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One-ended 3-manifolds without locally finite toric decompositions

We introduce a class of one-ended open 3-manifolds which can be 'recursively' defined from two compact 3-manifolds, and construct examples of manifolds in this class which fail to have a toric decomposition in the sense of Jaco-Shalen and Johannson.

Introduction

To start off, we introduce a class C of open 3-manifolds which we view as a candidate for 'the smallest class of open 3-manifolds for which the classification problem is interesting.' It is large enough so that exotic phenomena due to the topology at infinity can occur; yet it is small enough so that algorithmic problems-in particular the homeomorphism problem-make sense, and seem to have a decent chance of being decidable.

Throughout the paper we work in the PL category. Let (X, Y, F + , F -, f, g) be a 6-tuple with the following properties:

• Both X and Y are connected, orientable, compact 3-manifolds.

• ∂X is connected.

• ∂Y has exactly two components, which are F + and F -.

• f is an orientation-reversing homeomorphism from ∂X to F -.

• g is an orientation-preserving homeomorphism from F + to F -.

To such a 6-tuple, we associate an open 3-manifold obtained by gluing together X and an infinite sequence of copies of Y using the homeomorphisms f, g. More precisely, we set

M (X, Y, F + , F -, f, g) = X ∪ f 0 Y × {0} ∪ g 0 T × {1} g 1 Y × {2} ∪ g 2 • • •
where the gluing homeomorphisms are given by f 0 (x) = (f (x), 0) for all x ∈ X, and g n (x, n) = (g(x), n + 1) for all x ∈ Y and n ∈ N. We denote by C the class of 3-manifolds obtained in this way.

Remarks.

• Every 3-manifold in C is orientable, connected, and one-ended. Moreover, it has an exhaustion by compact submanifolds with connected boundary of fixed genus. We can call genus of a manifold M ∈ C the minimal genus of ∂X in a presentation of M as M (X, Y, F + , F -, g, f ).

• We can fix triangulations of X and Y with respect to which f and g are simplicial, so that algorithmic problems are well-defined. For the same reason, there are countably many manifolds in C up to homeomorphism.

• The class C contains the original Whitehead manifold [START_REF] Whitehead | A certain open manifold whose group is unity[END_REF] as well as many other contractible 3-manifolds not homeomorphic to R 3 . It does not contain those with infinite genus. Nor does it contain all Whitehead manifolds of genus 1, since there are uncountably many of those, as shown by McMillan [START_REF] Mcmillan | Some contractible open 3-manifolds[END_REF].

• One can define in a similar way a class C n for each dimension n, so that C = C 3 . This construction is a special case of that of [START_REF] Maillot | An algorithmic classification of open surfaces[END_REF] of manifolds associated to a topological automaton. The automaton has two states corresponding to X, Y . Thus the classification for C 2 follows from the main theorem of [START_REF] Maillot | An algorithmic classification of open surfaces[END_REF]. The one-ended case, however, is much simpler than that; it is a straightforward consequence of the Kerekjarto classification theorem. Indeed, an orientable, one-ended surface is classified by its genus h ∈ [0, +∞], which is easily seen to be +∞ if Y has positive genus, and equal to the genus of X otherwise.

In this paper, we are interested in the question of which, among the exotic phenomena concerning open 3-manifolds, occur in the class C. We already mentioned that C contains contractible manifolds which are not homeomorphic to R 3 . For instance, the original Whitehead manifold has genus 1, the manifold X being a solid torus, and Y being the exterior of the Whitehead link in S 3 . Likewise, the manifold M 1 constructed by the author in [START_REF] Maillot | Some open 3-manifolds and 3-orbifolds without locally finite canonical decompositions[END_REF] is easily seen to belong to C. It has genus 1, the manifold X being again a solid torus, and Y being the product of a circle by a compact orientable surface of genus 1 with two boundary components. This manifold has the property that it is impossible to split it as a connected sum of prime manifolds, even allowing infinitely many factors, and allowing the factors to be noncompact. Note that the first such example was constructed by P. Scott [Sco77]. Scott's example has infinitely many ends (in fact, its space of ends is a Cantor set due to the treelike nature of the construction.) Thus it does not belong to C.

The manifold M 3 from [START_REF] Maillot | Some open 3-manifolds and 3-orbifolds without locally finite canonical decompositions[END_REF] does not have a locally finite splitting along 2-tori into submanifolds that are Seifert-fibered or atoroidal, thus showing that the theory of Jaco-Shalen [START_REF] Jaco | Seifert fibered spaces in 3-manifolds[END_REF] and Johannson [Joh79] is difficult to extend to open 3-manifolds. This construction was inspired by Scott's work, so M 3 also has a Cantor set's worth of ends, and does not belong to the class C. The goal of this paper is to give an example of a manifold in C with the same property.

In order to state the result, we recall some terminology. Let M be an orientable 3-manifold. It is irreducible if every embedded 2-sphere in M bounds a 3-ball. An embedded torus in M is incompressible if it is π 1 -injective. Following W. Neumann and G. Swarup [START_REF] Walter | Canonical decompositions of 3-manifolds[END_REF], we call an embedded torus T in M canonical if it is incompressible and for every embedded, incompressible torus T ⊂ M , there is an embedded torus T isotopic to T such that T ∩ T = ∅.

Definition. Let T = {T i } i∈I be a family of pairwise disjoint canonical tori in M . We say that T is complete if every canonical torus in M is isotopic to T i for some i ∈ I.

Theorem 1.1.

There is an open 3-manifold M 0 in the class C with the following properties.

i. M 0 is irreducible.

ii. Every complete family of canonical tori in M 0 fails to be locally finite.

The key to constructing such a manifold is to ensure that there is a sequence {T n } of pairwise nonisotopic canonical tori in M 0 which fails to be locally finite no matter how the representatives of the various isotopy classes are chosen, because they are trapped by some compact subset K ⊂ M 0 which has to intersect all of them. In the paper [START_REF] Maillot | Some open 3-manifolds and 3-orbifolds without locally finite canonical decompositions[END_REF], the T n 's are pairwise nonhomologous, and separate different ends of the manifold M 3 . By contrast, M 0 has only one end, and its T n 's are all null-homologous, making it harder to prove that they are not isotopic.

In order to construct M 0 , we first construct a 3-orbifold O 0 with similar properties, interpreted in the orbifold sense. It is irreducible, and contains a sequence {P n } of pillows, i.e. spheres with four conical points of order 2, which is trapped by some compact set. The orbifold O 0 has underlying space R 3 and is designed so that it is easy to see that the P n 's are pairwise nonisotopic. Then the manifold M 0 is constructed as a 2-fold cover of O 3 . The T n 's are taken to be the preimages of the P n 's under the covering map.

The structure of the paper is as follows: in Section 2 we construct the 3-orbifold O 0 and prove its various properties. In Section 3 we will prove Theorem 1.1 by constructing the manifold M 0 and showing that it has the required properties.

Throughout the paper, we work in the PL or smooth category, and all manifolds and orbifolds are assumed to be connected and orientable. For terminology about 3-orbifolds, we refer to [START_REF] Boileau | Threedimensional orbifolds and their geometric structures, volume 15 of Panoramas et Synthèses[END_REF].

Let O be a 3-orbifold. Two 2-suborbifolds F, F are isotopically disjoint if there is a suborbifold F isotopic to F and disjoint from F . An incompressible toric suborbifold is canonical if it is isotopically disjoint from every incompressible toric 2-suborbifold.

Let K be a compact subset of O. A sequence {F n } of 2-suborbifolds is said to be trapped by K if no 2-suborbifold isotopic to any F n is disjoint from K. Thus, it is impossible to make {F n } locally finite by choosing different representatives of the various isotopy classes.

Let B be a 3-manifold homeomorphic to the 3-ball and let α (resp. c) be a properly embedded arc (resp. circle) in B. Assume that α and c are disjoint. Then we say that α ∪ c is trivial (resp. a Hopf tangle) if α is trivial and c bounds an embedded disk disjoint from α (resp. meeting α transversally in a single point.) To justify the terminology, note that if another 3-ball B is glued to B and α is extended to an unknot c in B ∪ B in the obvious way, then c ∪ c is an unlink (resp. a Hopf link.)

We now come to our main construction: throughout the article we let O 0 be a 3-orbifold with the following properties: its underlying space is Euclidean 3-space. Its singular locus Σ O 0 consists in three unknotted, properly embedded lines L 0 , L 12 , and L 34 , and four sequences of embedded circles (c n i ) with n ∈ N and i ∈ {1, 2, 3, 4}. The general relative positions of the various components of Σ O 0 are shown on Figure 1

. For each n ∈ N, c n 1 ∪ c n 2 ∪ c n 3 ∪ c n 4 is a four component link contained in a 'box' B n whose intersection with L 12 ∪ L 34 consists of a trivial 4-tangle α n 1 ∪ α n 2 ∪ α n 3 ∪ α n 4 , with α n 1 ∪ α n 2 ⊂ L 12 and α n 3 ∪ α n 4 ⊂ L 34 . L 0 12 34 B 1 Figure 1: General configuration of Σ O 0
Furthermore, we will assume that in each box, the c n i 's and the α n j satisfy the following properties:

i. each c n i is unknotted; ii. c n 1 ∪ c n 2 , c n 2 ∪ c n 3 , c n 3 ∪ c n 4 , and c n 4 ∪ c n 1 are Hopf links; iii. c n 1 ∪ c n 3 and c n 2 ∪ c n 4 are unlinks; iv. for each (i, j) ∈ {1, 2, 3, 4} 2 , c i ∪ α j is trivial if i = j
, and a Hopf tangle otherwise.

It is straightforward to see that such configurations exist, though they are far from being unique. Throughout the text, we assume that a choice has been made once and for all. Moreover, the choice is the same for all values of n, since we want the double manifold cover of O 0 to belong to the class C.

What matters is not the precise nature of the content of the boxes, but rather the values of the linking numbers of the various components of Σ O 0 ; those are summarized by the graph depicted on Figure 2, with the convention that the linking number between two components is zero if there is no edge drawn between them, and one otherwise. Finally, we assume that O 0 is a so-called π-orbifold, i.e. each nontrivial local group is cyclic of order 2. Suppose now that S has two singular points. Those two points must belong to either L 12 or L 34 . By symmetry we may assume it is L 12 . Then B ∩ L 12 is an unknotted arc. We need to show that B ∩ Σ O 0 is in fact equal to this arc. Arguing by contradiction, assume that some c n i 0 is contained in B. Arguing as above using linking numbers, we can show that for every i, c n i is contained in Int B. Thus for the same reason L 34 intersects B, leading to a contradiction.

The pillows P n and their first properties

Let us define the sequence of pillows (P n ) and the compact subset K which traps them. As shown on Figure 3 We collect in the next proposition some facts about the P n 's which are fairly easy to prove. Lemma 2.2.

i. Each P n is incompressible.

ii. The P n 's are pairwise nonisotopic.

iii. The P n 's are trapped by K .

Proof. Proof of assertion (i): If some P n were compressible, then P n would bound a solid pillow or be contained in a discal 3-suborbifold. Now U n contains at least four closed components of Σ O 0 , so this is impossible. Assertion (ii) follows immediately from the fact that for n = m, the number of closed components of Σ O 0 contained in U n and U m are different.

Proof of assertion (iii): let n be a natural number. Seeking a contradiction, we assume there is a pillow P n isotopic to P n such that P n ∩ K = ∅. By Alexander's Theorem, the 2-sphere |P n | bounds a 3-ball U n in R 3 . There are two cases:

Case 1 K is contained in U n . Then |P n | is homologous to ∂K in R 3 \ Int K .
In this case, P n must hit L 0 , which contradicts our assumption that P n is isotopic to P n .

Case 2 U n is disjoint from K . Let L 1 , L 2 (resp. L 3 , L 4 ) be the connected components of Int K ∩L 12 (resp. Int K ∩L 34 .) Again by homological reasons, and using the fact that P n is isotopic to P n , among the four singular points of P n , two must lie on some L i with 1 ≤ i ≤ 2, and the other two on some L j with 3 ≤ j ≤ 4. Now Int U n contains all c n i for 1 ≤ i ≤ 4. As we have already seen several times, this leads to a contradiction.

Remark 2.3. The argument used to prove Lemma 2.1 shows that every X n is irreducible.

The P n 's are canonical

If V is a solid torus and V a solid torus contained in V , then the geometric winding number of the pair (V, V ), denoted by gw(V, V ), is the smallest natural number n such that there is a meridian disk D of V with the property that D ∩ V has n connected components. A fundamental fact, due to Schubert, is the multiplicativity of gw:

Lemma 2.4 (Schubert [Sch53]). Let V, V , V be solid tori such that V ⊂ V ⊂ V . Then gw(V , V ) = gw(V , V ) • gw(V , V ).
If V is a solid torus and c is an embedded circle in V , then the geometric winding number of the pair (V, V ) where V is a tubular neighbourhood of c does not depend on the choice of V . We shall denote this number by gw(V, c) Let c, c be two disjoint unknots in R 3 . Choose two solid tori V, V such that V ∩ V = ∅ and V (resp. V ) is a tubular neighborhood of c (resp. c .) Viewing R 3 as S 3 minus a point ∞, the complement of Int V in S 3 is also a solid torus, which we denote by V 1 . By hypothesis, we have V ⊂ V 1 . We shall denote by gw(c * , c ) the geometric winding number of the pair (V 1 , V ). Again, this does not depend on the various choices. If c is an unknot in R 3 and V is a solid torus contained in R 3 \ c, then gw(c * , V ) is defined similarly. of two circles, which viewed on P n are parallel and have two singular points on each side. Let Y be the manifold obtained from |H 1 ∩ X n | by removing small open tubular neighborhoods of L 12 and L 34 . Then Y has a manifold compactification diffeomorphic to a product F × [0, 1], where F is a sphere with four holes, and F × {0} is the image of a subset of P n . Such a manifold does not contain any essential annulus with both boundary components in F × {0}.

Since A is incompressible in Y , we deduce that it is boundary-parallel in Y . Let V be a parallelism region in Y between A and some annulus A in P n . Let us show that no component of Σ O 0 lies in V . By Lemma 2.5, V contains at most one such component, say c m 1 for some m > n. For simplicity of notation, set c i := c m i . Let γ be a core of A . Then we apply Lemma 2.4 to the chain γ ⊂ V ⊂ S 3 \ c 2 : from gw(V, γ) = 1 and gw(c * 2 , γ) = 0 we deduce gw(c * 2 , V ) = 0. Then Lemma 2.4 applied to c 1 ⊂ V ⊂ S 3 \ c 2 yields a contradiction. This finishes the proof of Lemma 2.6 in Case 1.

Case 2 Suppose that A is a disk with two singular points. Again, we may assume that A misses Π, and therefore lies in H 1 . The intersection of X n with L 12 ∪ L 34 consists of four properly embedded half-lines, which we denote by L 1 , L 2 , L 3 , L 4 in such a way that for each m > n and each 1

≤ i ≤ 4, α m i is contained in L i .
By hypothesis, there exist two different indices i 0 , j 0 in {1, 2, 3, 4} such that A meets L i if and only if i ∈ {i 0 , j 0 }. Let k 0 , l 0 be the two remaining indices. Let Y be the π-orbifold whose underlying space is obtained from |H 1 ∩ X n | by removing small open tubular neighborhoods of L k 0 and L l 0 , and whose singular locus consists of L i 0 ∪ L j 0 . Then Y compactifies as F × [0, 1], with F an annulus (two-holed sphere) with two singular points, F × {0} corresponding to a subset of P n .

As before, we deduce that A is parallel in Y to some disk D ⊂ P n with two singular points, which necessarily belong, one to L i 0 and the other to L j 0 . Let B be the product region between A and D, this time viewed as a suborbifold of O 0 . Observe that B is a 3-ball whose singular locus contains a trivial 2-tangle consisting of the union of a subarc of L i 0 and a subarc of

L j 0 . Since A is essential in X n , Int B must in addition contain c m i for some 1 ≤ i ≤ 4 and m > n.
Arguing as in the proof of the irreducibility of O, we see that Int B contains c m i for i ; in particular it contains c m k 0 . We deduce that c m k 0 , being an unknot in the ball |B|, bounds a disk D ⊂ |B|. Such a disk must meet either L k 0 or L l 0 . This contradiction completes the proof of Case 2.

At last we can prove the main result of this subsection: Lemma 3.1. The T n 's are pairwise nonisotopic.

Proof. Assume that there exist n, m with n = m such that T m is isotopic to T n . By [BZ89, Prop 4.5], there is a τ -equivariant isotopy. Hence P m is isotopic to P n , contradicting Lemma 2.2(ii).

Our next goal is to show that every T n is canonical. For this we need a lemma.

Lemma 3.2. There is no properly embedded essential annulus in Y n .

Proof. Put a τ -invariant riemannian metric on Y n with mean-convex boundary. Arguing by contradiction, we assume that Y n contains a properly embedded essential annulus. Let A have least area among such annuli. Set A := τ (A). If A ∩ A = ∅ or A = A , then p(A) is an annular 2-suborbifold in X n . Thus by Lemma 2.6, we deduce that p(A) is inessential. This implies that A is inessential, contradicting our hypothesis.

Hence by the Meeks-Yau trick we may assume that A and A intersect transversally in a nonempty disjoint union of curves and arcs. Since both A and A are essential, a curve or arc is essential on A if and only if it is esssential on A .

If there exists an inessential curve in A∩A , we let D be a disk of minimal area on A or A bounded by such a curve. Note that D is automatically innermost. Thus a classical exchange/roundoff argument leads to a contradiction (the disk exchange can be realized by an isotopy because Y n is irreducible.)

If there is an inessential arc in A ∩ A , we can argue similarly using a disk of minimal area cobounded by such an arc and an arc in ∂Y n . In order to ensure that the disk exchange can be realized by an isotopy, we use the irreducibility of Y n and the incompressibility of ∂Y n .

Suppose there is an essential curve in A ∩ A . Let γ be such a curve. Pick a basepoint on γ and consider the covering space Y γ of M whose fundamental group is the infinite cyclic group generated by γ. Let à and à be lifts to Y γ of A and A respectively. Observe that the inclusions of à and à in Y γ are homotopy equivalences. In particular, à and à are incompressible. Sublemma 3.3.

i. The two boundary components of à lie on distinct components of ∂Y γ .

ii. The same property holds for à .

Proof. It suffices to prove the first point. We argue by contradiction, letting F be a component of ∂Y γ containing all of ∂ Ã. Observe that F is an open annulus whose inclusion in Y γ is a homotopy equivalence. Hence there is an annulus A contained in F and such that ∂A = ∂ Ã. Thus T := à ∪ A is an embedded torus. Since π 1 (Y γ ) is cyclic, T is compressible. As T contains an incompressible annulus, it does not lie in a 3-ball. Therefore, T bounds a solid torus V , which is a parallelism region between à and A . In particular, à is isotopic to A relative to the boundary. Projecting such an isotopy to Y n leads to a contradiction with the fact that A is essential. This completes the proof of Sublemma 3.3.

Note that in the previous discussion, γ was an arbitrary essential curve of intersection between A and A . Now we make a more specific choice of γ: we assume that some annulus cobounded by γ and some boundary component of A or A has least possible area. Without loss of generality, we assume that such an annulus, called A 1 , is contained in A. We let A 2 be the subannulus of A whose boundary is the union of γ and the other component of ∂A, and A 3 , A 4 be the annuli such that A 3 ∩ A 4 = γ and A 3 ∪ A 4 = A .

We set A 5 := A 1 ∪ A 3 and A 6 := A 1 ∪ A 4 . Then A 5 and A 6 are properly embedded annuli in X n . As before we consider lifts Ã5 and Ã6 of those annuli to Y γ . By the second assertion of Sublemma 3.3, at least one of Ã5 and Ã6 has its two boundary components on different components of ∂Y γ . Assume Ã5 has this property. Then A 5 is essential: otherwise one could lift a boundary-parallelism region for A 5 to M γ and obtain one for Ã5 . Now by choice of A 1 , the area of A 5 is less than or equal to that of A, and by rounding the corner, we obtain an essential annulus which contradicts the minimizing property of A.

Thus we are left with the case where A ∩ A contains an essential arc.

Sublemma 3.4. There are at least two distinct essential arcs in A ∩ A .

Proof. Let γ 1 , γ 2 denote the boundary components of A and γ 3 , γ 4 denote those of A . Thus γ 1 (resp. γ 3 ) is isotopic to γ 2 (resp. γ 4 ) on T n . If A ∩ A consists of only one essential arc α, then there are only two points in ∂A∩∂A . If γ is not isotopic to γ 3 , then γ 1 ∩ γ 3 is nonempty, and so are γ 1 ∩ γ 4 , γ 2 ∩ γ 3 , and γ 2 ∩ γ 4 , resulting in a contradiction. Hence the γ i 's are all pairwise isotopic, and the two intersection points belong to the same two arcs, which means that α is inessential, again a contradiction.

Choose as basepoint an endpoint of some arc in A ∩ A and let Y T be the covering space of Y n such that π 1 (Y T ) = π 1 (T n ). Let U n be a torus component of ∂Y T whose projection is T n , the said projection being a homeomorphism. Let à and à be lifts to Y T of A and A respectively, which both meet U n .

Proof. Arguing by contradiction, we assume that for some n there exists an embedded torus T ⊂ M \ K which is isotopic to T n . Our aim is to show that after isotopy, T can be chosen to be invariant under τ . Then by [BZ89, Proposition 4.5] T and T n are equivariantly isotopic. This implies that the image of T is an embedded pillow in O \ K isotopic to P n , which contradicts the fact that P n is trapped by K .

Let F be a parallel copy of ∂K lying outside K, and X be the (compact) product submanifold whose boundary is the disjoint union of ∂K and F . Thus X ∩ K = ∂K. Without loss of generality we may assume that T ∩ X = ∅. We are going to use the Jaco-Rubinstein theory of PL minimal surfaces, as modified in [START_REF] Maillot | Open 3-manifolds whose fundamental groups have infinite center, and a torus theorem for 3-orbifolds[END_REF]. Choose a triangulation T of M which is in general position with respect to T and invariant under τ . Let w 0 be the weight of T with respect to T . By repeatedly subdividing T on X, with may assume that any normal surface which meets both components of ∂X has weight strictly greater than w 0 , keeping the invariance under τ . Then choose a τ -invariant regular Jaco-Rubinstein metric in the sense of [START_REF] Maillot | Open 3-manifolds whose fundamental groups have infinite center, and a torus theorem for 3-orbifolds[END_REF] so that the PL area is well-defined.

Let T be a normal torus of least PL area in the isotopy class of T . We claim that T misses K. Indeed, K, being the double branched cover of a 3-ball with branching locus a trivial tangle, is a handlebody. The same is true for K ∪ X. Since T is an incompressible torus, it cannot be contained in K ⊂ X. Hence if it met K, it would meet both boundary components of X, contradicting the fact that its weight is at most w 0 .

Since the Jaco-Rubinstein metric we use is τ -invariant, τ T also has least PL area in its isotopy class. Now T is isotopic to T n , which is τ -invariant, so τ T is isotopic to T . By Jaco-Rubinstein's version [START_REF] Jaco | PL minimal surfaces in 3-manifolds[END_REF] of a Theorem of Freedman-Hass-Scott, it follows that T and τ T are disjoint or equal, i.e. T is invariant or equivariant. We still have to rule out the latter possibility.

Suppose that T ∩ τ T = ∅. Since T and τ T are isotopic, they are parallel. Let Y be the compact submanifold bounded by T ∪ τ T and diffeomorphic to T 2 × I. Note that Y is unique because M is noncompact. Hence Y is τ -invariant. By the classification of involutions of T 2 × I, noting that τ exchanges the two boundary components, this implies that Int X contains an invariant embedded torus whose projection in O is a one-sided, nonorientable 2-suborbifold. Since O does not contain any such suborbifold, we have reached the desired contradiction. Hence the proof of Lemma 3.6 is complete.
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 2 Figure 2: Linking numbers of components of Σ O 0
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 3 Figure 3: The canonical pillows P n , the compact set K , and the plane Π

  Lemma 2.1. O is irreducible.Proof. Let S ⊂ O be a 2-suborbifold of positive Euler characteristic. Then |S| is a 2-sphere intersecting Σ O 0 transversally. For homological reasons, the number of singular points of S is even. Thus S is either a nonsingular 2sphere or a football. Furthermore, by Alexander's Theorem, |S| bounds a 3-ball B ⊂ R 3 .Suppose that S is nonsingular. If B contains a singular point, then it contains some compact component c n i of Σ O 0 . Since c n i is unknotted, it bounds a disk D ⊂ Int B. Either L 12 or L 34 has linking number one with c n i . Thus for L equal to L 12 or L 34 we have D ∩ L = ∅, hence B ∩ L = ∅. Since L is noncompact, this contradicts the assumption that S is nonsingular. Therefore, B is nonsingular.

The orbifold case 2.1 Definition of the orbifold O 0
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Note that if c ∪ c is an unlink (resp. a Hopf link), then gw(c * , c ) equals zero (resp. one). Hence all geometric winding numbers involving compact components of Σ O 0 are determined by our construction.

By extension, we can define gw(L * , c) when L is an unknotted properly embeded line in R 3 and c is an embedded circle in R 3 that misses L : in the one-point compactification S 3 = R 3 ∪ {∞}, L compactifies to a circle L ∪ {∞}. Let V be the complement of an open tubular neighborhood of this circle such that c ⊂ V . Then we set gw(L * , c) := gw(V, c). Again, all such numbers involving components of Σ O 0 are determined by the construction, and are equal to either zero or one. Likewise, if V is a solid torus which misses L, then gw(L * , V ) is defined as gw(V, V ) for a suitable choice of V .

Lemma 2.5. Let V be a solid torus in |O 0 | such that no point of ∂V is singular. Then Int V contains at most one component of Σ O 0 . If it does, then this component is compact and homotopic to the soul of V .

Proof. Assume that Int V contains some component of Σ O 0 . Then this component is compact. Up to changing the notation, we may assume it is c n 1 for some n. For brevity, we drop the superscript n in the sequel.

Observe that c 1 ⊂ V ⊂ S 3 \ L 12 . Hence by Lemma 2.4, we have gw(L * 12 , c 1 ) = gw(L * 12 , V ) • gw(V, c 1 ). Since gw(L * 12 , c 1 ) = 1, we deduce gw(L * 12 , V ) = gw(V, c 1 ) = 1. We also have c 1 ⊂ V ⊂ S 3 \ L 34 . Since gw(L * 34 , c 1 ) = 0 and gw(V, c 1 ) = 1, Lemma 2.4 implies that gw(L * 34 , V ) = 0. Seeking a contradiction, assume that c 3 ⊂ V . Then using the chain of inclusions c 3 ⊂ V ⊂ S 3 \ L 34 and the facts that gw(L * 34 , c 3 ) = 1 and gw(L * 34 , V ) = 0 we get a contradiction. Hence V ⊂ S 3 \ c 3 . Using the chain c 1 ⊂ V ⊂ S 3 \ c 3 we obtain gw(c * 3 , V ) = 0. The same argument applies, mutatis mutandis, to c 4 .

Again we prove by contradiction that c 2 ⊂ V : otherwise using the chain c 2 ⊂ V ⊂ S 3 \ c 3 and the fact that gw(c * 3 , c 2 ) = 1, Lemma 2.4 would lead to a contradiction.

By similar arguments, we exclude c m 3 and c m 4 for m = n (using L 34 ), then c m 2 (using c m 3 ), and finally c m 1 (using c m 4 .)

Lemma 2.6. For each n ∈ N, X n does not contain any essential, properly embedded annular 2-suborbifold.

Proof. Arguing by contradiction, we let A be such an annular 2-suborbifold. Thus A is either a nonsingular annulus or a disk with two singular points.

Case 1 Suppose that A is an annulus. An innermost disk argument shows that after an isotopy we may assume that A ∩ Π = ∅. Then ∂A is a union Proposition 2.7. Every P n is canonical.

Proof. Assume that P n is not canonical. Let P n be an incompressible toric 2suborbifold of O 0 which cannot be isotoped off P n . Since O does not contain any turnover, P n is a nonsingular torus or a pillow. Assume that P n has been isotoped so as to intersect P n transversally and minimally. Since both P n and P n are incompressible, a component of P n ∩ P n is essential on P n if and only if it is essential on P n . Using the irreducibility of O 0 and a standard argument, one can remove any inessential intersection component between P n and P n . Hence, by our assumption of minimality, each component of P n ∩ P n is essential. As a consequence, some connected component A of X n ∩ P n is an annular 2-suborbifold, which is essential as a suborbifold of X n . This contradicts Lemma 2.6.

3 The manifold M 0 In this section, we let p : M 0 → O 0 be the only two-fold manifold cover of O 0 . In other words, M 0 is the two-fold branched cover over R 3 with branching locus Σ O 0 and p is the canonical projection. As in the compact case, this cover can be constructed by splitting O 0 along a Seifert surface for Σ O 0 , taking two copies of the resulting manifold, and gluing them appropriately. Alternatively, the orbifold fundamental group π 1 O 0 is (infinitely) generated by meridians, i.e. small circles around each component of Σ O 0 . All meridians have order 2. There is an index 2 normal subgroup Γ of π 1 O 0 which is the kernel of a homomorphism from π 1 O 0 to Z/2Z sending all meridians to the nontrivial element. This group is torsion free, and p : M 0 → O 0 is the corresponding manifold cover. We denote by τ : M 0 → M 0 the involution such that O 0 = M 0 /τ . By construction, O 0 is obtained by gluing K and countably many copies of some compact 3-orbifold Y with two boundary components, glued to each other 'in the same way'. Moreover, the preimage of K by p is connected and has connected boundary, and the preimage of each copy of Y is connected and has exactly two boundary components. It follows that M 0 belongs to the class C defined in the introduction.

For each n ≥ 0, set T n := p -1 (P n ) and Y n := p -1 (X n ). Thus each T n is an embedded 2-torus in M . Set K := p -1 (K ). Then K is a compact subset of M . We need to prove that M has all the properties stated in Theorem 1.1.

Since O 0 is irreducible, M 0 is irreducible ([BMP03, Theorem 3.23].) For the same reason, Remark 2.3 implies that Y n is irreducible for every n. By the equivariant Dehn Lemma, incompressibility of every T n follows from Lemma 2.2(i). Sublemma 3.5.

i. The two components of ∂ Ã lie on distinct components of ∂Y T .

ii. The same holds for à .

Proof. Again we only have to prove the first statement. Arguing by contradiction, assume both components of ∂ Ã belong to the same component of ∂Y T . By construction, this component is U n . Then there is an annulus

Suppose that T (or equivalently T ) is compressible. Since A is not contained in any 3-ball, neither is T , so T bounds a solid torus V . Since the core of A is a primitive element of U n , V is a parallelism region between A and Ã. This shows that à is inessential, and so is A, a contradiction.

Hence T is incompressible. Note that H 2 (Y T ) is isomorphic to Z and generated by the class of U n . Thus T is either null-homologous or homologous to U n .

If T is null-homologous, then T bounds some compact submanifold V . Since T is incompressible in Y T , it is also incompressible in V , and by van Kampen's theorem, the induced homomorphisms π

Thus T is homologous to U n , and so is T . Let X be a compact submanifold whose boundary is U n ∪ T . Arguing as before, we see that π 1 X is isomorphic to Z 2 . Since X is irreducible, X is homeomorphic to T 2 × I. Again this implies that à is boundary-parallel.

We can now finish the proof of Lemma 3.2. Since Y T covers a noncompact manifold, it is itself noncompact. In particular, Y T is not homeomorphic to T 2 × I. Thus, homology considerations as above show that U n is the only torus in ∂Y T . It follows that the boundary components γ, γ of à and à that do not lie on U n are contained in some annulus component A of ∂Y T , and are freely homotopic (and noncontractible) there. Hence there is a bigon between γ and γ , and we can use an exchange/roundoff argument to get a contradiction. This completes the proof of Lemma 3.2.

The fact that the T n 's are canonical now follow as Proposition 2.7 followed from Lemma 2.6. Hence to prove Theorem 1.1, we only need to show the following statement: Lemma 3.6. The compact subset K = p -1 (K ) ⊂ M traps each T n .