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PERMUTREE SORTING

VINCENT PILAUD, VIVIANE PONS, AND DANIEL TAMAYO JIMÉNEZ

Abstract. Generalizing stack sorting and c-sorting for permutations, we define the permutree
sorting algorithm. Given two disjoint subsets U and D of {2, . . . , n− 1}, the (U,D)-permutree

sorting tries to sort the permutation π ∈ Sn and fails if and only if there are 1 ≤ i < j < k ≤ n
such that π contains the subword jki if j ∈ U and kij if j ∈ D. This algorithm is seen as a
way to explore an automaton which either rejects all reduced expressions of π, or accepts those

reduced expressions for π whose prefixes are all (U,D)-permutree sortable.

1. Introduction

The motivation of this paper is the classical family of stack-sortable permutations introduced
by D. Knuth in his textbook [Knu69, Sect. 2.2.1] and characterized by the following equivalent
conditions for a permutation π ∈ Sn:

(i) π is sent to the identity by the stack sorting S defined inductively by S(τnρ) :=S(τ)S(ρ)n.
(ii) π avoids the pattern 231 (i.e. there is no p < q < r such that πr < πp < πq).
(iii) π is minimal among all linear extensions of a binary tree on n nodes (seen as a poset, where

the nodes are labeled in inorder and the edges are oriented towards the leaves).
(iv) For i < j < k, the inversion set inv(π) := {(πp, πq) | p < q and πp > πq} of π contains the

inversion (k, j) as soon as it contains the inversion (k, i).
(v) π admits a reduced expression of the form π = cI1 · · · cIp with nested subsets I1 ⊇ · · · ⊇ Ip,

where c{i1<···<ij} := sij · · · si1 is a product of the simple transpositions si := (i i+ 1).

It follows from (iii) that these permutations are counted by the Catalan number Cn := 1
n+1

(
2n
n

)
.

In his seminal work on lattice congruences [Rea04, Rea06, Rea07a], N. Reading defined natural
counterparts to conditions (iii), (iv), and (v) above, parametrized by the choice of a Coxeter
element c in a finite Coxeter group W : the minimality in c-Cambrian classes, the c-alignment,
and the c-sortability. (We skip the general definitions of these conditions here as we stick with the
combinatorics of the symmetric group.) In the situation of the symmetric group Sn, we can think
of a Coxeter element on Sn as an orientation of an (n − 1)-path, or equivalently as a partition
of {2, . . . , n− 1} into two subsets U and D. The Cambrian analogues of the conditions (ii), (iii),
(iv) and (v) above are the following equivalent conditions for a permutation π ∈ Sn:

(ii’) For i < j < k, the permutation π does not contain the subword jki if j ∈ U and kij if j ∈ D.
(iii’) π is minimal among all linear extensions of a c-Cambrian tree on n nodes. A c-Cambrian

tree is an oriented tree on [n] where node j has one parent if j /∈ U and two parents if j ∈ U ,
and one child if j /∈ D and two children if j ∈ D, with an additional local condition at each
node similar to the binary search tree condition [CP17].

(iv’) For i < j < k, if inv(π) contains (k, i), then it also contains (k, j) if j ∈ U and (j, i) if j ∈ D.
(v’) π admits a reduced expression of the form π = cI1 · · · cIp with nested subsets I1 ⊇ I2 ⊇ Ip,

where cI := ci1 · · · ci|I| denotes the subword of c := c1 · · · cn−1 indexed by I := {i1 < · · · < ij}.
It turns out that for any Coxeter element c, the permutations satisfying these conditions are still
counted by the Catalan number Cn.

These Cambrian combinatorics motivated the introduction of permutree combinatorics [PP18].
Permutrees generalize and interpolate between permutations, binary trees, and binary sequences,
and explain the combinatorial, geometric, and algebraic similarities between them. The data is now
given by two subsets U and D of {2, . . . , n− 1} that are not anymore required to form a partition
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Figure 1. The automata U(j) (left) and D(j) (right) defined recursively.

of {2, . . . , n−1} (they may intersect and may not cover all the set). It was proved in [PP18, CPP19]
that the conditions (ii’), (iii’), and (iv’) are still equivalent for a permutation π ∈ Sn. The number
of permutations satisfying these conditions is called (U,D)-factorial-Catalan number and admits
recursive formulae interpolating between the formulae for the factorial and for the Catalan number.

The objective of this paper is to discuss characterizations of permutree minimal permutations
in terms of their reduced expressions. In other words, we aim at a condition playing the role
of condition (v’) and equivalent to conditions (ii’), (iii’), and (iv’) for arbitrary subsets U and D
of {2, . . . , n−1}. We first focus on the case where U = ∅ and D = {j} for some j ∈ {2, . . . , n− 1},
or the opposite. To characterize the permutree minimal permutations in terms of their reduced
expressions in that situation, we use two automata U(j) and D(j) defined inductively as shown in
Figure 1. The induction stops at U(n) and D(1), which are defined by deleting the transitions sn
and s0 respectively in Figure 1. Figure 2 presents the complete automaton U(j) after all recursion
is done, and Figure 3 shows the automata U(2), D(2), U(3), and D(3). In all these pictures the
initial state is marked with “start”, the accepting states are doubly circled, all transitions are
labeled with simple transpositions si for i ∈ [n − 1], and all missing transitions are loops (we
assume the reader familiar with basic automata theory, see for instance [HU79]). Our main tool
is the following statement, proved in Section 2.

Theorem 1. Fix j ∈ {2, . . . , n− 1}. The following conditions are equivalent for π ∈ Sn:

• π admits a reduced expression accepted by the automaton U(j) (resp. D(j)),
• π contains no subword jki (resp. kij) with i < j < k.

Let us warn the reader on the fact that j is fixed in Theorem 1, while i and k are arbitrary such
that 1 ≤ i < j < k ≤ n. A priori, we should try all possible reduced expressions of π to decide
if one is accepted by the automaton U(j) (resp. D(j)). However, we can show that if π contains
no subword jki (resp. kij) with i < j < k and has a descent s` distinct from sj−1 (resp. sj), then
it has a reduced expression starting with s` and accepted by the automaton U(j) (resp. D(j)). In
other words, there is no loss of generality in starting constructing a reduced expression for π as
long as we stay in the states of the top row of U(j) (resp. D(j)). This yields a simple algorithm to
construct a reduced expression accepted by U(j) (resp. D(j)). It also yields natural tree structures
on the permutations characterized by Theorem 1, which can be glanced upon in Figure 3. These
algorithmic and combinatorial consequences of Theorem 1 are explored in Section 3. Most results
of Sections 2 and 3 are stated with respect to both automata U(j) and D(j) but proved only for
U(j) as all proofs for D(j) are symmetric.

Consider now arbitrary subsets U and D of {2, . . . , n − 1}. It follows from Theorem 1 that a
permutation is minimal in its (U,D)-permutree class if and only if it admits a reduced expression
accepted by U(j) for each j ∈ U and by D(j) for each j ∈ D. In general, the reduced expressions
accepted by the automata U(j) for each j ∈ U and by D(j) for each j ∈ D are distinct. We
prove however in Section 4 that there is a reduced expression simultaneously accepted by all these
automata when U and D are disjoint.
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Figure 2. The complete automaton U(j).

Theorem 2. Consider two disjoint subsets U and D of {2, . . . , n− 1}. The following conditions
are equivalent for π ∈ Sn:

• π admits a reduced expression accepted by all automata U(j) for j ∈ U and D(j) for j ∈ D,
• π contains no subword jki if j ∈ U and kij if j ∈ D for any i < j < k.

Theorem 2 implies that given any permutation π avoiding jki if j ∈ U and kij if j ∈ D,
we can sort π while preserving these avoiding conditions. The resulting sorting procedures, that
we call (U,D)-permutree sorting, are discussed in Section 4.4. For instance, stack sorting is a
({2, . . . , n− 1},∅)-permutree sorting.

Finally, in the particular situation when the subsets U and D form a partition of {2, . . . , n−1},
we actually show that the reduced expression simultaneously accepted by the automata U(j)
for j ∈ U and D(j) for j ∈ D is the c-sorting word of π as defined in [Rea07a]. This yields in par-
ticular an alternative proof that condition (v’) characterizes the Cambrian minimal permutations.
This new perspective on c-sortability is explored in Section 5.

2. Automata for reduced expressions

2.1. Reduced expressions, automata, and subword avoiding. We start with properly fixing
the few notations needed in this paper. We consider the symmetric group Sn of permutations of
the set [n] := {1, . . . , n}. It is generated by the transpositions si := (i i + 1) for i ∈ [n − 1] which
are involutions s2

i = id and satisfy the commutation relations si · sj = sj · si if |i − j| > 1 and
the braid relations si · si+1 · si = si+1 · si · si+1. Note that we multiply permutations as usual,
so that the left multiplication by si exchanges the entries with values i and i+ 1, while the right
multiplication by si exchanges the entries at positions i and i+1. Each permutation π decomposes
into products of transpositions of the form π = si1 · · · sik with i1, . . . , ik ∈ [n − 1]. The minimal
number of transpositions in such a decomposition is the length `(π) of π and the decompositions
of length `(π) are the reduced expressions for π.

Consider now the automata U(j) and D(j) described in the introduction, see Figures 1 to 3.
We call a state healthy, ill, or dead depending on whether it belongs to the top, middle, or bottom
row of the automata. Each state has n − 1 possible transitions, one for each si for i ∈ [n − 1],
but we only explicitly indicate the ones between different states. The automata U(j) and D(j)
take as entry a reduced expression si1 · · · si` for a permutation of Sn and read it from left to
right. We start at the initial state (marked with “start”), and at step t we follow the transition
marked by the letter sit if any, or stay in the current state otherwise. After ` steps, the reduced
expression si1 · · · si` is declared accepted if the current state is accepting (doubly circled, healthy
or ill states), and rejected otherwise (dead states).

For a fixed j ∈ {2, . . . , n − 1}, we say that a permutation π avoids jki (resp. kij) if for
any i < j < k, the word jki (resp. kij) does not appear as a subword of the one-line notation
of π, or said differently if there are no positions p < q < r such that π(r) < π(p) = j < π(q)
(resp. π(q) < π(r) = j < π(p)). We insist on the fact that while the value j is fixed, i and k take
all possible values such that 1 ≤ i < j < k ≤ n. This convenient notion here should not be mixed
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up with the notion of pattern avoidance where j is not fixed. For instance, a permutation avoids
the pattern 231 if and only if it avoids jki for all j ∈ {2, . . . , n− 1}.

Example 3. The permutation 42135 avoids 2ki, 3ki, and 4ki (and therefore the pattern 231), but
contains ki3 (and therefore the pattern 312) because its one-line notation contains 423.

2.2. Behavior under left multiplication. In the perspective of proving Theorem 1, we study
the two properties “π admits a reduced expression accepted by U(j) (resp. D(j))” and“π avoids jki
(resp. kij)”. In this section, we study the behavior of these properties under left multiplication.
We treat separately the cases when we multiply by a permutation commuting with both sj−1

and sj (Lemma 4), by sj−1 (Lemma 6), and by sj (Lemma 8).

Lemma 4. If two permutations σ, τ ∈ Sn are such that σ([j − 1]) = [j − 1], σ(j) = j, and
σ([n] r [j]) = [n] r [j] and `(σ · τ) = `(σ) + `(τ), then:

(1) τ admits a reduced expression accepted by U(j) (resp. D(j)) if and only if σ · τ admits a
reduced expression accepted by U(j) (resp. D(j)),

(2) τ avoids jki (resp. kij) if and only if σ · τ avoids jki (resp. kij).

Proof. We deal with the two statements separately:

(1) The conditions on σ imply that none of its reduced expressions contain the transpositions
sj−1 or sj . Therefore, while reading any reduced expression for σ, the automaton U(j)
stays in the initial state. The result immediately follows.

(2) Since σ permutes only values smaller than j between themselves and values greater than
j between themselves, we see a subword jki with i < j < k in τ if and only if we see a
subword jk′i′ with i′ < j < k′ in σ · τ , where i′ = σ(i) and k′ = σ(k). �

Example 5. Consider j := 4 and the permutations σ := 312465 = s2·s1·s5, τ1 := 143256 = s3·s2·s3,
and τ2 := 124536 = s3 ·s4. Multiplying we obtain σ · τ1 = 342165 and σ · τ2 = 314625. Observe that

(1) U(4) accepts all reduced expressions of both τ1 and σ · τ1 on its first ill state, and rejects
all reduced expressions of both τ2 and σ · τ2,

(2) both τ1 and σ · τ1 avoid 4ki, while both τ2 and σ · τ2 contain 4ki.

Lemma 6. If a permutation τ ∈ Sn has a reduced expression starting with sj−1 (resp. sj) and
accepted by U(j) (resp. D(j)), then

(1) τ does not permute j and j + 1 (resp. j − 1 and j),
(2) τ avoids jki (resp. kij).

Proof. Consider a reduced expression w starting with sj−1 and accepted by U(j). We deal with
the two statements separately:

(1) Since w starts with sj−1, the values j − 1 and j are reversed in τ . If j and j + 1 were
also reversed in τ , we would obtain that j − 1 and j + 1 are reversed. It follows that
w must contain a sj at some point after the sj−1. But this would lead to a dead state,
contradicting the assumption that w is accepted.

(2) Let τ = sj−1 · ρ. Since any reduced expression of ρ cannot contain sj (as w is be accepted
by U(j)), we have that ρ([j]) = [j] and ρ([n + 1] r [j]) = [n + 1] r [j] and find that ρ
contains no subword ki with i < j < k. Therefore, τ avoids jki. �

Example 7. Consider j := 4 and the permutation τ := 413265, whose reduced expression s3 · s5 ·
s2 · s1 · s3 is accepted by U(4). Observe that

(1) τ indeed does not permute the values 4 and 5,
(2) τ avoids 4ki.

Lemma 8. If a permutation τ ∈ Sn does not permute j and j + 1 (resp. j − 1 and j), then

(1) sj · τ (resp. sj−1 · τ) admits a reduced expression accepted by U(j) (resp. D(j)) if and only
if τ admits a reduced expression accepted by U(j + 1) (resp. D(j − 1)),

(2) sj ·τ (resp. sj−1 ·τ) avoids jki (resp. kij) if and only if τ avoids (j+1)ki (resp. ki(j−1)).
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Proof. We deal with the two statements separately:

(1) Suppose that w is a reduced expression for τ accepted by U(j+1). Since τ does not permute
j and j+1, we know that sj ·w is a reduced expression for sj ·τ , and it is accepted by U(j)
by construction. Conversely assume that sj · τ admits a reduced expression w accepted by
U(j). Since sj · τ permutes j and j + 1, w must contain a sj and cannot start by sj−1 by
Lemma 6. Due to Lemma 4 we can also assume that w starts with sj . Thus the suffix is
a reduced expression for τ that is accepted by U(j + 1).

(2) Observe that since j and j + 1 are reversed in sj · τ and not in τ , the value j + 1 cannot
serve as k in a subword jki of sj ·τ and the value j cannot serve as i in a subword (j+1)ki
in τ . The result thus immediately follow from the fact that the left multiplication by sj
only exchanges the values j and j + 1. �

Example 9. Consider j := 4 and the permutations τ1 := 142536 and τ2 := 142563 that do not per-
mute 4 and 5. Multiplying we obtain s4 · τ1 = 152436 and s4 · τ2 = 152463. Observe that

(1) the reduced expression s4·s3·s4·s2 of s4·τ1 is accepted by U(4) and the reduced expression s3·
s4 · s2 of τ1 is accepted by U(5), while all reduced expressions of s4 · τ2 are rejected by U(4)
and all reduced expressions of τ2 are rejected by U(5),

(2) s4 · τ1 avoids 4ki and τ1 avoids 5ki, while s4 · τ2 contains 463 and τ2 contains 463.

2.3. Proof of Theorem 1. With these lemmas in hand, we are now ready to show Theorem 1
that we repeat here for convenience.

Theorem 1. Fix j ∈ {2, . . . , n− 1}. The following conditions are equivalent for π ∈ Sn:

• π admits a reduced expression accepted by the automaton U(j) (resp. D(j)),
• π contains no subword jki (resp. kij) with i < j < k.

Proof of Theorem 1. We work by induction on the length of the permutations. Assume that a
permutation π admits a reduced expression accepted by U(j). Let si be the first letter of this
reduced expression and let τ be such that π = si · τ . We distinguish three cases:

• if i = j − 1, then π avoids jki by Lemma 6 (2).
• if i = j, then τ admits a reduced expression accepted by U(j + 1) by Lemma 8 (1). We

obtain by induction that τ avoids (j + 1)ki. Thus π = sj · τ avoids jki by Lemma 8 (2).
• otherwise, τ admits a reduced expression accepted by U(j) by Lemma 4 (1), so that τ

avoids jki by induction. Thus π = si · τ avoids jki by Lemma 4 (2).

In all three cases, we proved that π avoids jki.
Assume now that a permutation π avoids jki. Here, we have to be careful because not all

reduced expressions for π will be accepted by U(j) a priori. So we have to construct a good
reduced expression for π. We distinguish two cases:

• Assume first that there is m > j such that π reverses j and m, and pick m minimal for
this property. It follows that π reverses ` and m for all ` in {j, . . . ,m − 1}. In other
words, π admits a reduced expression starting by the cyclic permutation (j, j+ 1, ...,m) =
sm−1 · sm−2 · · · sj+1 · sj . Define σ = sm−1 · sm−2 · · · sj+1 and τ such that π = σ · sj · τ
and so that this expression is reduced. By Lemmas 4 (2) and 8 (2), τ avoids (j + 1)ki.
By induction, we obtain that it admits a reduced expression accepted by U(j + 1). By
Lemmas 4 (1) and 8 (1), we conclude that π admits a reduced expression accepted by U(j).

• Assume now that j appears before all m > j in π. Consider any reduced expression for π.
If this expression is accepted by U(j), we are done. Otherwise, it first uses sj−1 (otherwise,
j and some m > j would be exchanged) and then sj . Call i and k the two elements that
are exchanged when the reduced expression first uses sj . We have i < j < k and jki in π
(because j and k are not exchanged in π, and i and k are already exchanged so they will
remain exchanged in π), a contradiction.

In both cases, we proved that π admits a reduced expression accepted by U(j). �
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3. Structure of accepted reduced expressions

In this section, we explore some additional properties of the set of reduced expressions accepted
by the automata U(j) and D(j) and derive relevant algorithmic and combinatorial consequences.

3.1. The set of accepted reduced expressions. Observe that a given permutation π may
admit both accepted and rejected reduced expressions. For instance, the (non-simple) transposi-
tion (j − 1 j + 1) has reduced expressions sj ·sj−1 ·sj accepted by U(j) and sj−1 ·sj ·sj−1 rejected
by U(j). However, Propositions 10 to 12 below show that the set of accepted reduced expressions
satisfies the following three principles:

• Who can do more can do less! — The set of accepted reduced words is closed by prefix.
• When health goes, everything goes! — If π admits an accepted reduced expression,

then π admits an accepted reduced expression starting with any descent that remains in
the healthy states.

• All roads lead to Rome! — All accepted reduced expressions for π end at the same state.

Proposition 10. The set of reduced words accepted by U(j) (resp. D(j)) is closed by prefix.

Proof. This immediately follows from the fact that the set of reduced words is closed by prefix,
and that the set of accepting states of U(j) is connected and contains the initial state. �

Proposition 11. Let ` ∈ [n− 1] distinct from j − 1 (resp. j). A permutation π ∈ Sn that avoids
jki (resp. kij) and reverses ` and `+ 1 admits a reduced expression starting with s` and accepted
by U(j) (resp. D(j)).

Proof. Since π reverses ` and ` + 1, it admits a reduced expression of the form π = s` · τ . Now
consider two cases depending on the value of `:

• If ` = j, then τ avoids (j+ 1)ki by Lemma 8 (2), thus τ has a reduced expression accepted
by U(j + 1) by Theorem 1, and we conclude by Lemma 8 (1).

• Otherwise, ` is neither j − 1 nor j, so that τ avoids jki by Lemma 4 (2), thus τ has a
reduced expression accepted by U(j) by Theorem 1, and we conclude by Lemma 4 (1). �

Proposition 12. Given a permutation π ∈ Sn, all the reduced expressions for π accepted by U(j)
(resp. D(j)) end at the same state.

To prove Proposition 12, it would be enough to check that any two reduced words accepted
by U(j) that differ by a single commutation or a single braid relation indeed end at the same
state. However, we prefer to prove instead the following stronger but more technical version of
Proposition 12.

Proposition 13. For a permutation π ∈ Sn, let ninvj(π) = |
{

(j, i)
∣∣ i < j and π−1(i) > π−1(j)

}
|

and ninvj(π) = |
{

(k, j)
∣∣ j < k and π−1(j) > π−1(k)

}
|.

(i) if ninvj(π) = 0, then all reduced expressions for π end at the same healthy state of U(j),
(ii) if ninvj(π) = 0, then all reduced expressions for π end at the same state of U(j), which might

be healthy if π avoids ji, ill if π contains ji but avoids jki, or dead if π contains jki,
(iii) if ninvj(π) 6= 0 6= ninvj(π), all accepted reduced expressions for π end at the same ill state

of U(j) while the rejected reduced expressions may end at distinct dead states of U(j).

Moreover, all reduced expressions for π accepted by U(j) end in the (ninvj(π)+1)st column of U(j).

A similar statement holds for D(j) by exchanging ninvj(π) and ninvj(π).

Proof. The proof works by induction on the length of π. Consider an arbitrary reduced expres-
sion w for π, starting with a transposition s`, and write w = s` · w′ and π = s` · τ . Observe that:

• if ` /∈ {j − 1, j}, then s` loops in U(j), ninvj(π) = ninvj(τ) and ninvj(π) = ninvj(τ),

• if ` = j, then sj goes to U(j + 1), ninvj(π) = ninvj+1(τ) and ninvj(π) = ninvj+1(τ) + 1,

• if ` = j − 1, then sj−1 goes to the first ill state of U(j), ninvj(π) = ninvj+1(τ) + 1
and ninvj(π) = ninvj+1(τ).

By induction, we obtain that the reduced expression w′ for τ ends as predicted in the statement.
The previous observations ensure that the reduced expression w for π also does. �
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Example 14. We present an example of each case:

(i) For π := 4312, we have that ninv2(π) = 0 and all of its 5 reduced expressions end at the third
healthy state of U(2).

(ii) For π := 32145 (resp. π := 43215, resp. π := 43251), we have ninv4(π) = 0 and all its 2
(resp. 16, resp. 35) reduced expressions end at the first healthy (resp. ill, resp. dead) state of U(4).

(iii) For π := 4321, we have ninv2(π) = |{(2, 1)}| = 1 and ninv2 = |{(3, 2), (4, 2)}| = 2. Among
the 16 reduced expressions of π, the automaton U(2) accepts 7 at its third ill state, rejects 7
at its first dead state, and rejects the other 2 at its second dead state.

3.2. Finding accepted reduced expressions. Proposition 11 has a strong algorithmic conse-
quence. Imagine we want to test whether a permutation π ∈ Sn is minimal in its permutree class
for U = {j} and D = ∅. Of course, the quickest way is to check for all i < j < k whether π
contains the subword jki. But since this interpretation will be lost beyond type A, let us impose
the use of reduced expressions for π to make this test. While it would be a priori necessary to
check all reduced expressions on the automaton U(j), Proposition 11 enables us to construct with-
out loss of generality a candidate reduced expression for π and we will just neeed to check that
this one is accepted by U(j). Somewhat dually, one can also construct a reduced word accepted
by U(j) that is a reduced expression for π if and only if π avoids jki. This is done in the follow-
ing algorithm, that we call ({j},∅)-permutree sorting. The reader is invited to write down the
symmetric (∅, {j})-permutree sorting. We will discuss further permutree sorting in Section 4.4.

Algorithm 1: ({j},∅)-permutree sorting

Data: a permutation π ∈ Sn and an integer j ∈ [n]
Result: a reduced word accepted by U(j), candidate reduced expression for π

1 w := ε

2 repeat
3 if ∃ ` 6= j − 1 such that ` and `+ 1 are reversed in π then
4 π := s` · π, w :=w · s`
5 if ` = j then j := j + 1

6 if j − 1 and j are reversed in π then
7 π := sj−1 · π, w :=w · sj−1

8 w :=w · w′ · w′′ where w′ sorts π[j] and w′′ sorts π[n]r[j]

9 return w

Example 15. Let us present the (2,∅)-permutree sorting algorithm in action for the permuta-
tions π1 := 3421 and π2 := 4231. The steps of the algorithm are presented in Table 1. Each row
contains the states of the permutation π and of the word w and the current values of j and ` in use
at each step. Notice that for π1 := 3421 the algorithm ends with the identity, which coincides with
the fact that π1 := 3421 avoids 2ki. In contrast, for π2 := 4231 the algorithm ends with the permu-
tation 1243, meaning that π2 is not ({2},∅)-sortable, which coincides with the fact that π2 := 4231
contains 2ki.

π1 w1 j1 `1
3421 ε 2 2
2431 s2 3 1
1432 s2 · s1 3 3
1342 s2 · s1 · s3 4 2
1243 s2 · s1 · s3 · s2 4 3
1234 s2 · s1 · s3 · s2 · s3 4

π2 w2 j2 `2
4231 ε 2 3
3241 s3 2 2
2341 s3 · s2 3 1
1342 s3 · s2 · s1 3 2
1243 s3 · s2 · s1 · s2 3

Table 1. The ({2},∅)-permutree sorting of π1 := 3421 and π2 := 4231.
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Corollary 16. For any permutation π and j ∈ {2, . . . , n−1}, Algorithm 1 returns a reduced word w
accepted by U(j) with the property that w is a reduced expression for π if and only if π avoids jki.

Proof. This algorithm constructs a candidate reduced word for π while following the automa-
ton U(j) and prioritizing healthy states over ill states. Lines 2 to 5 start by all possible transi-
tions s` that remain in healthy states, updating j to j + 1 when ` = j according to Lemma 8
(if condition at line 5). When we have exhausted all these transitions, if we need to go to an
ill state (if condition at line 6) applying sj−1, then we are not anymore allowed to use sj and
we obtain a candidate reduced word by sorting independently the first j positions of π with a
reduced expression in {s1, . . . , sj−1}∗ and the last [n]r [j] positions of π with a reduced expression
in {sj+1, . . . , sn−1}∗. The resulting reduced word w is clearly accepted by U(j) because we never
allow the transition from an ill state to the corresponding dead state. If w is a reduced expression
for π, then π avoids jki by Theorem 1. Conversely, if π avoids jki, then w must be a reduced
expression for π since the choice to start with s` is valid in lines 2 to 5 by Proposition 11 and
forced in lines 6 to 8 (since all reduced expressions of π then start by s`). �

Remark 17. We really wrote Algorithm 1 as a sorting algorithm. It first tries to sort the permuta-
tion π ∈ Sn while avoiding to swap j−1 and j for a certain token j (and changing the token when
swapping j and j+1). Once it is forced to swap j−1 and j, it tries to sort the permutation π while
avoiding to swap any value of [j] with a value of [n] r [j]. If we were only interested in deciding
whether the permutation π is ({j},∅)-sortable, then we could stop and accept the permutation as
soon as we reach j = n, and we could just check at line 8 of the algorithm whether π([j]) = [j]
and π([n] r [j]) = [n] r [j].

3.3. Generating trees on accepted reduced expressions. Propositions 10 and 12 also have a
relevant consequence, more combinatorial this time. Namely, they naturally define generating trees
for the ({j},∅)-permutree minimal permutations, following certain special reduced expressions
for them. To construct these trees, pick an arbitrary priority order ≺ on {s1, . . . , sn−1}. For
a ({j},∅)-permutree minimal permutation π ∈ Sn, denote by π({j},∅,≺) the ≺-lexicographic
minimal reduced expression for π that is accepted by U(j). Denote by R(n, {j},∅,≺) the set of
reduced words of the form π({j},∅,≺) for all ({j},∅)-permutree minimal permutations π ∈ Sn.
The following statement is an analogue of Proposition 10.

Proposition 18. The set R(n, {j},∅,≺) is closed by prefix.

Proof. Consider a reduced expression w = u · v where u is not in R(n, {j},∅,≺). If u is not
accepted by U(j), neither is w by Proposition 10. Otherwise, there exists a reduced expression u′

representing the same permutation as u, accepted by U(j) and ≺-lexicographic smaller than u.
By Proposition 12, the reduced expressions u and u′ end at the same state of U(j). Therefore,
if w = u · v is accepted by U(j), so is u′ · v. Since u′ · v is ≺-lexicographically smaller than u · v
and represents the same permutation, this ensures that w is not in R(n, {j},∅,≺). �

Proposition 18 yields a natural generating tree for R(n, {j},∅,≺) where the parent of a re-
duced word w is obtained by deleting its last letter. Replacing each reduced expression by the
corresponding permutation, this provides a generating tree for the ({j},∅)-permutree minimal
permutations of Sn. Of course there is a similar generating tree for the (∅, {j})-permutree min-
imal permutations of Sn. Figure 3 presents these generating trees for n = 4 and j = 2, 3, with
the priority order s1 ≺ s2 ≺ s3. It is natural to draw these trees on top of the Hasse diagram of
the right weak order on permutations, defined by inclusion of inversion sets. In other words, the
cover relations in weak order correspond to the swap of the values at two consecutive positions
in a permutation, i.e. to a right multiplication by a simple transposition. The edges of the trees
corresponding to the right multiplications by s1, s2 and s3 are colored by blue, red, and green
respectively.
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4. Intersection of automata

We now consider arbitrary subsets U and D of {2, . . . , n − 1}. We already know from [PP18]
and Theorem 1 that the following conditions are equivalent for π ∈ Sn:

(i) the permutation π is minimal in its (U,D)-permutree class,
(ii) for i < j < k, the permutation π does not contain the subword jki if j ∈ U and kij if j ∈ D,
(iii) for each j ∈ U (each j ∈ D), there is a reduced expression for π accepted by U(j) (resp. by D(j)).

A natural question is whether there is a reduced expression simultaneously accepted by all these
automata. We start with an example showing that this is not always the case.

Example 19. For j ∈ {2, . . . , n−1}, consider U = {j} = D, and π = sj−1 ·sj ·sj−1 = sj ·sj−1 ·sj.
Then, the expression sj−1 · sj · sj−1 is accepted by D(j) but not by U(j), while the expression
sj · sj−1 · sj is accepted by U(j) but not by D(j).

This example clearly extends to all subsets U and D of {2, . . . , n − 1} with a non-empty in-
tersection. In contrast, we will now show that this situation cannot occur when U and D are
disjoint.

4.1. Proof of Theorem 2. Example 19 motivates Theorem 2 that we repeat here for convenience.

Theorem 2. Consider two disjoint subsets U and D of {2, . . . , n− 1}. The following conditions
are equivalent for π ∈ Sn:

• π admits a reduced expression accepted by all automata U(j) for j ∈ U and D(j) for j ∈ D,
• π contains no subword jki if j ∈ U and kij if j ∈ D for any i < j < k.

Proof. The direct implication is immediate from Theorem 1. For the converse implication, consider
a permutation π that avoids jki for j ∈ U and kij for j ∈ D. Consider Ū := {j ∈ U | ninvj(π) 6= 0}
and D̄ :=

{
j ∈ D

∣∣ ninvj(π) 6= 0
}

. By Proposition 13 (ii), any reduced expression for π is accepted

by U(j) for j ∈ U r Ū and by D(j) for j ∈ D r D̄. We can therefore assume that Ū = U
and D̄ = D and one of them is non-empty, say Ū = U 6= ∅. Let j◦ := max(U) and m be minimal
such that j◦ < m and π−1(j◦) > π−1(m). By minimality of m, we obtain that π contains the
subword mj◦` for any j◦ < ` < m. It implies that

• ` is neither in U by maximality of j◦, nor in D by assumption on π, for all j◦ < ` < m,
• π reverses ` and m for all ` in {j◦, . . . ,m − 1}, so that π admits a reduced expression of

the form π = sm−1 · · · sj◦ · τ .

Lemmas 4 (2) and 8 (2) ensure that

• τ avoids jki for all j ∈ U r {j◦} and kij for all j ∈ D r {m} (because j◦, . . . ,m − 1 are
all distinct from j − 1 and j in these cases by the second observation above),

• τ avoids (j◦ + 1)ki,
• if m ∈ D, then τ avoids kij◦.

By induction, it implies that τ admits a reduced expression w simultaneously accepted by all
automata U(j) for j ∈ U r{j◦} and j = j◦+ 1, and all automata D(j) for j ∈ Dr{m} and j = j◦
if m ∈ D. By Lemmas 4 (1) and 8 (1), we conclude that sm−1 · · · sj◦ · w is a reduced expression
for π simultaneously accepted by all U(j) for j ∈ U and D(j) for j ∈ D. �

4.2. Intersection of automata. Theorem 2 can be rephrased in terms of intersection of au-
tomata. Recall that the intersection of some automata A1, . . . ,Ap is the automaton A =

⋂
i∈[p] Ai

such that a word is accepted by A if and only if it is accepted by all A1, . . . ,Ap. A state of the
automaton A is p-tuple formed by states of the automata A1, . . . ,Ap, and a transition t simultane-
ously changes all entries of the p-tuple corresponding to states modified by t. See [HU79, p. 59–60]
for details. We denote by P(U,D) the intersection of the automata U(j) for j ∈ U and D(j)
for j ∈ D. We thus obtain the following statement.

Corollary 20. When U and D are disjoint, the following conditions are equivalent for π ∈ Sn:

• π admits a reduced expression accepted by the automaton P(U,D),
• π contains no subword jki if j ∈ U and kij if j ∈ D with i < j < k.
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We say that a state of P(U,D) is healthy (resp. ill, resp. dead) when the corresponding states
in U(j) for j ∈ U and D(j) for j ∈ D are all healthy (resp. contain at least one ill state, but no
dead one, resp. contains at least one dead state). Figure 4 illustrates the automata P({4}, {2})
when n = 5 (left), P({3}, {2}) for n = 4 (middle), and P({2}, {4}) for n = 5 (right). For the first
two automata, we have drawn the complete automata on top, and their skeleta on the bottom.
Here, we call skeleton a simplification of the automaton that recognizes the same reduced words.
It is obtained using the fact that the word is rejected as soon as we reach a dead state, and that
the automata U(n) and D(1) accept all reduced expressions. For the last automaton, the complete
intersection is too big, so we only draw the reachable healthy states. In the picture, we color the
transitions in red, blue, or purple depending on whether only U, only D, or both U and D change
state.

4.3. The set of accepted reduced expressions of P(U,D). Applying the principles of Sec-
tion 3.1 to each automaton U(j) for j ∈ U and D(j) for j ∈ D, we derive similar principles for the
automaton P(U,D). The following statements are direct consequences of Propositions 10 to 12.

Proposition 21. The set of reduced words accepted by P(U,D) is closed by prefix.

Proposition 22. If a permutation π avoids jki for j ∈ U and kij for j ∈ D, and admits a reduced
expression starting with s` such that the transition s` leads to an healthy state of P(U,D), then it
admits a reduced expression starting with s` and accepted by P(U,D).

Proposition 23. Given a permutation π ∈ Sn, all the reduced expressions for π accepted by
P(U,D) end at the same state.

4.4. Permutree sorting. We have seen that for any (U,D)-permutree minimal permutation, the
set of reduced expressions for π that are accepted by P(U,D) is non-empty (by Corollary 20)
and closed by prefix (by Proposition 21). Therefore, it is possible to sort π passing only through
(U,D)-permutree minimal permutations along the way. This motivates the following definition.

Definition 24. An (U,D)-permutree sorting algorithm is a sorting procedure such that

• applied to an (U,D)-permutree minimal permutation π, it only passes through (U,D)-
permutree minimal permutations and arrives to the identity permutation,

• it fails to sort a non (U,D)-permutree minimal permutation π.

Example 25. The stack sorting algorithm is a ({2, . . . , n− 1},∅)-permutree sorting algorithm.

Said differently, any procedure that looks for a reduced expression accepted by P(U,D) gives
a (U,D)-permutree sorting algorithm. For instance, Algorithm 1 is a ({j},∅)-permutree sorting
algorithm. We generalize it in the following algorithm, where we opted for a recursive style. As in
Algorithm 1, the algorithm will read the automaton P(U,D) without actually constructing it. To
virtually follow the edges of the automaton P(U,D), we use the following two operations on our
sets U and D:

moveU(U, `) =

{
U if ` /∈ U,
(U r {`}) ∪ {`+ 1} if ` ∈ U,

moveD(D, `) =

{
D if `+ 1 /∈ D,
(D r {`+ 1}) ∪ {`} if `+ 1 ∈ D.

Algorithm 2: (U,D)-permutree sorting

Data: a permutation π ∈ Sn and two disjoint subsets U and D of [n]
Result: a reduced word accepted by P(U,D), candidate reduced expression for π

1 if ∃ ` ∈ [n− 1] such that ` and `+ 1 are reversed in π, and `+ 1 /∈ U and ` /∈ D then
2 return s` · permutreeSort(s` · π, moveU(U, `), moveD(D, `))

3 if ∃ ` ∈ [n− 1] such that ` and `+ 1 are reversed in π,

4 and (`+ 1 /∈ U or π([`+ 1]) = [`+ 1]) and (` /∈ D or π([`− 1]) = [`− 1]) then
5 return s` · permutreeSort(s` · π, moveU(U r {`+ 1}, `), moveD(D r {`}, `))
6 return ε
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Note that in Algorithm 2, we could ignore n in the list U (resp. 1 in the list D) since U(n)
(resp. D(1)) accepts all reduced words. We have decided not to do it to be coherent with our
recursive definition of U(j) and D(j).

Example 26. We present in Table 2 the ({3}, {2})-permutree sorting algorithm in action for
the permutations π1 := 3214, π2 := 1324 and π3 := 1342, and in Table 3 the ({2}, {4})-permutree
sorting algorithm in action for the permutations π4 := 54213 and π5 := 15342. The corresponding
automata P({3}, {2}) and P({2}, {4}) are represented in Figure 4. Each row in these tables con-
tains the states of the permutation π and of the word w, the current values of j and ` in use at
each step, and the values of k for which we have to check that π([k]) = [k], crossed in red when
it fails. These tables show that π1 and π2 are ({3}, {2})-permutree sortable while π3 is not, and
that π4 is ({2}, {4})-permutree sortable while π5 is not.

π1 w1 U1 D1 `1 k1

3214 ε {3} {2} 1 .
3124 s1 {3} {1} 2 3
2134 s1 · s2 ∅ {1} 1 0
1234 s1 · s2 · s1

π2 w2 U2 D2 `2 k2

1324 ε {3} {2} 2 1, 3
1234 s2

π3 w3 U3 D3 `3 k3

1342 ε {3} {2} 2 1, �A3

Table 2. The ({3}, {2})-permutree sorting of π1 := 3214, π2 := 1324 and π3 := 1342.

π4 w4 U4 D4 `4 k4

54213 ε {2} {4} 3 .
53214 s3 {2} {3} 2 .
52314 s3 · s2 {3} {2} 1 .
51324 s3 · s2 · s1 {3} {1} 4 .
41325 s3 · s2 · s1 · s4 {3} {1} 3 .
31425 s3 · s2 · s1 · s4 · s3 {4} {1} 2 .
21435 s3 · s2 · s1 · s4 · s3 · s2 {4} {1} 1 .
12435 s3 · s2 · s1 · s4 · s3 · s2 · s1 {4} {1} 3 4
12345 s3 · s2 · s1 · s4 · s3 · s2 · s1 · s3 {4} {1}

π5 w5 U5 D5 `5 k5

15342 ε {2} {4} 2 .
15243 s2 {3} {4} 3 .
15234 s2 · s3 {4} {3} 4 .
14235 s2 · s3 · s5 {5} {3} 3 �A2

Table 3. The ({2}, {4})-permutree sorting of π4 := 54213 and π5 := 15342.

Corollary 27. For any permutation π and any disjoint subsets U and D of {2, . . . , n − 1}, Al-
gorithm 2 returns a reduced word w accepted by P(U,D) with the property that w is a reduced
expression for π if and only if π avoids jki for j ∈ U and kij for j ∈ D.

Proof. This algorithm constructs a candidate reduced word for π following the automaton P(U,D)
and prioritizing healthy states over ill states. It begins by checking all possible transitions s`
that keep P(U,D) in healthy states following Lemma 8 (if condition in line 1). Doing this in the
intersection of automata translates to updating ` to `+1 when ` ∈ U and `+1 to ` when `+1 ∈ D
(line 2). When we have exhausted all these transitions, we need to go to an ill state of P(U,D),
i.e. to apply a transposition that sends at least one automaton of the intersection to an ill state.
If there is ` + 1 ∈ U (resp. ` ∈ D) such that s` is a descent of π and π([` + 1]) = [` + 1]
(resp. π([`− 1]) = [`− 1]), then any reduced expression for π is accepted by the automaton U(`)
(resp. D(`)) by Proposition 13 (i). We can thus start with s` and forget about the automaton U(`)
(resp. D(`)) (lines 3, 4 and 5). Finally, if none of these options are possible, any reduced expression
for π will lead to a dead state in at least one of the automata, so that π is not (U,D)-sortable.
We thus return the empty reduced expression (line 6). �
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4.5. Generating trees. As in Section 3.3, we can define natural generating trees for the (U,D)-
permutree minimal permutations. Namely, fix an arbitrary priority order ≺ on {s1, . . . , sn−1}.
For an (U,D)-permutree minimal permutation π, we denote by π(U,D,≺) the ≺-lexicographic
minimal reduced expression for π that is accepted by P(U,D). We denote by R(n,U,D,≺) the set
of reduced words of the form π(U,D,≺) for all (U,D)-permutree minimal permutations π ∈ Sn.
The same proof as that of Proposition 18 shows that R(n,U,D,≺) is closed by prefix. This yields
a natural generating tree on R(n,U,D,≺) where the parent of a reduced word w is obtained
by deleting its last letter. Replacing each reduced expression by the corresponding permutation,
this provides a generating tree for the (U,D)-permutree minimal permutations of Sn. Figure 5
presents these generating trees for different values of U and D.

5. Permutree sorting versus Coxeter sorting

In this section, we discuss the particular case when U and D form a partition of {2, . . . , n−1}. In
that situation, we connect the (U,D)-permutree sorting with the c-sorting of N. Reading [Rea07b].

5.1. Coxeter sorting word and Coxeter sortable permutations. We first recall the theory
of c-sorting developed by N. Reading in [Rea07b]. While it was defined in arbitrary finite Coxeter
groups, we focus on the symmetric group in this presentation.

We consider a Coxeter element c of Sn, i.e. the product of all simple transpositions {s1, . . . , sn−1}
in an arbitrary order. For a permutation π ∈ Sn, the c-sorting word π(c) is the lexicographically
smallest reduced expression for π in the infinite word c∞ = c·c·c·c · · · . Note that strictly speaking,
π(c) depends on a reduced expression for c, not only on the Coxeter element c. Here, we assume
that we have chosen a reduced expression and hide this dependence. We let I1, . . . , Ip denote the
subsets of [n− 1] such that π(c) = cI1 · cI2 · · · cIp where cI is the subword of c obtained by keeping
only the letters si for i ∈ I. The permutation π is c-sortable if I1 ⊇ I2 ⊇ · · · ⊇ Ip. Note that this
does not depend on the choice of the reduced expression c, only on the Coxeter element c.

For our proofs we will need some simple yet useful facts from [Rea07b] on how prefixes of words
influence sortability.

Lemma 28. Consider a Coxeter element of the form c = s` · d and let π ∈ Sn. Then

• if π = s` · τ with `(π) = `(τ) + 1, then π(c) = s` · τ(d · s`),
• otherwise, π(c) = π(d · s`).

Lemma 29. Let si 6= sj be two letters that appear in the c-sorting word π(c) of a c-sortable
permutation π. Then

(1) if si appears before sj in c, then si appears before sj in π(c),
(2) if sj does not appear in between two occurrences of si in π(c), then it does not appear after

these occurrences either.

Proof. We deal with the two statements separately:

(1) Immediate from the definition since both si and sj appear in π(c).
(2) Since π is c-sortable, π(c) is formed by a succession of subwords that are nested. Thus

if sj were to appear after the occurrences of si it would have to appear between them as
well. �

5.2. Coxeter sorting via permutree automata. A Coxeter element c of Sn defines a partition
{2, . . . , n− 1} = Uc tDc, where Uc (resp. Dc) consists of the elements j ∈ {2, . . . , n − 1} such
that sj appears before (resp. after) sj−1 in c. For instance, when c = s2 · s5 · s4 · s3 · s1 · s6,
we obtain Uc = {2, 4, 5} and Dc = {3, 6}. Said differently, j ∈ U (resp. j ∈ D) if c is accepted
by U(j) but not by D(j) (resp. by D(j) but not by U(j)). The goal of this section is the following
connection between the c-sorting of Section 5.1 and the (Uc, Dc)-permutree sorting of Section 4.
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Theorem 30. For any Coxeter element c and any permutation π, the following assertions are
equivalent:

(i) π is c-sortable,
(ii) the c-sorting word π(c) is accepted by the automaton P(Uc, Dc),

(iii) there exists a reduced expression for π accepted by the automaton P(Uc, Dc),
(iv) for each j ∈ {2, . . . , n − 1}, there exists a reduced expression for π that is accepted by the

automaton U(j) if j ∈ Uc and D(j) if j ∈ Dc,
(v) π avoids jki for j ∈ Uc and kij for j ∈ Dc.

The equivalences (iii) ⇐⇒ (iv) ⇐⇒ (v) were already established earlier. Here, we aim at
identifying the c-sorting word as a reduced expression for π accepted by P(Uc, Dc). We split the
proof of the equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) into the following few lemmas.

Lemma 31. The c-sorting word of a c-sortable permutation is recognized by U(j) for j ∈ Uc and
by D(j) for j ∈ Dc.

Proof. Consider j ∈ Uc (the proof for j ∈ Dc is symmetric). We distinguish two possible cases:

• If π(c) contains no sj−1, then π(c) either remains in the first healthy state or ends in the
first ill state of U(j).

• If π(c) contains sj−1, then by Lemma 29 (1) sj−1 appears before sj in π(c) and π(c) leads
to the second healthy state of U(j). From here on out, notice that π(c) cannot end at a
dead state because of Lemma 29 (2).

In both cases, π(c) is accepted by U(j). �

Lemma 32. A permutation π ∈ Sn whose c-sorting word π(c) is accepted by P(Uc, Dc) is c-
sortable.

Proof. Suppose that π is not c-sortable. We will find an automaton that rejects π(c) among the
automata U(j) for j ∈ Uc and D(j) for j ∈ Dc. Once again, we work by induction on the length
of π and the size of c. Let s` be the first letter of c and write c = s` · d. Since s` appears
before s`−1 and s`+1 in c, we have ` ∈ Uc and ` + 1 ∈ Dc. Moreover, the letter s` yields to the
next healthy state in both automata U(`) and D(` + 1), and remains in the initial state for all
other automata U(j) for j ∈ Uc r {`} and D(j) for j ∈ Dc r {` + 1}. We now distinguish two
cases, depending on whether ` and `+ 1 are reversed in π.

Assume first that ` and `+1 are reversed in π and write π = s`·τ . We then have π(c) = s`·τ(d·s`)
by Lemma 28, so that τ is not d · s`-sortable. By induction hypothesis, τ(d · s`) is rejected by
one of the automata U(j) for j ∈ Ud·s` and D(j) for j ∈ Dd·s` . Since Ud·s` = Uc4{`, ` + 1}
and Dd·s` = Dc4{`, `+ 1}, Lemmas 4 and 8 ensure that π(c) = s` · τ(d · s`) is rejected by one of
the automata U(j) for j ∈ Uc and D(j) for j ∈ Dc.

Assume now that ` and `+ 1 are not reversed in π. Then π(c) does not use s` and π is not d-
sortable in W〈s`〉. By induction hypothesis, π(c) is rejected by one of the automata U(j) for j ∈ Ud

and D(j) for j ∈ Dd. This concludes the proof since Ud ⊆ Uc and Dd ⊆ Dc. �

Lemma 33. If a permutation π ∈ Sn admits a reduced expression accepted by P(Uc, Dc), then its
c-sorting word π(c) is accepted by P(Uc, Dc).

Proof. Once agin, we work by induction on the length of π. Let s` be the first letter of c and
write c = s` · d. Since s` appears before s`−1 and s`+1 in c, we have ` ∈ Uc and ` + 1 ∈ Dc.
Moreover, the letter s` yields to the next healthy state in both automata U(`) and D(`+ 1), and
remains in the initial state for all other automata U(j) for j ∈ Ucr{`} and D(j) for j ∈ Dcr{`+1}.
We now distinguish two cases, depending on whether ` and `+ 1 are reversed in π.

Assume first that ` and `+ 1 are reversed in π and write π = s` · τ . Using Lemma 28 it suffices
now to show that after s`, there is a reduced expression for τ accepted by the automata. For each
j, since the automaton D(j) or U(j) that we see accepts at least one reduced expression for π
and s` does not lead to a ill state, it also accepts a reduced expression for π starting with s` by
Proposition 11. Observe moreover that:
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• τ admits a reduced expression accepted by U(j) for each j /∈ {`, `+ 1} by Lemma 4. This
lines up with the fact that the order of sj−1 and sj has not changed from c = s` ·d to d ·s`.

• τ admits a reduced expression accepted by U(` + 1) and a reduced expression accepted
by D(`) by Lemma 8. This fits the fact that ` now appears after `− 1 and `+ 1 in d · s`.

By induction, we obtain that τ(d · s`) is accepted by P(Ud·s` , Dd·s`), so that π(c) = s` · τ(d · s`) is
accepted P(Uc, Dc).

Assume now that ` and ` + 1 are not reversed in π. We want to show that ` never appears
in the reduced expressions for π, ie. that π([`]) = [`] and π([n] r [`]) = [n] r [`]. Otherwise, the
reduced expression w` accepted by U(`) would see first a s`+1, and then a s` before it sees any
s`−1, so that we would have an inversion k` in π for some ` < k. Similarly, the reduced expression
w`+1 accepted by D(` + 1) should see first a s`−1 and then a s` before it sees any s`+1, so that
we would have an inversion (` + 1)i in π for some i < ` + 1. Since ` and ` + 1 are not reversed,
we see k`(`+ 1)i which contradicts twice Theorem 1. We conclude that this case never happens,
so that we can work in the parabolic subgroup of permutations that never use s` in their reduced
expressions. �

5.3. Some negative observations. We conclude this paper with some negative observations
and warnings about the connection between c-sorting and (Uc, Dc)-permutree sorting. First, we
want to underline that using c-sorting words to test whether a permutation avoids jki or kij for
a fixed j is dangerous for the following two reasons.

Remark 34. Even if a permutation π avoids jki (resp. kij) for a given j, there might be no Cox-
eter element c for which π is c-sortable and j ∈ Uc (resp. j ∈ Dc). For instance, the permutation
41325 ∈ S5 avoids 2ki and ki4, but contains 352 and 413, so it is not c-sortable for any Coxeter
element c.

Remark 35. When a permutation π is not c-sortable, there might exist j ∈ Uc (resp. j ∈ Dc) for
which the c-sorting word π(c) is not accepted by U(j) (resp. D(j)) even if π avoids jki (resp. kij).
For instance, consider c = s2 · s1 · s3 and π = 4213 = s3 · s1 · s2 · s1 = s3 · s2 · s1 · s2 = s1 · s3 · s2 · s1.
Then 2 ∈ Uc, and the c-sorting word π(c) = s1 · s3 · s2 · s1 is rejected by U(2) while π contains
no 2ki (and indeed s3 · s2 · s1 · s2 is accepted by U(2)).

We conclude the paper with an observation about sorting networks and permutree sorting.

Remark 36. Given a Coxeter element c, the word c∞ which is used to compute π(c) is a sorting
network. This means that we decide beforehand a list of transpositions to apply if appropriate.
On the other hand, the permutree sorting given in Algorithm 2 is not a sorting network. In-
deed, the order on transpositions depends on the permutation and more specifically on the state
of the automaton we are at. A natural question then occurs: can we replace the permutree sort-
ing algorithm by a sorting network? Or said differently, when U and D are disjoint but do not
cover {2, . . . , n− 1}, can we find a word c̃ which plays the role of c∞ in the sense that looking at
π(c̃) would be enough to check whether π is accepted by P(U,D)?

The answer is negative in general. A counter-example is found for n = 5, U = {2}, and
D = {4}. In this case one can check through computer exploration that no reduced word c̃ of the
maximal permutation 54321 can be used as a sorting network. Namely, for all choices of c̃, there
exist a permutation π which is accepted by P(U,D) whereas the reduced expression π(c̃) is rejected.
The healthy states of P({2}, {4}) are shown in Figure 4. We see that accepted reduced expressions
can start with either s2 or s3. For some permutations, such as 54213 shown in Example 26, all
accepted reduced expressions start with s3 whereas for some other permutations such as 35421, all
accepted reduced expressions start with s2. This eventually leads to an empty intersection for the
choice of c̃.

Nevertheless, it seems interesting to study in which case the answer is positive. The Cambrien
case with the c-sorting word when U and D form a partition of {2, . . . , n−1} is one example. The
case where |U | + |D| = 1 is another one. This is the case corresponding to Theorem 1 where we
have only one automaton. In this case, we can construct a word c̃ by reading the healthy states
of the automaton linearly, adding at each state the word (si1 · · · sik)ksj where si1 , . . . , sik are the
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looping transitions and sj is the transition going to the next healthy state. This process gives a
prefix that can be extended in any way to obtain a proper sorting word c̃. For example, if U = {2},
we obtain the prefix s3 · s2 · s1 · s3 and indeed s3 · s2 · s1 · s3 · s2 · s1 acts as a sorting network
equivalent to the ({2},∅)-permutree sorting. This process actually seems to extend to all cases
where, at each healthy state of the intersection automaton, the choices for the healthy transitions
commute. For example, in the case where n = 5, U = {4} and D = {2} as illustrated in Figure 4,
the word s1 · s2 · s4 · s3 · s2 · s1 · s4 · s3 · s2 gives a proper sorting network.
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(VPo) Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique, Orsay, France.
E-mail address: viviane.pons@lri.fr

URL: https://www.lri.fr/~pons/
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