Bott-Cattaneo-Rossi invariants for long knots in asymptotic homology $\mathbb R^3$ - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Bott-Cattaneo-Rossi invariants for long knots in asymptotic homology $\mathbb R^3$

David Leturcq
  • Fonction : Auteur
  • PersonId : 1077542

Résumé

In this article, we express the Alexander polynomial of null-homologous long knots in punctured rational homology $3$-spheres in terms of integrals over configuration spaces. To get such an expression, we use a previously established formula, which gives generalized Bott-Cattaneo-Rossi invariants in terms of the Alexander polynomial and vice versa, and we relate these Bott-Cattaneo-Rossi invariants to the perturbative expansion of Chern-Simons theory.

Dates et versions

hal-02997711 , version 1 (10-11-2020)

Identifiants

Citer

David Leturcq. Bott-Cattaneo-Rossi invariants for long knots in asymptotic homology $\mathbb R^3$. 2020. ⟨hal-02997711⟩
33 Consultations
0 Téléchargements

Altmetric

Partager

More