in the CHSH scenario reduce the min-
imum amount of mutual information required, in comparison
to the unbiased case, for each of the causal structures con-
sidered. Hence the mutual informations calculated in Sec. III
are sufficient to simulate CHSH Bell nonlocality irrespective
of the probabilities with which each observer makes a given
measurement choice. We also obtain upper bounds on the re-
quired mutual information for arbitrarily biased measurement
choices, that approach zero in the limit of extreme bias.

In Sec. V we discuss the ordering of minimal mutual
information with causal structure for maximally entangled
two-qubit states. Conclusions are presented in Sec. VI.

II. SEPARABLE MODELS OF CORRELATIONS

Consider a given set of statistical correlations, represented
by a set of joint probabilities {p(a, b|x, y)}, where (a, b) labels
the outcomes of a joint experiment (x, y) by two parties. We
will use upper case letters to denote the corresponding random
variables A, B, X,Y . Any underlying model of the correlations
introduces a further random variable, � (with specific values
denoted by λ), on which the correlations depend. From Bayes’
theorem we have the identity

p(a, b|x, y) =
∑

λ

p(λ|x, y) p(a, b|x, y, λ), (1)

where summation is replaced by integration if one considers a
continuous range of λ. Various classes of models are defined
by imposing conditions on p(λ|x, y) and p(a, b|x, y, λ), and
have been of deep interest in quantum foundations and in-
formation since Bell’s seminal paper on local hidden variable
models [3].

This paper is concerned with models that satisfy the sepa-
rability condition

p(a, b|x, y, λ) = p(a|x, λ) p(b|y, λ). (2)

Thus, conditioned on λ, the local measurement outcomes for
each party are statistically independent of each other (“out-
come independence”) and of the choice of measurement made
by the other party (“parameter independence”) [16]. We use
the term “separable” rather than “local” for models satisfying
Eq. (2), for reasons discussed at the end of this section.

It is well known that if, further, there is no correlation
between the underlying variable λ and the joint measurement
(x, y) (“measurement independence”),

p(λ|x, y) = p(λ), (3)

then the model is Bell local, and the correlations {p(a, b|x, y)}
satisfy a corresponding set of Bell inequalities [1,3]. The
predicted (and observed [17,18]) violation of Bell inequalities
by some quantum systems implies that quantum mechanics is
Bell nonlocal.

The assumption of measurement independence, as per
Eq. (3), is crucial to the security of device-independent
protocols in quantum information theory that rely on Bell
nonlocality [1,2,4–9], as discussed in the Introduction. In par-
ticular, if measurement independence is relaxed, then there are
underlying models which satisfy the separability condition (2)
but which violate Bell inequalities, in principle allowing an
adversary to determine the cryptographic key or random num-
bers generated by such protocols [12,13].

The degree of measurement dependence in a given model
is conveniently quantified by the mutual information shared
between the measurement settings and the underlying vari-
able [19],

I (X,Y :�) := H (X,Y ) −
∑

λ

p(λ)Hλ(X,Y ), (4)
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where H (X,Y ) := −∑
x,y p(x, y) log2 p(x, y) denotes the en-

tropy (in bits) of the distribution p(x, y) of measurement
settings (with summations replaced by integration over con-
tinuous ranges of X,Y and/or �), and Hλ(X,Y ) denotes the
entropy of the conditional distribution p(x, y|λ). The mutual
information measures the information cost of the correlation
between the settings (X,Y ) and the underlying variable �,
and vanishes only for models satisfying measurement inde-
pendence as per Eq. (3).

It has previously been shown that no more than ∼0.066 bits
of measurement dependence is required for a separable model
of a maximally entangled two-qubit state [20]. Surprisingly,
however, we will show that the corresponding model can in
general be implemented only retrocausally, i.e., with future
measurement settings affecting past source variables. Thus,
particularly for practical implementations, it becomes nec-
essary to distinguish different possible causal structures for
measurement-dependent models, and the information costs
associated with them.

Two examples of causal structures for measurement-
dependent models are depicted in Fig. 1, with the random
variables denoted by corresponding boxes, and causal in-
fluences by arrows. Figures 1(a) and 1(b) correspond to
what we call “causal” and “retrocausal” measurement de-
pendence, respectively. Such structures form directed acyclic
graphs [21–23], and the examples in Fig. 1 also appear in Figs.
26(b) and 27(b) of Ref. [22]. There is a natural prescription
for the form of the corresponding joint probability distribu-
tion of random variables Z1, Z2, . . . , connected by a causal
structure [21]:

p(Z1, Z2, . . . ) =
∏

j

p(Zj |Pa(Zj )), (5)

where Pa(Zj ) denotes the “parents” of Zj , i.e., those random
variables with arrows directly pointing to Zj . This prescription
is motivated by Reichenbach’s principle that correlations arise
only from direct or common causes [24,25]. For the examples
in Fig. 1 it implies, in particular, the separability condition (2).
Note that it is also natural, in the implementation of quantum
information protocols, for the measurement settings to appear
to be selected randomly and independently. Hence, we will
further typically impose the factorizability constraint

p(x, y) = p(x) p(y) (6)

in what follows, unless explicitly indicated otherwise.
A main focus of this paper is to determine the minimum

amount of measurement dependence needed for separable
models of Bell nonlocality, under various causality con-
straints. Fortunately, the task of finding an optimal separable
model is substantially simplified by noting we can, without
any loss of generality, assume that the underlying outcome
probabilities are deterministic, i.e., that

p(a, b|x, y, λ) ∈ {0, 1}. (7)

In particular, for any given nondeterministic model of a given
set of joint correlations {p(a, b|x, y)}, one can construct a
corresponding deterministic model which has the same de-
gree of measurement dependence [20]. This construction, a
generalization of a one-party model by Bell [26], has two ad-
ditional variables, �A and �B, say, held locally by each party

so as to make their response functions deterministic. These
additional variables are independent of the measurement (x, y)
and λ, implying that both models have the same value of
the mutual information in Eq. (4), i.e., I (X,Y :�,�A,�B) =
I (X,Y :�) [27]. Thus, we can restrict attention to the class of
deterministic separable models.

Finally, let us come back to our choice of terminology. We
have preferred to use the neutral term “separable” for models
satisfying condition (2), rather than terminology involving
“local” (e.g., “measurement-dependent locality” [28]), for two
main reasons. First, some models of this type can be imple-
mented only retrocausally, as remarked above, which does
not mesh with standard notions of locality. Second, there are
models of this type for signaling correlations [28–30], i.e., for
correlations which do not satisfy

p(a|x, y) = p(a|x), p(b|x, y) = p(b|y) (8)

for all a, b, x, and y, which leads to a conceptual ten-
sion for “locality” at the underlying and observable levels
of such models (this is related to the subtlety of “signal-
ing” for measurement-dependent models; see discussions in
Refs. [29–31]).

III. OPTIMAL SEPARABLE MODELS FOR
THE CHSH SCENARIO

In the CHSH scenario two observers, Alice and Bob, say,
can each make one of two binary measurements. For conve-
nience we will label their choice of measurement by x, y =
0, 1, and their outcomes by a, b = ±1. For any separable
model, it follows from Eqs. (1) and (2) that the average joint
correlation for the pair of measurements (x, y) is given by

〈AB〉xy :=
∑
a,b,λ

ab p(a, b, λ|x, y)

=
∑

λ

p(λ|x, y) Ax (λ)By(λ), (9)

where

Ax(λ) :=
∑

a

a p(a|x, λ), By(λ) :=
∑

b

b p(b|y, λ) (10)

denote the average expectation values of a and b for a given
value of λ and measurement settings x, y, and summation over
λ is replaced by integration over any continuous range of λ.

If measurement independence is also satisfied, as per
Eq. (3), then the correlations are Bell local and satisfy the
well-known CHSH Bell inequalities, given by [1,14]

S := 〈AB〉00 + 〈AB〉01 + 〈AB〉10 − 〈AB〉11 � 2 (11)

and the seven distinct permutations obtained therefrom by
swapping the signs of the outcomes corresponding to one or
more measurement settings. However, if measurement inde-
pendence is relaxed, then there are separable models for which
the CHSH parameter S in Eq. (11) can be as large as 4 [19,32],
corresponding to the maximum possible algebraic value of S
[obtained for 〈AB〉xy = (−1)xy [33]]. We will thus be inter-
ested in S ∈ [2, 4], with any value S > 2 corresponding to a
violation of the CHSH inequality (11). Of particular interest
is the value SQ := 2

√
2, which is the maximal possible value
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one can reach quantum mechanically (in a standard Bell test,
with an independent choice of measurement settings)—the
so-called Tsirelson bound [34].

Our goal in this section is to find the minimum degree of
measurement dependence required to violate the CHSH in-
equality (11) by a given amount, for various causal structures.
As noted in the previous section, we may restrict attention to
the class of deterministic models as per Eq. (12), without any
loss of generality, corresponding to deterministic outcomes,

Ax(λ), By(λ) = ±1, (12)

in Eq. (10). Here Ax(λ) and By(λ) can be understood as the
(deterministic) “response functions” of Alice and Bob.

It is natural to further restrict attention to models that gen-
erate nonsignaling correlations, as per Eq. (8). However, this
is in fact a trivial constraint in the scenario we consider here:
for any given deterministic separable model, one can always
construct a corresponding deterministic separable model that
is nonsignaling, and which has the same values of the CHSH
parameter S and mutual information I . This is achieved by
taking an equal mixture of the given model with essentially the
same model but with the outcomes flipped. More formally, in-
troduce an additional (unbiased) source variable, �′ ∈ {0, 1},
and define p(x, y, λ, λ′) := 1

2 p(x, y, λ) and

Ax(λ, λ′) := (−1)λ
′
Ax(λ), By(λ, λ′) := (−1)λ

′
By(λ). (13)

This leaves the correlators 〈AB〉xy unchanged, which to-
gether with the independence of �′ from X and Y implies
that S and I (X,Y :�,�′) = I (X,Y :�) are invariant. More-
over, nonsignaling as per Eq. (8) is satisfied, with p(a|x) =
p(b|y) = 1

2 . Hence, in our search for optimal models of
Bell nonlocality having minimal measurement dependence we
both can and will ignore the no-signaling constraint, since it
can be trivially imposed via the above construction.

In the following subsections it is convenient to assume that
the measurement settings appear (when not conditioned on λ)
to be selected randomly and independently,

p(x, y) = 1
4 , (14)

for all x, y (so that H (X,Y ) = − log2
1
4 = 2), consistent with

Eq. (6). We will relax this condition in Sec. IV.

A. Optimal separable model with arbitrary
measurement dependence

We first consider the case where no constraints are placed
on measurement dependence, and determine the separable
model that requires the least mutual information for a given
CHSH violation. This model is related to the separable de-
terministic model of the singlet state given in Ref. [32] (see
Sec. V below), and its optimality confirms a conjecture made
in Ref. [15]. It turns out, somewhat surprisingly, that this
model can be implemented only via retrocausal measurement
dependence, as per Fig. 1(b).

From Bayes’ theorem we have that

p(λ|x, y) = p(λ)p(x, y|λ)

p(x, y)
. (15)

Noting that S in Eq. (11) can be written as

S =
∑
x,y

(−1)xy〈AB〉xy, (16)

it then follows via Eqs. (9) and (14) that

S = 4
∑
x,y,λ

(−1)xy p(λ) p(x, y|λ)Ax (λ)By(λ). (17)

It is convenient here to classify the possible values of λ,
depending on whether Ax(λ) takes the same value for x = 0, 1,
and similarly for By(λ). Let us thus define the sets

Lμν := {λ: A1(λ) = (−1)μA0(λ), B1(λ) = (−1)νB0(λ)},
(18)

for μ, ν = 0, 1. Hence, for λ ∈ Lμν and x, y = 0, 1,

Ax(λ) = (−1)μxA0(λ) and By(λ) = (−1)νyB0(λ). (19)

The expression for S above can then be written as

S = 4
∑
μ,ν

∑
λ∈Lμν

p(λ)A0(λ)B0(λ)
∑
x,y

(−1)xy+μx+νy p(x, y|λ).

(20)

We may now substitute
∑

x,y(−1)xy+μx+νy p(x, y|λ) =
(−1)μν

∑
x,y(−1)(x+ν)(y+μ) p(x, y|λ) = (−1)μν[1 − 2p(x=ν̄,

y=μ̄|λ)] (using the identity
∑

x,y p(x, y|λ) = 1), with
μ̄ := 1−μ and ν̄ := 1−ν, to give

S = 4
∑
μ,ν

∑
λ∈Lμν

p(λ)A0(λ)B0(λ)(−1)μν

× [1 − 2p(x=ν̄, y=μ̄|λ)]. (21)

It immediately follows that one has the tight bound

S � 4
∑
μ,ν

∑
λ∈Lμν

p(λ)|1 − 2p(x=ν̄, y=μ̄|λ)| (22)

for S, with saturation achieved by choosing A0(λ) and B0(λ)
such that

A0(λ)B0(λ) = (−1)μν sgn[1 − 2p(x=ν̄, y=μ̄|λ)] (23)

for λ ∈ Lμν . Inequality (22) is central to obtaining the main
results of this and the following subsections.

Further, if pmin (� 1
4 ) denotes the infimum of p(x, y|λ)

over all values of x, y, and λ, then we have |1 −
2p(x=ν̄, y=μ̄|λ)| � 1 − 2pmin, which yields, via Eq. (22),
the tight bound

S � 4
∑

λ

p(λ)(1 − 2pmin) = 4 − 8pmin, (24)

with saturation achieved by choosing

p(x=ν̄, y=μ̄|λ) = pmin or 1 − pmin (25)

for λ ∈ Lμν and the measurement outcomes as per Eq. (23).
Note that Eq. (24) implies the relaxed CHSH inequalities in
Eq. (4) of Ref. [13] [with G = 1 and P = maxx,y,λ p(x, y|λ) �
(1 − pmin)/3], and is equivalent to Eq. (11) of Ref. [28] (with
�′ = pmin).
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To find the minimal mutual information cost for a given
value S of the CHSH parameter, note first that Eq. (24) above
implies that

pmin � (4 − S)/8. (26)

Further, the mutual information simplifies via Eqs. (4)
and (14) to

I (X,Y :�) = 2 −
∑

λ

p(λ)Hλ(X,Y ), (27)

and hence is minimized by maximizing Hλ(X,Y ) for each λ,
i.e., by making p(x, y|λ) as uniform as possible. In turn, this
is achieved by taking pmin(∈ [0, 1

4 ]) as large as possible, i.e.,
saturating Eq. (26), and p(x, y|λ) to be a distribution of the
form

{pmin, (1 − pmin)/3, (1 − pmin)/3, (1 − pmin)/3} (28)

up to permutations [35]. Note this corresponds to taking the
first choice in Eq. (25), since the second choice forces a
distribution of the form {pmin, 1 − pmin, 0, 0}. By considering
all four permutations of the distribution in Eq. (28), corre-
sponding to the first choice in Eq. (25) for the four respective
cases λ ∈ Lμν [with each giving the same value of Hλ(X,Y ) in
Eq. (27)], one can further ensure that the average distribution
of settings p(x, y) = ∑

λ p(λ)p(x, y|λ) = 1
4 as per Eq. (14):

see the explicit model below.
The corresponding minimum mutual information possible,

for a given value S, follows from Eq. (27) as

IR(S) := 2 − h

(
4 − S

8

)
− 4 + S

8
log2 3, (29)

where

h(p) := −p log2 p − (1 − p) log2(1 − p) (30)

is the binary entropy function. Here the subscript R stands for
“retrocausal” because, as will be seen, this minimum value
can be obtained only by retrocausal models. This is plotted
in Fig. 2 and ranges from 0 bits for S = 2 (no violation of
the CHSH Bell inequality) to log2

4
3 ∼ 0.415 bits for S = 4

(maximum algebraic violation). For the maximum quantum
violation, SQ = 2

√
2, one has

IR(SQ) ∼ 0.046 bits, (31)

i.e., just a little more than 1/22 of a bit of measurement
dependence is required to reach the Tsirelson bound.

The simplest optimal separable model reaching the mini-
mal mutual information of Eq. (29), satisfying the saturating
conditions (23) and (25), with equality in Eq. (26) and with
uniform settings x, y as in Eq. (14), is obtained by taking the
four sets Lμν to contain just one element λμν each, with equal
probabilities p(λμν ) = 1/4. This model is given explicitly in
Table I. It is equivalent to the separable model in Tables I
and II of Ref. [15] (with p1 = p2 = (1 − 4p)/3 and p3 = 0),
which was conjectured to be optimal; our analysis above thus
allows us to prove that conjecture. Note that this model gives
signaling correlations; but as explained earlier with reference
to Eq. (13), it can easily be extended to a (still optimal)
nonsignaling model that gives the same CHSH value S for the
same amount of measurement dependence.

FIG. 2. Plot of the minimal mutual information between source
and measurement setting variables required to reach a value S ∈
[2, 4] of the CHSH parameter, for various causal structures. Retro-
causal models are bounded below by the magenta curve [IR(S) in
Eq. (29)], causal models by the blue and orange curve [IC (S) in
Eq. (43); see also Fig. 4 further below], and one-sided models
by the olive curve [IOS(S) in Eq. (51)]. Note that IR(S) � IC (S) �
IOS(S), i.e., retrocausal models are more efficient than causal models,
which in turn are more efficient than one-sided models. The value
SQ = 2

√
2 indicates the Tsirelson bound, i.e., the maximal quantum

violation of the CHSH inequality (with independent measurement
settings).

There is clearly a retrocausal implementation of the model
in Table I (and indeed of any measurement-dependent model),
as per Fig. 1(b), where the source receives the values x
and y of X and Y with some prior factorized probability
p(x, y) = p(x)p(y) as per Eq. (6), and generates � = λ with
probability p(λ|x, y) = p(x, y|λ)p(λ)/p(x, y) [36]. However,
it is of interest to ask whether the model in Table I also

TABLE I. Optimal separable model, with the minimal re-
quired measurement dependence required to obtain a given value
of the CHSH parameter S. The probabilities pxy|λ := p(x, y|λ)
are defined for λ = λμν such that pxy|λ = p ∈ [0, 1/4] if x = ν̄

and y = μ̄, and pxy|λ = 1−p
3 ∈ [ 1

4 , 1
3 ] otherwise. Thus, p ≡ pmin in

Eq. (28). With p(λ) ≡ 1
4 , the average probability distribution of

the joint measurement setting (x, y) is p(x, y) = ∑
λ p(λ)pxy|λ = 1

4 ,
as required by Eq. (14), and the “retrocausal” conditional proba-
bilities p(λ|x, y) are p(λ|x, y) = p(x, y|λ)p(λ)/p(x, y) = pxy|λ. The
parameters s, t, u, v defining the measurement outcomes of the
model can take any value ±1. These response functions are de-
fined, in accordance with Eqs. (19) and (23) (noticing that all
pxy|λ � 1

2 ), such that Ax (λμν )By(λμν ) = (−1)μx+νy+μν . One thus
obtains 〈AB〉xy = ∑

λ p(λ|x, y)Ax (λ)By(λ) = (−1)xy(1 − 2p). The
corresponding value of the CHSH parameter is S = 4 − 8p, with cor-
responding mutual information given by Eq. (29). As shown in this
paper, this model has inherent retrocausal measurement dependence.

λ p(λ) p00|λ p01|λ p10|λ p11|λ A0(λ) A1(λ) B0(λ) B1(λ)

λ00 1/4 1−p
3

1−p
3

1−p
3 p s s s s

λ10 1/4 1−p
3

1−p
3 p 1−p

3 t −t t t

λ01 1/4 1−p
3 p 1−p

3
1−p

3 u u u −u

λ11 1/4 p 1−p
3

1−p
3

1−p
3 v −v −v v
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has a causal implementation, with the future measurement
settings influenced by past source variables? As shown in the
next section, the answer is negative: the model in Table I is
inherently retrocausal.

B. Optimal separable model with causal
measurement dependence

The structure of causal measurement-dependent models is
shown in Fig. 1(a), where the value of the source variable λ

can causally influence the subsequent selection of measure-
ments by Alice and Bob. Thus, all arrows in Fig. 1(a) are
implemented in timelike directions. Such models are charac-
terized by the condition

p(x, y|λ) = p(x|λ)p(y|λ), (32)

following from the prescription in Eq. (5). This is analogous
to the separability condition in Eq. (2) (see also Ref. [13]).
Note that no further generality is gained by writing

p(x, y|λ) =
∑
λ′

p(λ′|λ)p(x|λ, λ′)p(y|λ, λ′), (33)

via an additional source variable �′ (which is always formally
possible), as this merely generates a correlation model of the
same form as Eqs. (9) and (32) with respect to the extended
source variable �′′ := (�,�′).

We call the condition in Eq. (32) “causal measure-
ment dependence” (it has also been called “independent
sources” [31]). It is a nontrivial constraint, leading to the
requirement of a higher degree of mutual information to
achieve a given Bell inequality violation than is the case for
general separable models. In particular, it will be seen that the
optimal model in Table I cannot be implemented via causal
measurement dependence, but requires retrocausal measure-
ment dependence as per Fig. 1(b) (or, among the other causal
structures we shall consider, the supplemented “zigzag” mea-
surement dependence of Fig. 7 below, which also involves a
retrocausal influence).

To determine the minimum mutual information I (X,Y :�)
required to simulate a violation of the CHSH inequality, under
causal measurement dependence, necessitates a little more
work than for the general case in Sec. III A. First, follow-
ing the previous analysis, one obtains a tight bound as per
Eq. (22) for the CHSH parameter as before, which is still
saturated by deterministic measurement outcomes satisfying
Eq. (23). Second, denoting by pX

min(λ) the minimal value
of p(x|λ) for x = 0, 1 and by pY

min(λ) the minimal value of
p(y|λ) for y = 0, 1 (both for a given λ), we have, under
the assumption that p(x, y|λ) decomposes as in Eq. (32),
that p(x=ν̄, y=μ̄|λ), 1 − p(x=ν̄, y=μ̄|λ) � pX

min(λ) pY
min(λ),

so that |1 − 2p(x=ν̄, y=μ̄|λ)| � 1 − 2pX
min(λ) pY

min(λ). Sub-
stituting this into Eq. (22) then leads to the tight bound

S � Smax :=
∑

λ

p(λ)Smax(λ)

with Smax(λ) := 4 − 8 pX
min(λ) pY

min(λ), (34)

for causal models [rather than Eq. (24) for general models],
with saturation achieved when

p(x=ν̄|λ) = pX
min(λ), p(y=μ̄|λ) = pY

min(λ) (35)

for λ ∈ Lμν .

The mutual information then follows via Eqs. (4), (14),
and (32) as

I (X,Y :�) = 2 −
∑

λ

p(λ)[Hλ(X ) + Hλ(Y )] =
∑

λ

p(λ)I (λ),

(36)

where

I (λ) := 2 − h
(

pX
min(λ)

) − h
(

pY
min(λ)

)
. (37)

Note that by letting one party introduce some local noise,
one can obtain any value of S between 0 and Smax above,
without changing the mutual information. This implies, in
particular, that the minimal mutual information required to
get a given value S increases with S, and that it is indeed
obtained by saturating the upper bound in Eq. (34), i.e., by tak-
ing S = Smax = ∑

λ p(λ)Smax(λ). This, together with Eq. (36),
then implies that the optimal pairs of values (S, I ) are obtained
as convex combinations of optimal pairs (Smax(λ), I (λ)), for
some fixed λ [and with the weights p(λ) in the combination
taken so as to satisfy p(x, y) = ∑

λ p(λ)p(x, y|λ) = 1
4 as in

Eq. (14)].
Note that both Smax(λ) and I (λ) are expressed above as

functions of pX
min(λ) and pY

min(λ), which we shall simply de-
note here by pX and pY , respectively, so as to lighten the
notations: Smax(λ) = Smax(pX , pY ) = 4 − 8pX pY and I (λ) =
I (pX , pY ) = 2 − h(pX ) − h(pY ). To find the optimal pairs
(Smax(λ), I (λ)), our goal is thus to calculate

IC (S) := min
pX ,pY ∈[0,

1
2 ]

I (pX , pY )

s.t. Smax(pX , pY ) = S. (38)

For this we introduce a Lagrange multiplier κ and define the
Lagrangian

L(pX , pY , κ ) := I (pX , pY ) − κ [Smax(pX , pY ) − S]. (39)

Setting ∂L/∂ pX = ∂L/∂ pY = 0 and eliminating κ gives
f (pX ) = f (pY ), where the function

f (p) := p log2
1−p

p (40)

is plotted in Fig. 3, for p ∈ [0, 1
2 ].

As one can see, for any given value of pX there are gen-
erally two solutions to f (pX ) = f (pY ): (1) pY = pX and (2)
pY = p∗

X , where p∗
X denotes the abscissa of the second point of

intersection of the curve f (p) with the horizontal line passing
through (pX , f (pX )). The first solution gives, via Eq. (34),
Smax(λ) = 4 − 8 (pX )2 ∈ [2, 4], and yields via Eq. (37) the
associated mutual information I (λ) = I1(Smax(λ)), with

I1(S) := 2 − 2h

(√
4 − S

8

)
. (41)

For the second solution, one has Smax(λ) = 4 − 8 pX p∗
X from

Eq. (34). We find that this can give only values Smax(λ) �
S0 ∼ 3.620, where S0 := 4 − 8p2

0 is obtained for the value
p0 ∼ 0.218 that gives the maximum of the function f (p)
[i.e., the solution of df

d p = log2 ( 1−p
p ) − 1

(1−p) loge 2 = 0, such
that p∗

0 = p0; see Fig. 3]. For a value of S � S0, the solu-
tions pX (S) and p∗

X (S) to S = 4 − 8pX p∗
X must in general

(except for the extremal values S = S0 and S = 4) be found
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FIG. 3. Function f (p) := p log2
1−p

p plotted for p ∈ [0, 1
2 ]. There

are in general two different values p, p∗ giving the same f (p) =
f (p∗).

numerically. The corresponding mutual information is then,
according to Eq. (37), I (λ) = I2(Smax(λ)), where

I2(S) := 2 − h(pX (S)) − h(p∗
X (S)). (42)

The curves I1(S) (defined for any S ∈ [2, 4]) and I2(S)
(defined only for S � S0) are plotted in Fig. 4, for the relevant
values of S. One can see that I2(S) � I1(S) for S � S0, so
that the second solution to our optimization problem provides
a lower mutual information in that range. Furthermore, both
I1(S) and I2(S) are seen to be convex, and one can prove that
they share the same tangent at S = S0 (see the Appendix), so
that min[I1(S), I2(S)] is also convex. Taking convex combi-
nations of Smax(λ) and I (λ) as in Eqs. (34) and (36) hence
does not provide a lower mutual information. We will see with
the explicit model below, however, that one can still combine
different λs having the same values of Smax(λ) and I (λ), so as
to satisfy p(x, y) = ∑

λ p(λ)p(x, y|λ) = 1
4 as required.

We conclude from this analysis that the minimum mutual
information possible for a given value S of the CHSH param-
eter, via a causally measurement-dependent separable model,

FIG. 4. Plot of the functions I1(S) [blue curve, Eq. (41)], I2(S)
[orange curve, Eq. (42), defined for S � S0 ∼ 3.620], and IC (S)
[Eq. (43)], for S in the region around S0. The dotted line represents
the common tangent to I1(S) and I2(S) at S = S0. A full plot of IC (S)
is given in Fig. 2.

TABLE II. Optimal separable model with minimal causal mea-
surement dependence, for any value S ∈ [2, 4] of the CHSH param-
eter. The conditional probabilities p(x|λ) and p(y|λ) are defined, in
terms of the parameter p ∈ [0, 1

2 ], such that for λ = λμν , p(x=0|λ) =
1−p if ν = 0, p(x=0|λ) = p otherwise, and p(y=0|λ) = 1− p̃ if
μ = 0, p(y=0|λ) = p̃ otherwise [as in Eq. (35)]. Here p̃ := p if one
aims at obtaining S � S0 (which includes any quantum violation),
while p̃ := p∗ for S � S0 (as defined in this paper). The values
of p(x, y|λ) may be determined from p(x=0|λ) and p(y=0|λ) via
Eq. (32) [and with p(x(y)=1|λ) = 1 − p(x(y)=0|λ)]. The average
probability distribution of x, y is p(x, y) = ∑

λ p(λ)p(x, y|λ) = 1
4 ,

as required. The outcome parameters s, t, u, v = ±1 are taken as
in Table I, such that Ax (λμν )By(λμν ) = (−1)μx+νy+μν . Noting that
p(λ|x, y) = p(x, y|λ)p(λ)/p(x, y) = p(x|λ)p(y|λ) here, one obtains
〈AB〉xy = (−1)xy(1 − 2pp̃), and in turn S = 4 − 8pp̃, with corre-
sponding mutual information given by Eq. (43).

λ p(λ) p(x=0|λ) p(y=0|λ) A0(λ) A1(λ) B0(λ) B1(λ)

λ00 1/4 1−p 1− p̃ s s s s

λ10 1/4 1−p p̃ t −t t t

λ01 1/4 p 1− p̃ u u u −u

λ11 1/4 p p̃ v −v −v v

is given by

IC (S) =
{

I1(S) for 2 � S � S0,

I2(S) for S0 � S � 4.
(43)

This is plotted in Fig. 2, together with IR(S) from Eq. (29).
One finds that

IC (S) > IR(S) (44)

for all S > 2. Thus, as claimed earlier, the optimal separable
model in Table I [whose input distribution p(x, y|λ) indeed
does not satisfy the causality condition of Eq. (32)] cannot be
implemented via causal measurement dependence.

An explicit optimal model that reaches the lower bound
IC (S) above is given in Table II. Again, this model is signaling,
but can easily be turned into a nonsignaling causal model
which gives the same value of the CHSH parameter S, as
per the construction in Eq. (13), with the same amount of
measurement dependence.

Note that the maximum quantum violation, SQ = 2
√

2, is
strictly less than S0. Hence, for any quantum violation the
minimum mutual information can be calculated analytically
from Eq. (41). One finds in particular that a minimum value

IC (SQ) = I1(SQ) ∼ 0.080 bits (45)

is required for any fully causal model reproducing the max-
imal quantum violation. Note this is nearly twice as much
as IR(SQ) in Eq. (31). Further, a fully causal model for the
maximal algebraic value S = 4 requires a mutual informa-
tion of IC (4) = I2(4) = 1 bit [obtained for pX = 0, p∗

X = 1
2 in

Eq. (42)], i.e., more than twice as much as the value IR(4) =
log2

4
3 ∼ 0.415 bits required for a retrocausal model.
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FIG. 5. Two-party Bell scenario with one-sided measurement de-
pendence (dotted line), which may be either causal or retrocausal.

C. Optimal separable model with one-sided
measurement dependence

We now consider the case of one-sided measurement de-
pendence, where the source variable is correlated with just one
of the measurement selections, as depicted in Fig. 5. Taking
this correlation to be on Alice’s side, it follows that Y is
independent of X and �, yielding

p(x, y|λ) = p(x|λ) p(y) (46)

for one-sided models. Thus, one-sided models are formally
a special case of causal models as per Eq. (32), implying
they will, in general, require a greater degree of measure-
ment dependence to achieve a given CHSH violation. Note
that one-sided models can equivalently be implemented either
causally, via the earlier source variable λ influencing the later
measurement selection x, or retrocausally, with x influencing
λ, as indicated by the double arrowhead in Fig. 5.

For the CHSH scenario, assuming unbiased measurement
selection probabilities as per Eq. (14), summation over x in
Eq. (46) gives

p(y|λ) = p(y) = 1
2 . (47)

Hence, we have pY
min(λ) = miny p(y|λ) = 1

2 , and can directly
use Eq. (34) for causal models to write the maximum possible
value of the CHSH parameter as

S �
∑

λ

p(λ)
[
4 − 4 pX

min(λ)
]

(48)

[with saturation achieved when p(x=ν̄|λ) = pX
min(λ) for λ ∈

Lμν], so that ∑
λ

p(λ)pX
min(λ) � 1 − S/4. (49)

The mutual information on the other hand is given via Eq. (46)
by

I (X,Y :�) = I (X :�) = 1 −
∑

λ

p(λ) h
(

pX
min(λ)

)

� 1 − h

(∑
λ

p(λ) pX
min(λ)

)
�1−h(1 − S/4),

(50)

where the first inequality follows from the concavity of the
binary entropy function h and is saturated when pX

min(λ) is in-
dependent from λ, while the second one follows from Eq. (49)
above, and the fact that h(p) increases monotonically for

FIG. 6. Two-party Bell scenario with zigzag measurement de-
pendence (dotted arrows). As discussed in this paper, this is formally
equivalent to causal measurement dependence as per Fig. 1(a) (and it
reduces to one-sided measurement dependence, as per Fig. 5, if only
one dotted arrow is permitted).

p ∈ [0, 1
2 ]. We thus find that the minimal required mutual

information for one-sided measurement dependence is

IOS(S) := 1 − h

(
S

4

)
. (51)

A corresponding optimal model [which further satisfies
p(x) = ∑

λ p(λ)p(x|λ) = 1
2 , as required to recover Eq. (14)],

for all values of S ∈ [2, 4], is obtained by replacing p̃ with 1
2

in Table II.
The mutual information in Eq. (51) is plotted in Fig. 2 and

is seen to be larger than both IR(S) and IC (S), as expected.
For the maximum quantum violation SQ = 2

√
2 one finds in

particular that

IOS(SQ) ∼ 0.128 bits. (52)

Note that this is approximately half of the mutual informa-
tion of ∼0.247 bits required in the Banik et al. one-sided
model [15,37] (although the latter model is optimal for
the measure of measurement independence M introduced in
Ref. [32]). For the algebraic maximum S = 4, one obtains
IOS(4) = 1 bit, which is the same value as IC (4) = 1 bit for
optimal causal models.

D. Zigzag measurement dependence

A further type of causal structure that has been considered
for the explanation of quantum correlations is zigzag causal-
ity, as depicted in Fig. 6. This type of causal structure was
introduced by Costa de Beauregard [38,39] and has recently
been examined by Price and Wharton [40]. As shown in Fig. 6,
one of the measurement selections, Alice’s, say, influences
the source variable, which can in turn influence the other
measurement selection.

Applying the prescription in Eq. (5) to zigzag mea-
surement dependence yields p(x, y, λ) = p(x)p(y|λ)p(λ|x) =
p(x, λ)p(y|λ), reflecting the lack of a direct causal influence
from X to Y in Fig. 6. Thus, dividing by p(λ),

p(x, y|λ) = p(x|λ) p(y|λ). (53)

Comparing with Eq. (32) (and since these are, in both cases,
the only further constraints imposed on separable models),
it follows that zigzag measurement dependence is formally
equivalent to causal measurement dependence, and so may
be analyzed precisely as in Sec. III B. In particular, for the
CHSH scenario with p(x, y) = 1

4 , the corresponding minimal
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FIG. 7. Zigzag measurement dependence supplemented with a
superluminal influence from X to Y (dashed line). As discussed in
this paper, this scenario is formally equivalent to retrocausal mea-
surement dependence as per Fig. 1(b).

information is given by

IZ (S) := IC (S), (54)

for zigzag models, where IC (S) is defined in Eq. (43). We note
this equivalence can be seen as strengthening de Beauregard’s
analogy between zigzag causality and particle-antiparticle
pair creation [38,39], for which causal propagation of the pair
is formally equivalent to a single particle first propagating
retrocausally and then causally.

It is also of interest to note that if one supplements zigzag
measurement dependence with a superluminal influence from
X to Y , as depicted in Fig. 7, then the prescription in Eq. (5)
places no restrictions on the form of p(x, y, λ). Hence, this
modification is formally equivalent to the general case dis-
cussed in Sec. III A, which we have in turn seen is formally
equivalent to retrocausal measurement dependence as per
Fig. 1(b). For the CHSH scenario this implies that adding
a superluminal arrow to zigzag measurement dependence as
per Fig. 7 decreases the minimal mutual information required,
from IZ (S) to IR(S), where the latter is defined in Eq. (29).

E. Superdeterministic models

Superdeterminism is a rather strong form of measurement
dependence, in which both the measurement settings and
measurement outcomes are fully determined by underlying
variables [41–45]. The latter variables themselves must still
retain a statistical quality (corresponding to ignorance of
initial conditions), for superdeterministic models to be able
to reproduce quantum predictions. The causal structure of
a superdeterministic model corresponds, therefore, to causal
measurement dependence as in Fig. 1(a), but with the values
of each of A, B, X , and Y being fully determined by the value
of �.

For the CHSH scenario it follows that p(x, y|λ) ∈ {0, 1} for
superdeterministic models. Hence, the mutual information of
any such model follows via Eq. (4) as

I (X,Y :�) = H (X,Y ) −
∑

λ

p(λ)Hλ(X,Y ) = H (X,Y ).

(55)

Thus, for p(x, y) = 1/4 as per Eq. (14), the minimum mutual
information required to achieve any value S of the CHSH
parameter is given by

ISD(S) := 2 bits (56)

for superdeterministic models. It follows that such models
have the highest possible degree of measurement dependence
[since I (X,Y :�) � H (X,Y ) � 2 for any model of the CHSH
scenario].

More generally, it is straightforward to write down a
superdeterministic and separable model for any prior distribu-
tion p(x, y) and any set of statistical correlations {p(a, b|x, y)},
which may or may not satisfy the no-signaling condi-
tion (8), by generalizing the outcome deterministic model in
Eq. (11.24) of Ref. [30] to the superdeterministic case. In par-
ticular, define λ := (α, β, ξ, ζ ), where α, β, ξ, ζ range over
the possible values of a, b, x, y, respectively, and define

p(λ) := p(a=α, b=β|x=ξ, y=ζ ) p(x=ξ, y=ζ ),

p(a, b, x, y|λ) := δa,α δb,β δx,ξ δy,ζ (57)

(where δ denotes the Kronecker or Dirac delta as appro-
priate). The desired correlations are then easily recovered
via p(x, y) = ∑

λ,a,b p(λ)p(a, b, x, y|λ) and p(a, b|x, y) =∑
λ p(λ)p(a, b, x, y|λ)/p(x, y).
Finally, note that the type of superdeterminism we con-

sidered here might more precisely be referred to as “causal
superdeterminism,” since all causal influences are from the
past to the future, as in Fig. 1(a). One could also consider, for
example, “retrocausal superdeterminism,” in which the past
source variable � is fully determined by the future measure-
ment selections X and Y . However, we will not pursue this
possibility here.

IV. BIASED MEASUREMENT CHOICES IN
THE CHSH SCENARIO

The analysis of the minimum information costs of mea-
surement dependence in the CHSH scenario, for different
causal structures, was restricted in Sec. III to the case of unbi-
ased measurement choices, i.e., to p(x, y) = 1

4 as per Eq. (14).
However, one may also consider different distributions for
X and Y . A question then immediately arises: if Alice and
Bob are allowed to make any choice of p(x, y), how does the
information cost behave?

A simple example suggests that this cost will go down, i.e.,
that unbiased measurement choices correspond to the worst-
case scenario. In particular, starting with the form of the causal
model given in Table II, define a new model by replacing
each of p and p̃ by 0 and the column for p(λ) by the distri-
bution {q2, q(1−q), q(1−q), (1 − q)2}, for some 0 < q < 1.
This yields a causal model having the maximum possible
value of the CHSH parameter, S = 4 (note that we cannot
take q strictly equal to 0 or 1, as otherwise not all settings are
possible and one cannot calculate S). Further, by construction,
this model has p(x = 0) = p(y = 0) = q for the distributions
of Alice and Bob’s measurement choices, and a mutual in-
formation I (X,Y :�) = H (X,Y ) = H (�) = 2h(q). Thus, as
p(x) and p(y) become more biased, i.e., as q approaches 0
or 1, the mutual information required for this model becomes
arbitrarily small, while still maximally violating the CHSH
inequality.

We will show here, more generally, that unbiased measure-
ment choices do indeed correspond to the worst-case scenario:
for any factorizable distribution p(x, y) = p(x)p(y) as per
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Eq. (6), the minimal informations calculated in Sec. III are
sufficient to achieve any given value of the CHSH parameter,
for each of the causal structures considered [46]. We also
obtain upper bounds on the amount of mutual information
required for arbitrary p(x) and p(y), which allow us to sig-
nificantly strengthen the above example by showing that the
minimal mutual information required can always be made
arbitrarily close to zero in the limit of highly biased choices,
for any value of S.

A. Less mutual information is needed for biased choices

To demonstrate the results above, we construct explicit
models, for any p(x, y) = p(x)p(y), that require no more mu-
tual information to implement than the unbiased models for
retrocausal, causal, zigzag, one-sided, and superdeterministic
measurement dependence in Sec. III. These constructions are
closely related to the latter models, and make use of an en-
tropic property peculiar to those models. In particular, we will
rely on the following lemma.

Lemma. If two measurement-dependent models, M and
M ′, with the same range of X,Y,�, satisfy pM ′ (λ|x, y) =
pM (λ|x, y) for all λ, x, y, and the entropy of pM (λ|x, y) is
independent of x and y, then their mutual informations satisfy

IM ′ (X,Y :�) = IM (X,Y :�) + HM ′ (�) − HM (�), (58)

where H (�) denotes the entropy (in bits) of �.
Proof. Equation (4) for mutual information can be rewritten

as I (X,Y : �) = H (�) − ∑
x,y p(x, y)Hxy(�), where Hxy(�)

denotes the entropy of p(λ|x, y). Hence, under the assump-
tions of the lemma, one has

IM ′ (X,Y : �) − IM (X,Y : �)

= HM ′ (�) − HM (�)

−
∑
x,y

[pM ′ (x, y)HM ′,xy(�) − pM (x, y)HM,xy(�)]

= HM ′ (�) − HM (�)

−
∑
x,y

[pM ′ (x, y) − pM (x, y)]HM,xy(�)

= HM ′ (�) − HM (�)

− HM,x0y0 (�)
∑
x,y

[pM (x, y) − pM ′ (x, y)]

= HM ′ (�) − HM (�), (59)

as desired, where x0 and y0 are arbitrary values in the ranges
of X and Y . �

We first consider the retrocausal model in Table I, which
has mutual information IR(S) as per Eq. (29) for a given
value of the Bell parameter S. It is convenient to denote
the various probabilities and other quantities appearing
in this model by the subscript R. Thus, for example,
pR(x, y) = 1

4 . We then construct, for an arbitrary prior
distribution pR′ (x, y) = pR′ (x)pR′ (y), a corresponding model
R′ defined by pR′ (λ|x, y) := pR(λ|x, y), AR′,x(λ) := AR,x(λ),
and BR′,y(λ) := BR,y(λ). Note that all other properties of
R′ can be calculated via Bayes’ theorem, e.g., pR′ (λ) =∑

x,y pR′ (x, y)pR′ (λ|x, y) = ∑
x,y pR′ (x)pR′ (y)pR(λ|x, y). It

follows immediately from Eqs. (9) and (11) that these models
have the same value of the Bell parameter S, i.e., S = SR′ = SR

(= 4 − 8p from Table I). Further, the conditions of the lemma
are satisfied (with HR,xy(�) = h(p) + (1 − p) log2 3 for all
x, y and pR(λ) = 1

4 ), yielding

IR′ (X,Y :�) = IR(S) + HR′ (�) − 2 � IR(S), (60)

noting that the entropy of pR′ (λ) is bounded above by two bits
(since λ takes only four possible values). Thus, as claimed,
the minimum mutual information required to implement any
given violation of the CHSH inequality via a retrocausal
model is never greater than IR(S) in Eq. (29), irrespective of
the choice of p(x) and p(y).

We proceed similarly for causal and zigzag models. In
particular, consider the optimal causal model in Table II, and
denote all quantities appearing in this model via the subscript
C. A corresponding model C′ with arbitrary prior distribu-
tion pC′ (x, y) = pC′ (x)pC′ (y) is then defined via pC′ (λ|x, y) :=
pC (λ|x, y), AC′,x(λ) := AC,x(λ), and BC′,y(λ) := BC,y(λ). Note
that this model is also causal, as it follows via repeated appli-
cations of Bayes’ theorem, and using pC′ (λ|x, y) = pC (λ|x, y)
and pC (x, y|λ) = pC (x|λ)pC (y|λ), that

pC′ (x, y|λ) = pC′ (λ|x, y)pC′ (x)pC′ (y)

pC′ (λ)

= pC (λ)

pC′ (λ)

pC (x|λ)pC′ (x)

pC (x)

pC (y|λ)pC′ (y)

pC (y)

= pC′ (x|λ) pC′ (y|λ), (61)

in agreement with Eq. (32) [47]. It follows that S = SC′ =
SC (= 4 − 8pp̃ from Table II) and, noting the conditions of
the lemma are satisfied [with HC,xy(�) = h(p) + h( p̃) and
pC (λ) = 1

4 ], that

IC′ (X,Y : �) = IC (S) + HC′ (�) − 2 � IC (S) (62)

for any value of the CHSH parameter S. Thus, in analogy to
the retrocausal case above, no more than IC (S) in Eq. (43)
is required to implement any given violation of the CHSH
inequality via causal measurement dependence, irrespective
of the choice of p(x) and p(y). A similar result immediately
follows for zigzag measurement dependence via the equiva-
lence discussed in Sec. III D.

For the case of one-sided causal measurement depen-
dence we again consider the model in Table II, but for the
choice p̃ = 1

2 (see Sec. III C). Denoting the quantities in
this model by the subscript OS, a corresponding model OS′
with arbitrary prior distribution pOS′ (x, y) = pOS′ (x)pOS′ (y)
is then defined via pOS′ (λ|x, y) := pOS(λ|x) [implying OS′
is also one-sided as per Eq. (46)], and AOS′,x(λ) := AOS,x (λ),
BOS′,y(λ) := BOS,y(λ). It follows again from Eqs. (9) and (11)
that S = SOS′ = SOS (= 4 − 4p from Table II with p̃ = 1

2 ).
Further, the conditions of the lemma are satisfied [with
HOS,xy(�) = 1 + h(p)], yielding

IOS′ (X,Y :�) = IOS(S) + HOS′ (�) − 2 � IOS(S) (63)

for any value of the CHSH parameter S. Thus, no more than
IOS(S) in Eq. (51) is always sufficient for a one-sided model
of Bell nonlocality in the CSHS scenario.

Finally, for superdeterministic models it follows trivially
from Eq. (55) that any such model, SD′, say, with prior distri-
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bution pSD′ (x, y), requires a mutual information

ISD′ (X,Y :�) = HSD′ (X,Y ) � 2 bits = ISD(S), (64)

independently of the value of S, where the inequality is an
immediate consequence of H (X,Y ) � 2 for any joint distri-
bution p(x, y), and ISD(S) is defined in Eq. (56). Thus, again,
the unbiased prior p(x, y) = 1

4 is the worst-case scenario.

B. Explicit bounds on mutual information for biased choices

The left-hand sides of Eqs. (60) and (62)–(64) can be ex-
plicitly evaluated for any given distributions p(x) and p(y), via
calculation of the corresponding distribution p(λ) and entropy
H (�). This provides corresponding upper bounds on the mu-
tual informations required to implement a given violation of
the CHSH Bell inequality for retrocausal, causal (or zigzag),
one-sided, and superdeterministic measurement dependence,
respectively. We explicitly calculate these bounds here and
show that they approach zero for sufficiently biased p(x) and
p(y).

It is convenient to define the biases of the distributions p(x)
and p(y) via

εX := p(x = 0) − p(x = 1), εY := p(y = 0) − p(y = 1),
(65)

respectively. Thus, εX , εY ∈ [−1, 1] (although for the calcu-
lation of S we cannot take εX , εY strictly equal to ±1, as
otherwise not all settings are possible). Further, for the spe-
cific models in Tables I and II we have p(λ|x, y) = p(x, y|λ),
yielding

pR(λμν |x, y) = 1 − p

3
+ δx,ν̄ δy,μ̄

4p − 1

3
,

pC (λμν |x, y) = 1+(−1)x+ν (1 − 2p)

2

1+(−1)y+μ(1 − 2 p̃)

2
,

pOS(λμν |x, y) = 1 + (−1)x+ν (1 − 2p)

2
(66)

(recall that the latter is obtained from the preceding case
by taking p̃ = 1

2 ). The distributions of � for the models
R′, C′, and OS′ can then be calculated, using pM ′ (λ) =∑

x,y p(x)p(y)pM (λ|x, y), as

pR′ (λμν ) = 1 − p

3
+ 1 − (−1)νεX

2

1 − (−1)μεY

2

4p − 1

3
,

pC′ (λμν ) = 1 + (−1)νεX (1 − 2p)

2

1 + (−1)μεY (1 − 2 p̃)

2
,

pOS′ (λμν ) = 1 + (−1)νεX (1 − 2p)

4
, (67)

with corresponding entropies

HR′ (�) = H

(
1 − p

3
+ 1 ± εX

2

1 ± εY

2

4p − 1

3

)
,

HC′ (�) = h

(
1 + εX [1 − 2p]

2

)
+ h

(
1 + εY [1 − 2 p̃]

2

)
,

HOS′ (�) = 1 + h

(
1 + εX [1 − 2p]

2

)
. (68)

Substitution of these entropies into Eqs. (60), (62), and (63)
leads to explicit expressions for the mutual informations
IR′ (X,Y :�), IC′ (X,Y :�) and IOS′ (X,Y :�), as desired. For

example, using Eq. (29) and recalling that S = 4 − 8p for the
retrocausal model in Table I, we have

IR′ (X,Y :�) = H

({
4 + S

24
+ 1 ± εX

2

1 ± εY

2

2 − S

6

})

− h

(
4 − S

8

)
− 4 + S

8
log2 3. (69)

Similarly, one finds

IC′ (X,Y :�) = h

(
1 + εX [1 − 2p]

2

)
− h(p)

+ h

(
1 + εY [1 − 2 p̃]

2

)
− h( p̃) (70)

(where S = 4 − 8pp̃), and

IOS′ (X,Y :�) = h

(
1 + εX [S/2 − 1]

2

)
− h(S/4). (71)

One also has directly from Eqs. (64) and (65) that

ISD′ (X,Y :�) = h

(
1 + εX

2

)
+ h

(
1 + εY

2

)
. (72)

These mutual informations reduce to IR(S), IC (S), IOS(S), and
ISD(S) for the unbiased case, εX = εY = 0, as expected. Equa-
tions (69)–(72) also provide upper bounds for the minimum
mutual informations required to implement retrocausal, causal
one-sided, and superdeterministic models, respectively, for
any given biases εX , εY and CHSH parameter S [48]. It may be
verified that they decrease monotonically to zero as εX , εY →
±1. Thus, an arbitrarily small amount of mutual information
is required in the limit of extreme bias.

V. GENERAL AND SINGLET-STATE MODELS

In Sec. III we determined optimal models for Bell nonlo-
cality in the CHSH scenario, under various causal constraints
on measurement dependence, and found the ordering

IR(S) < IC (S) = IZ (S) < IOS(S) < ISD(S) (73)

for the minimum informations required to model any given
value S ∈ (2, 4) of the CHSH parameter. Recall that the
subscripts denote retrocausal, causal, zigzag, one-sided, and
superdeterministic measurement dependence, respectively.

It would be of interest to determine whether an analogous
ordering holds more generally, beyond the CHSH scenario.
This however appears to be a difficult problem, as optimiza-
tion of models becomes harder for increasing numbers of
inputs and outputs (including for continuous ranges). In con-
trast, nevertheless, it is straightforward to demonstrate the
result

IR � IC = IZ � IOS � ISD, (74)

for separable models of any given set of joint correlations
{p(a, b|x, y)}, where IC , for example, denotes the minimum
mutual information required to generate the set {p(a, b|x, y)}
under the constraint of causal measurement dependence.
This ordering is an immediate logical consequence of the
definitions of the corresponding types of measurement de-
pendence in Sec. III. In particular, all separable models
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have retrocausal implementations [36]; causal and zigzag
measurement dependence are formally equivalent; one-sided
measurement dependence is formally equivalent to a special
case of causal measurement dependence; and superdetermin-
istic models have the maximum possible value of mutual
information.

Hence, the source of the difficulty in generalizing Eq. (73)
lies in determining whether a strict ordering obtains. In the
remainder of this section we consider the case of separable
models of spin measurements on maximally entangled two-
qubit states, which allow at least two possible measurement
selections for each observer, and argue that

Ime
R < Ime

C � Ime
OS < Ime

SD (75)

for this case. In particular, we give evidence that the first
inequality is strict for this case, and formally prove strictness
for the last inequality.

First, note that we can restrict attention to the singlet state,
since all other such states differ by local rotations, correspond-
ing to a simple relabelling of the measurement settings [where
the mutual information in Eq. (4) is invariant under any such
relabeling, including for continuous ranges of measurement
settings X,Y and of �]. For the singlet state, the measure-
ment selections x and y correspond to spin directions on the
unit sphere; the measurement results a, b = ±1 correspond to
spin “up” and spin “down”; and any separable model must
reproduce the correlations

p(a, b|x, y) = 1
4 (1 − ab x · y) (76)

for some prior distribution p(x, y).
Second, there is a known separable model of spin correla-

tions for the singlet state [32], with a mutual information no
greater than ∼0.066 bits for any choice of p(x, y) [20]. Since
this model trivially has a retrocausal implementation [36], it
follows that

Ime
R � 0.066 bits (77)

for any p(x, y). For the special case of the CHSH scenario, in
which x and y are each restricted to two orthogonal directions,
x = x0, x1 and y = y0, y1, lying in a common plane with y0

bisecting x0 and x1, and with prior distribution p(x, y) = 1/4,
it can be checked that this model reduces to the model in
Table I with p = 1−1/

√
2

2 and S = SQ [15], and has the same
mutual information, IR(SQ) ∼ 0.046 bits in Eq. (31) [15,20].
It follows via Eq. (44) that, for the CHSH scenario at least, this
singlet-state model can be implemented only retrocausally,
suggesting more generally that Ime

R < Ime
C as per the first in-

equality in Eq. (75).
Third, there is a known one-sided separable model of

spin correlations for the singlet state, with a mutual infor-
mation no greater than log2(2/

√
e) bits for any choice of

p(x, y) [19,30,49]. Thus, using Eq. (74),

Ime
C � Ime

OS � log2
2√
e

∼ 0.279 bits. (78)

Fourth, for any superdeterministic model of the singlet
state the settings are fully determined by λ, implying that
p(x, y|λ) = δx, fX (λ) δy, fY (λ) for two functions fX and fY . Hence,
if p(x, y) is supported on a set of nonzero measure, then
Hλ(X,Y ) = −∞ and H (X,Y ) � 2 log2(4π ), yielding Ime

SD =

∞ via Eq. (4). Alternatively, if p(x, y) is supported only on a
discrete set of directions (e.g., as in the CHSH scenario), then
Hλ(X,Y ) = 0, yielding Ime

SD = H (X,Y ). But for the latter case
IOS � H (X ) < H (X ) + H (Y ) = H (X,Y ) for any one-sided
model, where the strict inequality follows since equality can
hold only for the trivial case H (Y ) = 0, i.e., only one possible
measurement selection for Bob (and we have assumed that
the factorizability constraint of Eq. (6) is satisfied). Hence,
for either alternative we have

Ime
OS < Ime

SD (79)

as per the final inequality in Eq. (75).
It would be interesting to find a separable model of the

singlet state with causal measurement dependence and a mu-
tual information lying strictly between the values in Eq. (77)
and (78). Such a model would provide evidence that the cen-
tral inequality in Eq. (75) is in fact also strict. Finally, note that
the above models can be easily generalized to models of spin
measurements on noisy singlet states (“Werner states” [50]),
by mixing them with a model having random outcomes inde-
pendently of the measurement directions.

VI. CONCLUSIONS

We have determined the minimum mutual information re-
quired to implement separable models of Bell nonlocality,
under various causal constraints on measurement dependence,
for the case of unbiased measurement choices in the CHSH
scenario, (Sec. III). This leads to a monotonic ordering of the
information-theoretic resources required to implement each of
retrocausal, causal, zigzag, one-sided, and superdeterministic
measurement dependence, as per Eq. (73) (see also Fig. 2).
In particular, retrocausal models require strictly less mutual
information to implement than causal models, for any given
violation of the CHSH Bell inequality. A similar result holds
for models of maximally entangled two-qubit states (Sec. V).
It follows that some measurement-dependent models in the
literature have no causal implementation [15,32].

The underlying reason for why causal measurement de-
pendence, as per Fig. 1(a), inherently requires more mutual
information than retrocausal measurement dependence, as
per Fig. 1(b), is the independence condition (32) for the
former case, corresponding physically to causal propagation
of influences from the source to the measurement devices.
In general, the more independence conditions imposed by a
causal structure [21], the higher the required mutual informa-
tion is expected to be.

It is worth noting that while there is no known means of
implementing retrocausal models as in Fig. 1(b) (with the
depicted timelike and spacelike separations), the result that
such models require strictly less resources than causal models
is of some theoretical interest in itself. In particular, the rela-
tive efficiency of such models for simulating Bell nonlocality
provides a further argument for retrocausality, in addition to
existing arguments in the literature [51–57].

We have also constructed corresponding optimal models
for each of the considered causal constraints, which have
fully deterministic measurement outcomes and no superlu-
minal signaling (Sec. III). Thus, an implementation of any
of these models subverts the security of device-independent
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information protocols based on Bell nonlocality in the CHSH
scenario, with an adversary able to in principle have full
knowledge of a cryptographic key or sequence of random
numbers generated by such a protocol (see also Sec. I). This
is of particular interest for the case of causal measurement
dependence, for which the corresponding models can be easily
implemented in practice by an adversarial device manufac-
turer (see Sec. III B) and which require at most IC (SQ) ∼
0.080 bits of mutual information to achieve the maximum
quantum violation of the CHSH inequality, as per Eqs. (45)
and (62).

We have further constructed explicit separable models that
achieve violation of the CHSH Bell inequality by any spec-
ified amount, for any biased distribution of measurement
settings p(x, y) = p(x)p(y), and used these models to show
that the case of unbiased settings, p(x, y) = 1

4 , has the highest
information cost irrespective of the causal structure, and that
the information cost approaches zero in the case of extreme
bias (Sec. IV). It would be of interest to improve on the upper
bounds given by IR′ (X,Y :�), IC′ (X,Y :�), and IOS′ (X,Y :�)
in Eqs. (69)–(71), by calculating the minimum possible
mutual information required for a given choice of p(x)
and p(y).

We note that the above models can easily be extended
to include some further measurement choices on either side
(or both), whose corresponding outputs are perfectly corre-
lated (or anticorrelated) with some other outputs, e.g., to add
x = 2 with A2(λ) := B0(λ). Such correlations are useful in
establishing cryptographic keys [1,12,58], and it would be
of interest to calculate the corresponding mutual information
requirements for such extended models, under various causal
constraints and for relevant distributions of settings p(x, y),
and to determine the maximum key rates possible for a given
degree of measurement dependence.

It would also be of significant interest, as noted in Sec. V,
to determine whether there is a causal separable model for the
spin correlations of maximally entangled two-qubit states that
requires strictly less mutual information than any one-sided
separable model.

Finally, note that the various causal structures considered
in this paper (Figs. 1, 5, 6, and 7) differ only in the causal
relations between X,Y , and �: in all cases A and B are directly
influenced by X and �, and by Y and �, respectively—subject
to the separability condition of Eq. (2). A possible direction
for future work would be to also consider structures with dif-
ferent causal relations involving A and B, e.g., to also consider
retrocausal influences from A and B to X,Y and/or �.
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APPENDIX: PROPERTIES OF I1(S) AND I2(S)

Here we give a partial formal proof of some properties of
the curves I1(S) and I2(S) depicted in Fig. 4. In particular, we
show that these curves have a common tangent at the intersec-
tion point S = S0, that I1(S) is convex, and that convexity of
I2(S) corresponds to the monotonicity of f (p)/(4 − S) with
respect to S, which can be verified numerically.

Note first from Eqs. (34) and (37) that

I ′
1(S) = (d/d p)[2 − 2h(p)]

(d/d p)[4 − 8p2]
= h′(p)

8p
, (A1)

and that, using the identities f (p) = p h′(p) and f (p) = f (p∗)
(and considering p∗ to be a function of p),

I ′
2(S) = (d/d p)[2 − h(p) − h(p∗)]

(d/d p)[4 − 8pp∗]
= h′(p) + p∗′

h′(p∗)

8(p∗ + pp∗′ )

= f (p)/p + p∗′
f (p∗)/p∗

8(p∗ + pp∗′ )
= f (p)

8pp∗ = h′(p)

8p∗ . (A2)

Hence, it directly follows for p = p∗ = p0 that I ′
1(S0) =

I ′
2(S0) = h′(p0 )

8p0
∼ 1.059, i.e., that the curves I1(S) and I2(S) in

Fig. 4 have a common tangent at S = S0. Note the right-hand
sides of Eqs. (A1) and (A2) are positive, verifying that I1(S)
and I2(S), and accordingly IC (S) in Eq. (43), are monotoni-
cally increasing with S.

Via a similar calculation as in Eq. (A1), one further finds
that

I ′′
1 (S) = 1

128p3

[
log2

1 − p

p
+ 1

(1 − p) loge 2

]
> 0 (A3)

(for 0 < p � 1
2 ), which shows that I1(S) is convex.

Finally, using S = 4 − 8pp∗ for S � S0, it follows from
Eq. (A2) that the curve I2(S) is convex for S � S0 if and only if
f (p)/(4 − S) is a monotonic increasing function of S (where
p is obtained from S as the solution to 4 − 8pp∗ = S, which in
general has to be found numerically). This can be verified via
a numerical plot. Alternatively, calculating I ′′

2 (S) in a similar
way to Eq. (A2) one finds

I ′′
2 (S) = −

(d/d p)
[ f (p)

pp∗
]

64(d/d p)[pp∗]

= 1

64(pp∗)2

(p∗ + pp∗′
) f (p) − pp∗ f ′(p)

p∗ + pp∗′ , (A4)

which can be numerically verified to be positive (one finds that
both numerator and denominator in the last fraction above are
positive for p < p0, and negative for p > p0).
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