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One-ended 3-manifolds without locally finite
toric decompositions

Sylvain Maillot

November 9, 2020

Abstract

We introduce a class of one-ended open 3-manifolds which can
be ‘recursively’ defined from two compact 3-manifolds, and construct
examples of manifolds in this class which fail to have a toric decom-
position in the sense of Jaco-Shalen and Johannson.

1 Introduction

To start off, we introduce a class C of open 3-manifolds which we view as a
candidate for ‘the smallest class of open 3-manifolds for which the classifi-
cation problem is interesting.’ It is large enough so that exotic phenomena
due to the topology at infinity can occur; yet it is small enough so that algo-
rithmic problems—in particular the homeomorphism problem—make sense,
and seem to have a decent chance of being decidable.

Throughout the paper we work in the PL category. Let (X, Y, F+, F−, f, g)
be a 6-tuple with the following properties:

• Both X and Y are connected, orientable, compact 3-manifolds.

• ∂X is connected.

• ∂Y has exactly two components, which are F+ and F−.

• f is an orientation-reversing homeomorphism from ∂X to F−.

• g is an orientation-preserving homeomorphism from F+ to F−.
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To such a 6-tuple, we associate an open 3-manifold obtained by gluing
together X and an infinite sequence of copies of Y using the homeomorphisms
f, g. More precisely, we set

M(X, Y, F+, F−, f, g) = X ∪f0 Y × {0} ∪g0 T × {1}g1Y × {2} ∪g2 · · ·

where the gluing homeomorphisms are given by f0(x) = (f(x), 0) for all
x ∈ X, and gn(x, n) = (g(x), n+ 1) for all x ∈ Y and n ∈ N. We denote by
C the class of 3-manifolds obtained in this way.

Remarks.

• Every 3-manifold in C is orientable, connected, and one-ended. More-
over, it has an exhaustion by compact submanifolds with connected
boundary of fixed genus. We can call genus of a manifold M ∈ C the
minimal genus of ∂X in a presentation of M as M(X, Y, F+, F−, g, f).

• We can fix triangulations of X and Y with respect to which f and g are
simplicial, so that algorithmic problems are well-defined. For the same
reason, there are countably many manifolds in C up to homeomorphism.

• The class C contains the original Whitehead manifold [Whi35] as well
as many other contractible 3-manifolds not homeomorphic to R3. It
does not contain those with infinite genus. Nor does it contain all
Whitehead manifolds of genus 1, since there are uncountably many of
those, as shown by McMillan [McM62].

• One can define in a similar way a class Cn for each dimension n, so
that C = C3. This construction is a special case of that of [Mai12] of
manifolds associated to a topological automaton. The automaton has
two states corresponding to X, Y . Thus the classification for C2 follows
from the main theorem of [Mai12]. The one-ended case, however, is
much simpler than that; it is a straightforward consequence of the
Kerekjarto classification theorem. Indeed, an orientable, one-ended
surface is classified by its genus h ∈ [0,+∞], which is easily seen to be
+∞ if Y has positive genus, and equal to the genus of X otherwise.

In this paper, we are interested in the question of which, among the exotic
phenomena concerning open 3-manifolds, occur in the class C. We already
mentioned that C contains contractible manifolds which are not homeomor-
phic to R3. For instance, the original Whitehead manifold has genus 1, the
manifold X being a solid torus, and Y being the exterior of the Whitehead
link in S3.
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Likewise, the manifold M1 constructed by the author in [Mai08] is easily
seen to belong to C. It has genus 1, the manifold X being again a solid
torus, and Y being the product of a circle by a compact orientable surface
of genus 1 with two boundary components. This manifold has the property
that it is impossible to split it as a connected sum of prime manifolds, even
allowing infinitely many factors, and allowing the factors to be noncompact.
Note that the first such example was constructed by P. Scott [Sco77]. Scott’s
example has infinitely many ends (in fact, its space of ends is a Cantor set
due to the treelike nature of the construction.) Thus it does not belong to C.

The manifoldM3 from [Mai08] does not have a locally finite splitting along
2-tori into submanifolds that are Seifert-fibered or atoroidal, thus showing
that the theory of Jaco-Shalen [JS79] and Johannson [Joh79] is difficult to
extend to open 3-manifolds. This construction was inspired by Scott’s work,
so M3 also has a Cantor set’s worth of ends, and does not belong to the class
C. The goal of this paper is to give an example of a manifold in C with the
same property.

In order to state the result, we recall some terminology. Let M be an ori-
entable 3-manifold. It is irreducible if every embedded 2-sphere in M bounds
a 3-ball. An embedded torus in M is incompressible if it is π1-injective. Fol-
lowing W. Neumann and G. Swarup [NS97], we call an embedded torus T
in M canonical if it is incompressible and for every embedded, incompress-
ible torus T ′ ⊂ M , there is an embedded torus T ′′ isotopic to T ′ such that
T ∩ T ′′ = ∅.

Definition. Let T = {Ti}i∈I be a family of pairwise disjoint canonical tori
in M . We say that T is complete if every canonical torus in M is isotopic to
Ti for some i ∈ I.

Theorem 1.1. There is an open 3-manifold M0 in the class C with the
following properties.

i. M0 is irreducible.

ii. Every complete family of canonical tori in M0 fails to be locally finite.

The key to constructing such a manifold is to ensure that there is a
sequence {Tn} of pairwise nonisotopic canonical tori in M0 which fails to be
locally finite no matter how the representatives of the various isotopy classes
are chosen, because they are trapped by some compact subset K ⊂M0 which
has to intersect all of them. In the paper [Mai08], the Tn’s are pairwise
nonhomologous, and separate different ends of the manifold M3. By contrast,
M0 has only one end, and its Tn’s are all null-homologous, making it harder
to prove that they are not isotopic.
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In order to construct M0, we first construct a 3-orbifold O0 with similar
properties, interpreted in the orbifold sense. It is irreducible, and contains
a sequence {Pn} of pillows, i.e. spheres with four conical points of order
2, which is trapped by some compact set. The orbifold O0 has underlying
space R3 and is designed so that it is easy to see that the Pn’s are pairwise
nonisotopic. Then the manifold M0 is constructed as a 2-fold cover of O3.
The Tn’s are taken to be the preimages of the Pn’s under the covering map.

The structure of the paper is as follows: in Section 2 we construct the
3-orbifold O0 and prove its various properties. In Section 3 we will prove
Theorem 1.1 by constructing the manifold M0 and showing that it has the
required properties.

Acknowledgements This work is partially supported by Agence Nationale
de la Recherche through Grant ANR-12-BS01-0004.

I would like to thank Grégoire Montcouquiol, Michel Boileau and Luisa
Paoluzzi for useful conversations.

2 The orbifold case

2.1 Definition of the orbifold O0

Throughout the paper, we work in the PL or smooth category, and all man-
ifolds and orbifolds are assumed to be connected and orientable. For termi-
nology about 3-orbifolds, we refer to [BMP03].

Let O be a 3-orbifold. Two 2-suborbifolds F, F ′ are isotopically disjoint
if there is a suborbifold F ′′ isotopic to F ′ and disjoint from F . An incom-
pressible toric suborbifold is canonical if it is isotopically disjoint from every
incompressible toric 2-suborbifold.

Let K be a compact subset of O. A sequence {Fn} of 2-suborbifolds is
said to be trapped by K if no 2-suborbifold isotopic to any Fn is disjoint from
K. Thus, it is impossible to make {Fn} locally finite by choosing different
representatives of the various isotopy classes.

Let B be a 3-manifold homeomorphic to the 3-ball and let α (resp. c) be a
properly embedded arc (resp. circle) in B. Assume that α and c are disjoint.
Then we say that α ∪ c is trivial (resp. a Hopf tangle) if α is trivial and c
bounds an embedded disk disjoint from α (resp. meeting α transversally in
a single point.) To justify the terminology, note that if another 3-ball B′ is
glued to B and α is extended to an unknot c′ in B ∪ B′ in the obvious way,
then c ∪ c′ is an unlink (resp. a Hopf link.)
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We now come to our main construction: throughout the article we let
O0 be a 3-orbifold with the following properties: its underlying space is Eu-
clidean 3-space. Its singular locus ΣO0 consists in three unknotted, properly
embedded lines L0, L12, and L34, and four sequences of embedded circles (cni )
with n ∈ N and i ∈ {1, 2, 3, 4}. The general relative positions of the various
components of ΣO0 are shown on Figure 1. For each n ∈ N, cn1 ∪ cn2 ∪ cn3 ∪ cn4
is a four component link contained in a ‘box’ Bn whose intersection with
L12 ∪L34 consists of a trivial 4-tangle αn1 ∪αn2 ∪αn3 ∪αn4 , with αn1 ∪αn2 ⊂ L12

and αn3 ∪ αn4 ⊂ L34.

L 0
12

34

B 1

Figure 1: General configuration of ΣO0

Furthermore, we will assume that in each box, the cni ’s and the αnj satisfy
the following properties:

i. each cni is unknotted;

ii. cn1 ∪ cn2 , cn2 ∪ cn3 , cn3 ∪ cn4 , and cn4 ∪ cn1 are Hopf links;

iii. cn1 ∪ cn3 and cn2 ∪ cn4 are unlinks;

iv. for each (i, j) ∈ {1, 2, 3, 4}2, ci∪αj is trivial if i = j, and a Hopf tangle
otherwise.

It is straightforward to see that such configurations exist, though they are
far from being unique. Throughout the text, we assume that a choice has
been made once and for all. Moreover, the choice is the same for all values
of n, since we want the double manifold cover of O0 to belong to the class C.

What matters is not the precise nature of the content of the boxes, but
rather the values of the linking numbers of the various components of ΣO0 ;
those are summarized by the graph depicted on Figure 2, with the convention
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that the linking number between two components is zero if there is no edge
drawn between them, and one otherwise.

 

 

  

L L 34

c 1
n c 4

n

12

c 2
n c 3

n

Figure 2: Linking numbers of components of ΣO0

Finally, we assume that O0 is a so-called π-orbifold, i.e. each nontrivial
local group is cyclic of order 2.

Lemma 2.1. O is irreducible.

Proof. Let S ⊂ O be a 2-suborbifold of positive Euler characteristic. Then
|S| is a 2-sphere intersecting ΣO0 transversally. For homological reasons, the
number of singular points of S is even. Thus S is either a nonsingular 2-
sphere or a football. Furthermore, by Alexander’s Theorem, |S| bounds a
3-ball B ⊂ R3.

Suppose that S is nonsingular. If B contains a singular point, then it
contains some compact component cni of ΣO0 . Since cni is unknotted, it bounds
a disk D ⊂ IntB. Either L12 or L34 has linking number one with cni . Thus
for L equal to L12 or L34 we have D ∩ L 6= ∅, hence B ∩ L 6= ∅. Since
L is noncompact, this contradicts the assumption that S is nonsingular.
Therefore, B is nonsingular.

Suppose now that S has two singular points. Those two points must
belong to either L12 or L34. By symmetry we may assume it is L12. Then
B ∩ L12 is an unknotted arc. We need to show that B ∩ΣO0 is in fact equal
to this arc. Arguing by contradiction, assume that some cni0 is contained in
B. Arguing as above using linking numbers, we can show that for every i,
cni is contained in IntB. Thus for the same reason L34 intersects B, leading
to a contradiction.
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2.2 The pillows Pn and their first properties

Let us define the sequence of pillows (Pn) and the compact subset K ′ which
traps them. As shown on Figure 3 each Pn meets L12 and L34 both twice;
the 3-ball bounded by |Pn| contains a given box Bm if and only if m ≤ n;
finally, K ′ is a 3-ball meeting each of L0, L12, and L34 in an unknotted arc,
and for every n the intersection of K ′ with Pn is a nonsingular disk.

For future reference, we let Π denote the properly embedded plane shown
on Figure 3 and H0, H1 the closed half-spaces bounded by Π, so that L0 ⊂ H0

and H1 contains all other components of ΣO0 .

P P

K'

H H 0 1

Figure 3: The canonical pillows Pn, the compact set K ′, and the plane Π

For future reference, for each n we let Un denote the 3-ball bounded by
|Pn| and set Xn := |O0| \ IntBn. Thus Xn is noncompact and ∂Xn = Pn.

We collect in the next proposition some facts about the Pn’s which are
fairly easy to prove.

Lemma 2.2. i. Each Pn is incompressible.

ii. The Pn’s are pairwise nonisotopic.

iii. The Pn’s are trapped by K ′.

Proof. Proof of assertion (i): If some Pn were compressible, then Pn would
bound a solid pillow or be contained in a discal 3-suborbifold. Now Un
contains at least four closed components of ΣO0 , so this is impossible.

Assertion (ii) follows immediately from the fact that for n 6= m, the
number of closed components of ΣO0 contained in Un and Um are different.
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Proof of assertion (iii): let n be a natural number. Seeking a contradic-
tion, we assume there is a pillow P ′n isotopic to Pn such that P ′n ∩ K ′ = ∅.
By Alexander’s Theorem, the 2-sphere |P ′n| bounds a 3-ball U ′n in R3. There
are two cases:

Case 1 K ′ is contained in U ′n. Then |P ′n| is homologous to ∂K ′ in R3 \
IntK ′. In this case, P ′n must hit L0, which contradicts our assumption that
P ′n is isotopic to Pn.

Case 2 U ′n is disjoint from K ′. Let L1, L2 (resp. L3, L4) be the connected
components of IntK ′∩L12 (resp. IntK ′∩L34.) Again by homological reasons,
and using the fact that P ′n is isotopic to Pn, among the four singular points
of P ′n, two must lie on some Li with 1 ≤ i ≤ 2, and the other two on some
Lj with 3 ≤ j ≤ 4. Now IntU ′n contains all cni for 1 ≤ i ≤ 4. As we have
already seen several times, this leads to a contradiction.

Remark 2.3. The argument used to prove Lemma 2.1 shows that every Xn

is irreducible.

2.3 The Pn’s are canonical

If V is a solid torus and V ′ a solid torus contained in V , then the geometric
winding number of the pair (V, V ′), denoted by gw(V, V ′), is the smallest
natural number n such that there is a meridian disk D of V with the prop-
erty that D ∩ V ′ has n connected components. A fundamental fact, due to
Schubert, is the multiplicativity of gw:

Lemma 2.4 (Schubert [Sch53]). Let V, V ′, V ′′ be solid tori such that V ⊂
V ′ ⊂ V ′′. Then

gw(V ′′, V ) = gw(V ′′, V ′) · gw(V ′, V ).

If V is a solid torus and c is an embedded circle in V , then the geometric
winding number of the pair (V, V ′) where V ′ is a tubular neighbourhood of c
does not depend on the choice of V ′. We shall denote this number by gw(V, c)

Let c, c′ be two disjoint unknots in R3. Choose two solid tori V, V ′ such
that V ∩ V ′ = ∅ and V (resp. V ′) is a tubular neighborhood of c (resp. c′.)
Viewing R3 as S3 minus a point ∞, the complement of IntV in S3 is also
a solid torus, which we denote by V1. By hypothesis, we have V ′ ⊂ V1. We
shall denote by gw(c∗, c′) the geometric winding number of the pair (V1, V ).
Again, this does not depend on the various choices. If c is an unknot in R3

and V is a solid torus contained in R3 \ c, then gw(c∗, V ) is defined similarly.
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Note that if c ∪ c′ is an unlink (resp. a Hopf link), then gw(c∗, c′) equals
zero (resp. one). Hence all geometric winding numbers involving compact
components of ΣO0 are determined by our construction.

By extension, we can define gw(L∗, c) when L is an unknotted properly
embeded line in R3 and c is an embedded circle in R3 that misses L : in
the one-point compactification S3 = R3 ∪ {∞}, L compactifies to a circle
L∪{∞}. Let V be the complement of an open tubular neighborhood of this
circle such that c ⊂ V . Then we set gw(L∗, c) := gw(V, c). Again, all such
numbers involving components of ΣO0 are determined by the construction,
and are equal to either zero or one. Likewise, if V ′ is a solid torus which
misses L, then gw(L∗, V ′) is defined as gw(V, V ′) for a suitable choice of V .

Lemma 2.5. Let V be a solid torus in |O0| such that no point of ∂V is
singular. Then IntV contains at most one component of ΣO0. If it does,
then this component is compact and homotopic to the soul of V .

Proof. Assume that IntV contains some component of ΣO0 . Then this com-
ponent is compact. Up to changing the notation, we may assume it is cn1 for
some n. For brevity, we drop the superscript n in the sequel.

Observe that c1 ⊂ V ⊂ S3 \ L12. Hence by Lemma 2.4, we have
gw(L∗12, c1) = gw(L∗12, V ) · gw(V, c1). Since gw(L∗12, c1) = 1, we deduce
gw(L∗12, V ) = gw(V, c1) = 1. We also have c1 ⊂ V ⊂ S3 \ L34. Since
gw(L∗34, c1) = 0 and gw(V, c1) = 1, Lemma 2.4 implies that gw(L∗34, V ) = 0.

Seeking a contradiction, assume that c3 ⊂ V . Then using the chain
of inclusions c3 ⊂ V ⊂ S3 \ L34 and the facts that gw(L∗34, c3) = 1 and
gw(L∗34, V ) = 0 we get a contradiction. Hence V ⊂ S3 \ c3. Using the chain
c1 ⊂ V ⊂ S3 \ c3 we obtain gw(c∗3, V ) = 0. The same argument applies,
mutatis mutandis, to c4.

Again we prove by contradiction that c2 6⊂ V : otherwise using the chain
c2 ⊂ V ⊂ S3 \ c3 and the fact that gw(c∗3, c2) = 1, Lemma 2.4 would lead to
a contradiction.

By similar arguments, we exclude cm3 and cm4 for m 6= n (using L34), then
cm2 (using cm3 ), and finally cm1 (using cm4 .)

Lemma 2.6. For each n ∈ N, Xn does not contain any essential, properly
embedded annular 2-suborbifold.

Proof. Arguing by contradiction, we let A be such an annular 2-suborbifold.
Thus A is either a nonsingular annulus or a disk with two singular points.

Case 1 Suppose that A is an annulus. An innermost disk argument shows
that after an isotopy we may assume that A ∩ Π = ∅. Then ∂A is a union
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of two circles, which viewed on Pn are parallel and have two singular points
on each side. Let Y be the manifold obtained from |H1 ∩ Xn| by removing
small open tubular neighborhoods of L12 and L34. Then Y has a manifold
compactification diffeomorphic to a product F × [0, 1], where F is a sphere
with four holes, and F ×{0} is the image of a subset of Pn. Such a manifold
does not contain any essential annulus with both boundary components in
F × {0}.

Since A is incompressible in Y , we deduce that it is boundary-parallel
in Y . Let V be a parallelism region in Y between A and some annulus A′

in Pn. Let us show that no component of ΣO0 lies in V . By Lemma 2.5, V
contains at most one such component, say cm1 for some m > n. For simplicity
of notation, set ci := cmi . Let γ be a core of A′. Then we apply Lemma 2.4
to the chain γ ⊂ V ⊂ S3 \ c2: from gw(V, γ) = 1 and gw(c∗2, γ) = 0 we
deduce gw(c∗2, V ) = 0. Then Lemma 2.4 applied to c1 ⊂ V ⊂ S3 \ c2 yields a
contradiction. This finishes the proof of Lemma 2.6 in Case 1.

Case 2 Suppose that A is a disk with two singular points. Again, we may
assume that A misses Π, and therefore lies in H1. The intersection of Xn

with L12∪L34 consists of four properly embedded half-lines, which we denote
by L1, L2, L3, L4 in such a way that for each m > n and each 1 ≤ i ≤ 4, αmi
is contained in Li.

By hypothesis, there exist two different indices i0, j0 in {1, 2, 3, 4} such
that A meets Li if and only if i ∈ {i0, j0}. Let k0, l0 be the two remaining
indices. Let Y be the π-orbifold whose underlying space is obtained from
|H1∩Xn| by removing small open tubular neighborhoods of Lk0 and Ll0 , and
whose singular locus consists of Li0 ∪Lj0 . Then Y compactifies as F × [0, 1],
with F an annulus (two-holed sphere) with two singular points, F × {0}
corresponding to a subset of Pn.

As before, we deduce that A is parallel in Y to some disk D ⊂ Pn with
two singular points, which necessarily belong, one to Li0 and the other to
Lj0 . Let B be the product region between A and D, this time viewed as a
suborbifold of O0. Observe that B is a 3-ball whose singular locus contains
a trivial 2-tangle consisting of the union of a subarc of Li0 and a subarc of
Lj0 . Since A is essential in Xn, IntB must in addition contain cmi for some
1 ≤ i ≤ 4 and m > n.

Arguing as in the proof of the irreducibility of O, we see that IntB
contains cmi for i ; in particular it contains cmk0 . We deduce that cmk0 , being
an unknot in the ball |B|, bounds a disk D′ ⊂ |B|. Such a disk must meet
either Lk0 or Ll0 . This contradiction completes the proof of Case 2.

At last we can prove the main result of this subsection:
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Proposition 2.7. Every Pn is canonical.

Proof. Assume that Pn is not canonical. Let P ′n be an incompressible toric 2-
suborbifold of O0 which cannot be isotoped off Pn. Since O does not contain
any turnover, P ′n is a nonsingular torus or a pillow. Assume that P ′n has been
isotoped so as to intersect Pn transversally and minimally.

Since both Pn and P ′n are incompressible, a component of Pn ∩ P ′n is
essential on Pn if and only if it is essential on P ′n. Using the irreducibility
of O0 and a standard argument, one can remove any inessential intersection
component between Pn and P ′n. Hence, by our assumption of minimality,
each component of Pn ∩ P ′n is essential. As a consequence, some connected
component A of Xn ∩ P ′n is an annular 2-suborbifold, which is essential as a
suborbifold of Xn. This contradicts Lemma 2.6.

3 The manifold M0

In this section, we let p : M0 → O0 be the only two-fold manifold cover of O0.
In other words, M0 is the two-fold branched cover over R3 with branching
locus ΣO0 and p is the canonical projection. As in the compact case, this
cover can be constructed by splitting O0 along a Seifert surface for ΣO0 ,
taking two copies of the resulting manifold, and gluing them appropriately.
Alternatively, the orbifold fundamental group π1O0 is (infinitely) generated
by meridians, i.e. small circles around each component of ΣO0 . All meridians
have order 2. There is an index 2 normal subgroup Γ of π1O0 which is the
kernel of a homomorphism from π1O0 to Z/2Z sending all meridians to the
nontrivial element. This group is torsion free, and p : M0 → O0 is the
corresponding manifold cover. We denote by τ : M0 → M0 the involution
such that O0 = M0/τ .

By construction, O0 is obtained by gluing K ′ and countably many copies
of some compact 3-orbifold Y ′ with two boundary components, glued to each
other ‘in the same way’. Moreover, the preimage of K ′ by p is connected and
has connected boundary, and the preimage of each copy of Y ′ is connected
and has exactly two boundary components. It follows that M0 belongs to
the class C defined in the introduction.

For each n ≥ 0, set Tn := p−1(Pn) and Yn := p−1(Xn). Thus each Tn is an
embedded 2-torus in M . Set K := p−1(K ′). Then K is a compact subset of
M . We need to prove that M has all the properties stated in Theorem 1.1.

Since O0 is irreducible, M0 is irreducible ([BMP03, Theorem 3.23].) For
the same reason, Remark 2.3 implies that Yn is irreducible for every n. By
the equivariant Dehn Lemma, incompressibility of every Tn follows from
Lemma 2.2(i).
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Lemma 3.1. The Tn’s are pairwise nonisotopic.

Proof. Assume that there exist n,m with n 6= m such that Tm is isotopic
to Tn. By [BZ89, Prop 4.5], there is a τ -equivariant isotopy. Hence Pm is
isotopic to Pn, contradicting Lemma 2.2(ii).

Our next goal is to show that every Tn is canonical. For this we need a
lemma.

Lemma 3.2. There is no properly embedded essential annulus in Yn.

Proof. Put a τ -invariant riemannian metric on Yn with mean-convex bound-
ary. Arguing by contradiction, we assume that Yn contains a properly em-
bedded essential annulus. Let A have least area among such annuli. Set
A′ := τ(A). If A ∩ A′ = ∅ or A = A′, then p(A) is an annular 2-suborbifold
in Xn. Thus by Lemma 2.6, we deduce that p(A) is inessential. This implies
that A is inessential, contradicting our hypothesis.

Hence by the Meeks-Yau trick we may assume that A and A′ intersect
transversally in a nonempty disjoint union of curves and arcs. Since both
A and A′ are essential, a curve or arc is essential on A if and only if it is
esssential on A′.

If there exists an inessential curve in A∩A′, we let D be a disk of minimal
area on A or A′ bounded by such a curve. Note that D is automatically inner-
most. Thus a classical exchange/roundoff argument leads to a contradiction
(the disk exchange can be realized by an isotopy because Yn is irreducible.)

If there is an inessential arc in A ∩ A′, we can argue similarly using a
disk of minimal area cobounded by such an arc and an arc in ∂Yn. In order
to ensure that the disk exchange can be realized by an isotopy, we use the
irreducibility of Yn and the incompressibility of ∂Yn.

Suppose there is an essential curve in A∩A′. Let γ be such a curve. Pick
a basepoint on γ and consider the covering space Yγ of M whose fundamental
group is the infinite cyclic group generated by γ. Let Ã and Ã′ be lifts to Yγ
of A and A′ respectively. Observe that the inclusions of Ã and Ã′ in Yγ are
homotopy equivalences. In particular, Ã and Ã′ are incompressible.

Sublemma 3.3. i. The two boundary components of Ã lie on distinct
components of ∂Yγ.

ii. The same property holds for Ã′.

Proof. It suffices to prove the first point. We argue by contradiction, letting
F be a component of ∂Yγ containing all of ∂Ã. Observe that F is an open
annulus whose inclusion in Yγ is a homotopy equivalence. Hence there is an
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annulus A′′ contained in F and such that ∂A′′ = ∂Ã. Thus T := Ã ∪ A′′ is
an embedded torus. Since π1(Yγ) is cyclic, T is compressible. As T contains
an incompressible annulus, it does not lie in a 3-ball. Therefore, T bounds a
solid torus V , which is a parallelism region between Ã and A′′. In particular,
Ã is isotopic to A′′ relative to the boundary. Projecting such an isotopy to
Yn leads to a contradiction with the fact that A is essential. This completes
the proof of Sublemma 3.3.

Note that in the previous discussion, γ was an arbitrary essential curve of
intersection between A and A′. Now we make a more specific choice of γ: we
assume that some annulus cobounded by γ and some boundary component
of A or A′ has least possible area. Without loss of generality, we assume that
such an annulus, called A1, is contained in A. We let A2 be the subannulus
of A whose boundary is the union of γ and the other component of ∂A, and
A3, A4 be the annuli such that A3 ∩ A4 = γ and A3 ∪ A4 = A′.

We set A5 := A1 ∪ A3 and A6 := A1 ∪ A4. Then A5 and A6 are properly
embedded annuli in Xn. As before we consider lifts Ã5 and Ã6 of those
annuli to Yγ. By the second assertion of Sublemma 3.3, at least one of Ã5

and Ã6 has its two boundary components on different components of ∂Yγ.
Assume Ã5 has this property. Then A5 is essential: otherwise one could lift
a boundary-parallelism region for A5 to Mγ and obtain one for Ã5. Now by
choice of A1, the area of A5 is less than or equal to that of A, and by rounding
the corner, we obtain an essential annulus which contradicts the minimizing
property of A.

Thus we are left with the case where A ∩ A′ contains an essential arc.

Sublemma 3.4. There are at least two distinct essential arcs in A ∩ A′.

Proof. Let γ1, γ2 denote the boundary components of A and γ3, γ4 denote
those of A′. Thus γ1 (resp. γ3) is isotopic to γ2 (resp. γ4) on Tn. If A ∩ A′
consists of only one essential arc α, then there are only two points in ∂A∩∂A′.
If γ is not isotopic to γ3, then γ1∩γ3 is nonempty, and so are γ1∩γ4, γ2∩γ3,
and γ2 ∩ γ4, resulting in a contradiction.

Hence the γi’s are all pairwise isotopic, and the two intersection points
belong to the same two arcs, which means that α is inessential, again a
contradiction.

Choose as basepoint an endpoint of some arc in A∩A′ and let YT be the
covering space of Yn such that π1(YT ) = π1(Tn). Let Un be a torus component
of ∂YT whose projection is Tn, the said projection being a homeomorphism.
Let Ã and Ã′ be lifts to YT of A and A′ respectively, which both meet Un.
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Sublemma 3.5. i. The two components of ∂Ã lie on distinct components
of ∂YT .

ii. The same holds for Ã′.

Proof. Again we only have to prove the first statement. Arguing by con-
tradiction, assume both components of ∂Ã belong to the same component
of ∂YT . By construction, this component is Un. Then there is an annulus
A′′ ⊂ Un such that ∂A′′ = ∂Ã. Set T = A′′ ∪ Ã. Then T is an embedded
torus in YT . By pushing T slightly we get T ′ ⊂ IntYT .

Suppose that T (or equivalently T ′) is compressible. Since A′′ is not
contained in any 3-ball, neither is T , so T bounds a solid torus V . Since the
core of A′′ is a primitive element of Un, V is a parallelism region between A′′

and Ã. This shows that Ã is inessential, and so is A, a contradiction.
Hence T is incompressible. Note that H2(YT ) is isomorphic to Z and

generated by the class of Un. Thus T is either null-homologous or homologous
to Un.

If T is null-homologous, then T bounds some compact submanifold V .
Since T is incompressible in YT , it is also incompressible in V , and by van
Kampen’s theorem, the induced homomorphisms π1T → π1V → π1YT are
both injective. It follows that π1V is isomorphic to Z2, which is impossible
with ∂V connected.

Thus T is homologous to Un, and so is T ′. Let X be a compact sub-
manifold whose boundary is Un ∪ T ′. Arguing as before, we see that π1X
is isomorphic to Z2. Since X is irreducible, X is homeomorphic to T 2 × I.
Again this implies that Ã is boundary-parallel.

We can now finish the proof of Lemma 3.2. Since YT covers a noncompact
manifold, it is itself noncompact. In particular, YT is not homeomorphic to
T 2 × I. Thus, homology considerations as above show that Un is the only
torus in ∂YT . It follows that the boundary components γ, γ′ of Ã and Ã′

that do not lie on Un are contained in some annulus component A′′ of ∂YT ,
and are freely homotopic (and noncontractible) there. Hence there is a bigon
between γ and γ′, and we can use an exchange/roundoff argument to get a
contradiction. This completes the proof of Lemma 3.2.

The fact that the Tn’s are canonical now follow as Proposition 2.7 followed
from Lemma 2.6. Hence to prove Theorem 1.1, we only need to show the
following statement:

Lemma 3.6. The compact subset K = p−1(K ′) ⊂M traps each Tn.
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Proof. Arguing by contradiction, we assume that for some n there exists an
embedded torus T ′ ⊂ M \ K which is isotopic to Tn. Our aim is to show
that after isotopy, T ′ can be chosen to be invariant under τ . Then by [BZ89,
Proposition 4.5] T ′ and Tn are equivariantly isotopic. This implies that the
image of T ′ is an embedded pillow in O\K ′ isotopic to Pn, which contradicts
the fact that Pn is trapped by K ′.

Let F be a parallel copy of ∂K lying outside K, and X be the (compact)
product submanifold whose boundary is the disjoint union of ∂K and F .
Thus X∩K = ∂K. Without loss of generality we may assume that T ′∩X =
∅. We are going to use the Jaco-Rubinstein theory of PL minimal surfaces,
as modified in [Mai03]. Choose a triangulation T of M which is in general
position with respect to T ′ and invariant under τ . Let w0 be the weight of T ′

with respect to T . By repeatedly subdividing T on X, with may assume that
any normal surface which meets both components of ∂X has weight strictly
greater than w0, keeping the invariance under τ . Then choose a τ -invariant
regular Jaco-Rubinstein metric in the sense of [Mai03] so that the PL area
is well-defined.

Let T ′′ be a normal torus of least PL area in the isotopy class of T ′. We
claim that T ′′ misses K. Indeed, K, being the double branched cover of a
3-ball with branching locus a trivial tangle, is a handlebody. The same is
true for K ∪X. Since T ′′ is an incompressible torus, it cannot be contained
in K ⊂ X. Hence if it met K, it would meet both boundary components of
X, contradicting the fact that its weight is at most w0.

Since the Jaco-Rubinstein metric we use is τ -invariant, τT ′′ also has least
PL area in its isotopy class. Now T ′′ is isotopic to Tn, which is τ -invariant,
so τT ′′ is isotopic to T ′′. By Jaco-Rubinstein’s version [JR88] of a Theorem
of Freedman-Hass-Scott, it follows that T ′′ and τT ′′ are disjoint or equal, i.e.
T ′′ is invariant or equivariant. We still have to rule out the latter possibility.

Suppose that T ′′ ∩ τT ′′ = ∅. Since T ′′ and τT ′′ are isotopic, they are
parallel. Let Y be the compact submanifold bounded by T ′′ ∪ τT ′′ and
diffeomorphic to T 2 × I. Note that Y is unique because M is noncompact.
Hence Y is τ -invariant. By the classification of involutions of T 2 × I, noting
that τ exchanges the two boundary components, this implies that IntX
contains an invariant embedded torus whose projection in O is a one-sided,
nonorientable 2-suborbifold. Since O does not contain any such suborbifold,
we have reached the desired contradiction. Hence the proof of Lemma 3.6 is
complete.

15



References

[BMP03] Michel Boileau, Sylvain Maillot, and Joan Porti. Three-
dimensional orbifolds and their geometric structures, volume 15 of
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