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THE FACIAL WEAK ORDER

ON HYPERPLANE ARRANGEMENTS

ARAM DERMENJIAN, CHRISTOPHE HOHLWEG, THOMAS MCCONVILLE,

AND VINCENT PILAUD

Abstract. We extend the facial weak order from finite Coxeter groups to

central hyperplane arrangements. The facial weak order extends the poset

of regions of a hyperplane arrangement to all its faces. We provide four non-
trivially equivalent definitions of the facial weak order of a central arrangement:

(1) by exploiting the fact that the faces are intervals in the poset of regions,

(2) by describing its cover relations, (3) using covectors of the corresponding
oriented matroid, and (4) using certain sets of normal vectors closely related

to the geometry of the corresponding zonotope. Using these equivalent de-

scriptions, we show that when the poset of regions is a lattice, the facial weak
order is a lattice. In the case of simplicial arrangements, we further show that

this lattice is semidistributive and give a description of its join-irreducible el-

ements. Finally, we determine the homotopy type of all intervals in the facial
weak order.
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1. Introduction

A hyperplane arrangement is a finite collection A of linear hyperplanes in a
finite dimensional real vector space V . Its regions are the closures of the connected
components of the complement in V of the union of all hyperplanes in A. A
region is simplicial if the normal vectors to its bounding hyperplanes are linearly
independent, and the arrangement is simplicial if all its regions are. The zonotope
of the arrangement A is a convex polytope dual to the arrangement A, obtained as
the Minkowski sum of line segments normal to the hyperplanes of A.

The regions of a hyperplane arrangement A can be ordered as follows. Define the
separation set S(R,R′) between two regions R and R′ of A as the set of hyperplanes
of A separating the two regions R and R′. For a fixed base region B, the poset of
regions is the set of regions ofA ordered by inclusion of their separation sets S(B,R)
with the base region B. A. Björner, P. H. Edelman and G. M. Ziegler [BEZ90]
showed that the poset of regions is a lattice if A is simplicial, and that the base
region B is simplicial if the poset of regions is a lattice. The Hasse diagram of the
poset of regions can also be seen as the graph of the zonotope of A, oriented from
the base region B to its opposite region −B.

In this paper, we extend the study of the facial weak order FW(A, B), as in-
troduced in [DHP18] for Coxeter arrangements. This order is a poset structure
on the faces of the hyperplane arrangement A or, equivalently, of the zonotope
of A. It was first introduced by D. Krob, M. Latapy, J.-C. Novelli, H.-D. Phan,
and S. Schwer in [KLN+01] for the braid arrangement (the Coxeter arrangement
of type A) where it was shown to be a lattice. It was then extended to arbitrary
Coxeter arrangements by P. Palacios and M. Ronco in [PR06] and it was shown
to be a lattice for arbitrary Coxeter arrangements in [DHP18]. The aims of this
article are to extend the facial weak order to central hyperplane arrangements.

The first part of this article, contained in Section 2 and Section 3, is dedicated
to providing four equivalent definitions for the facial weak order on a given central
hyperplane arrangement:

• in terms of separation set comparisons between the minimal and maximal
regions incident to a face (Subsection 2.4),

• by providing a precise description of its covering relations (Subsection 2.5),
• in terms of covectors of the associated oriented matroid (Subsection 3.1),
• and in terms of root inversion sets of the normals to the hyperplanes of

the arrangement (Subsection 3.3), closely related to the geometry of the
corresponding zonotope (Subsection 3.4).

We prove these four definitions to be equivalent in Theorem 3.9 and Theorem 3.18.
In the case of a Coxeter arrangement, this recovers the descriptions in [DHP18].

In Section 4, we show that if the poset of regions of a hyperplane arrangement
is a lattice, then the facial weak order is a lattice (Theorem 4.1). This is achieved
using the BEZ lemma [BEZ90, Lemma 2.1] which states that a poset is a lattice
as soon as there exists a join x ∨ y for every two elements x and y that both cover
the same element. This extends the results of [KLN+01] for the braid arrangement
and of [DHP18] for Coxeter arrangements.

For a general arrangement A, the facial weak order may not be a lattice, but its
topology still admits a nice description that we study in Section 5. There are a wide
variety of simplicial complexes associated to a hyperplane arrangement. Typically,
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complexes that depend on the matroid structure of A are homotopy equivalent to
a wedge of (several) spheres, e.g. the independence complex, the reduced broken
circuit complex, or the lattice of flats [Bjö92b]. On the other hand, complexes that
depend on the oriented matroid structure of A tend to be homotopy equivalent to
a single sphere or are contractible, e.g. the complexes of acyclic, convex, or free sets
[ERW02], the poset of regions [Ede84], or the poset of cellular strings [Bjö92a]. We
compute the homotopy types of intervals of the facial weak order (Theorem 5.6).
Keeping with the aforementioned trends, we prove that every interval of the facial
weak order is either contractible or homotopy equivalent to a sphere.

To conclude, let us mention two directions that are not explicitly explored here
to keep the paper short. First, although we use the language of oriented matroids,
we only deal here with facial weak order of hyperplane arrangements. The results
presented here seem however to extend in the context of simple simplicial oriented
matroids. Second, using the same tools as in [DHP18], one can observe that when
the arrangement is simplicial, each lattice congruence of the poset of regions natu-
rally translates to a lattice congruence of the facial weak order.

2. Facial weak order on the poset of regions

In this section we start by recalling classical definitions on hyperplane arrange-
ments. For more details, we refer the reader to the book by P. Orlik and H. Terao [OT92],
the book by R. Stanley [Sta11] and the paper by A. Björner, P. H. Edelman and
G. M. Ziegler [BEZ90]. We then introduce the facial weak order and discuss its
cover relations.

2.1. Hyperplane arrangements. Let (V, 〈·, ·〉) be an n-dimensional real Euclidean
vector space. A central hyperplane arrangement , or arrangement for short, is a finite
setA of linear hyperplanes in V . For eachH ∈ A, we choose some fixed nonzero vec-
tor eH normal to H, that is, such that H = {v ∈ V | 〈eH , v〉 = 0} (the choice of the
normal vectors eH is unique up to nonzero scalar multiplication). We also consider
the two half spaces H+ := {v ∈ V | 〈eH , v〉 > 0} and H− := {v ∈ V | 〈eH , v〉 < 0}
bounded by H.

The rank of A is the dimension rank(A) of the linear subspace V ′ spanned by
the vectors eH , for H ∈ A. An arrangement A is essential if rank(A) = dim(V ),
or equivalently if the intersection of all hyperplanes of A is the origin. We assume
our arrangements to be essential unless stated otherwise. From a combinatorial
perspective the specialization to essential arrangements causes no loss of generality.
This is due to the fact that for each arrangement A of rank m in V ∼= Rn there is
an associated essential arrangement A′ in V ′ ∼= Rm whose face structure is similar.
See [BVS+99, Section 2.1] for more details.

The regions of an arrangement A are the closures of the connected components
of V r

(⋃
H∈AH

)
. We denote by RA the set of regions of A. A wall of a region R

in A is a bounding hyperplane H ∈ A of R, that is, dim(H ∩ R) = dim(V ) − 1.
A region R is said to be simplicial if the normal vectors of its walls are linearly
independent. If A is essential then a region is simplicial if and only if it has precisely
rank(A) walls. An arrangement is simplicial if all its regions are simplicial.

A face of A is the intersection of some regions of A. We denote by FA the set of
faces of A. Note that the regions are the codimension 0 faces of A. The face poset
of the arrangement A is the poset (FA,⊆) of faces of A ordered by inclusion. The
face lattice of the arrangement A is the face poset together with the vector space
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Figure 1. The type A3, B3 and H3 Coxeter arrangements.

itself as the maximum element. In this paper, we will consider a different poset
structure on FA.

Example 2.1. Well-known examples of simplicial hyperplane arrangements are
the Coxeter arrangements. These are the hyperplane arrangements associated to a
Coxeter system (W,S). See Figure 1 for an illustration of the Coxeter arrangements
of types A3, B3 and H3. We refer the reader to the books [Hum90, BB05] for
comprehensive surveys on Coxeter groups. Figure 2 gives an example of the type A2

Coxeter arrangement together with its faces. The Ri (in blue) are the six regions of
the arrangement and are the codimension 0 faces. There are also six codimension 1
faces denoted by the Fi (in red) and one codimension 2 face {0} at the center (in
green).

−e1

−e2

−e3

e1

e2

e3

H3H1

H2

F0

F1

F2F3

F4

F5

B

R1

R2

R3

R4

R5

Figure 2. The type A2 Coxeter arrangement where B is the in-
tersection of the positive half-spaces of all hyperplanes. See Ex-
ample 2.1.
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2.2. Poset of regions. Consider an arrangement A. The separation set of two
regions R,R′ ∈ RA is

S(R,R′) := {H ∈ A | H separates R from R′} .

We now choose B to be a distinguished region of A called the base region, and
abbreviate S(B,R) into S(R). The poset of regions with respect to B is the partial
order PR(A, B) = (RA,≤PR) on the regions RA of the arrangement A defined by

R ≤PR R′ ⇐⇒ S(R) ⊆ S(R′).

The poset of regions is graded by the cardinality of the separation set |S(R)| of a
region R. The base region B is its minimum element and has rank |S(B)| = |∅| = 0,
and its opposite region −B is its maximum element and has rank |S(−B)| = |A|.
Additionally, we have the following statement, see e.g. [Ede84, Proposition 2.1].

Proposition 2.2. The map R 7→ −R := {−v | v ∈ R} is a self-duality of the poset
of regions PR(A, B).

The reader is referred to subsubsection 4.3.1 for a definition of self-dual. It is
known that posets of regions associated to simplicial arrangements are lattices.

Theorem 2.3 ([BEZ90, Theorems 3.1 and 3.4]). Suppose A is essential. If the
poset of regions PR(A, B) is a lattice then the base region B is a simplicial region.
Moreover, if A is a simplicial arrangement then the poset of regions PR(A, B) is a
lattice for an arbitrary choice of base region B.

Example 2.4. Following with Example 2.1, the Hasse diagram of the poset of
regions of a type A2 Coxeter arrangement is given in Figure 3. For Coxeter ar-
rangements, the poset of regions is nothing more than the (right) weak order where
the separation sets can be seen as inversion sets [Hum90, BB05]. In this example,
we see that R1 ≤PR R2 since S(R1) = {H1} ⊆ {H1, H2} = S(R2), but R5 6≤PR R2

since S(R5) = {H3} 6⊆ {H1, H2} = S(R2). The minimal element is B, the maximal
element is −B = R3.

2.3. Facial intervals. One of the interesting facts about the poset of regions is
that it allows each face in FA to be described by a unique interval in PR(A, B).
These intervals will be used to define the facial weak order.

Proposition 2.5. For any face F ∈ FA, the set {R ∈ RA | F ⊆ R} is an interval
of the poset of regions PR(A, B). We denote it [mF ,MF ] and call it the facial
interval of F . Moreover, F =

⋂
R∈[mF ,MF ]R.

Remark 2.6. A proof of the above Proposition 2.5 can be found in [BVS+99,
Lemma 4.2.12]. It is based on the following geometric idea: the regionmF (resp.MF )
is the region that is found when starting from any point in the relative interior of
the face F and slightly moving in the direction of (resp. away from) a point in the
relative interior of the base region B.

For instance the interval corresponding to a region is the singleton constituted
of that region. Note that not all intervals of the poset of region PR(A, B) are
facial intervals; only those of the form {R ∈ RA | F ⊆ R} for some face F ∈ FA.
Since F =

⋂
R∈[mF ,MF ]R, we obtain the following corollary.

Corollary 2.7. For F,G ∈ FA, we have F ⊆ G ⇐⇒ [mF ,MF ] ⊇ [mG,MG].
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Example 2.8. As we saw in Example 2.1, there are 13 faces in the arrangement of
Figure 3. For instance, the origin {0} is represented by [B,R3] and F1 is represented
with [R1, R2]. Each region R is given by the interval [R,R].

2.4. Facial weak order. We now state the definition of the facial weak order1

which will be the focus for the rest of the paper.

Definition 2.9. The facial weak order is the order ≤FW on FA defined by

F ≤FW G ⇐⇒ mF ≤PR mG and MF ≤PR MG

where [mF ,MF ] and [mG,MG] are the facial intervals in PR(A, B) associated to
the faces F and G respectively. We denote by FW(A, B) the poset (FA,≤FW).

Example 2.10. We give an example of the Hasse diagram of the facial weak order
for the type A2 Coxeter arrangement in Figure 4. As we saw in Example 2.1, there
are 13 faces in the arrangement of Figure 3, corresponding to the 13 elements of
the facial weak order. For example we have [B,R5] ≤FW [R2, R3] since B ≤PR R2

and R5 ≤PR R3.

The facial weak order was first defined for the braid arrangement by D. Krob,
M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer in [KLN+01]. It was then
extended to arbitrary finite Coxeter arrangements by P. Palacios and M. Ronco
in [PR06]. This order was studied in detail in [DHP18]. Definition 2.9 was writ-
ten there in Coxeter language. Namely, for a Coxeter system (W,S), the poset
of regions is the right weak order ≤R on elements of W . The faces of the Cox-
eter arrangement correspond to the standard parabolic cosets xWI where I ⊆ S,
WI = 〈I〉, and x ∈W I = {w ∈W | `(w) ≤ `(ws) ∀s ∈ I}. In this case, the facial

H3H1

H2

B

R1

R2

R3

R4

R5

Figure 3. The lattice of regions associated to the type A2 Coxeter
arrangement. See Example 2.4.

1Just like the poset of regions, it is tempting to call this order the poset of faces. However,

the facial weak order IS NOT the classical face poset (the poset of faces ordered by inclusion).
We have thus chosen to borrow the name facial weak order from the context of Coxeter groups

studied in [DHP18] to the present context of hyperplane arrangements.
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[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,B]

[R1,R1]

[B,R5] [B,R1]

[R1,R2]

[R2,R3][R4,R3]

[R5,R4] [B,R3]

Figure 4. The facial weak order labeled by facial intervals for the
type A2 Coxeter arrangement. See Example 2.10.

intervals are given by [x, xw◦,I ] where w◦,I is the longest element in the parabolic
subgroup WI . The order ≤FW was given by xWI ≤FW yWJ if and only if x ≤R y
and xw◦,I ≤R yw◦,J .

Remark 2.11. The facial weak order FW(A, B) is clearly a poset (reflexive, an-
tisymmetric and transitive) as the poset of regions is. In fact, the facial weak
order FW(A, B) is the subposet induced by facial intervals in the poset of all in-
tervals of the poset of regions PR(A, B) where [a, b] < [c, d] if and only if a ≤PR c
and b ≤PR d.

Remark 2.12. Note that the poset of regions PR(A, B) is clearly the subposet of
the facial weak order FW(A, B) induced by the singletons [R,R] for R ∈ RA. We
will see in Proposition 4.18 that this observation also holds at the level of lattices
when A is simplicial.

2.5. Cover relations for the facial weak order. For two faces F and G such
that F ≤FW G, recall that mF ≤PR mG and MF ≤PR MG by Definition 2.9.

Proposition 2.13. For any two faces F,G ∈ FA then any two of the following
conditions implies the third one:

(i) F ⊆ G (resp. F ⊇ G),
(ii) MF = MG (resp. mF = mG),

(iii) F ≤FW G.

Proof. Suppose first that F ≤FW G and F ⊆ G. By Corollary 2.7, this implies
the inclusion [mF ,MF ] ⊇ [mG,MG] and therefore MG ≤PR MF . Furthermore, by
Definition 2.9 since F ≤FW G then MF ≤PR MG forcing MF = MG as desired.
The proof that F ≤FW G and F ⊇ G implies mF = mG is similar.

Suppose next that F ≤FW G and MF = MG. As F ≤FW G we have mF ≤PR mG

and therefore [mF ,MF ] ⊇ [mG,MF ] = [mG,MG]. In other words F ⊆ G by
Corollary 2.7. The proof that F ≤FW G and mF = mG implies F ⊇ G is similar.

Finally, suppose F ⊆ G and MF = MG. For F ≤FW G to hold, it suffices to
show mF ≤PR mG. Since F ⊆ G, then by Corollary 2.7 [mF ,MF ] ⊇ [mG,MG] and
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therefore mF ≤PR mG as desired. The proof that F ⊇ G and mF = mG implies
F ≤FW G is similar. �

The next proposition shows two types of cover relations for the facial weak order.
These will be shown to be precisely all cover relations in FW(A, B) in Theorem 3.9.

Proposition 2.14. For any two faces F,G ∈ FA such that |dimF − dimG| = 1
and either

• F ⊆ G and MF = MG, or
• F ⊇ G and mF = mG

hold, then F is covered by G, which we denote F lFW G.

Proof. Assume that F ⊆ G and MF = MG, the argument for the other case
being symmetric. By Proposition 2.13, F ≤FW G. Let X ∈ FA r {F,G} be
a face such that F <FW X <FW G. By definition of the facial weak order we
have MX = MF = MG. Then, by Proposition 2.13 again, F ⊆ X ⊆ G. Further-
more, since |dimF − dimG| = 1, we necessarily have X = F or X = G. Hence F
is covered by G. �

3. Geometric interpretations for the facial weak order

We describe in this section two different geometric interpretations for the facial
weak order: first by the covectors of the corresponding oriented matroid, then by
what we call root inversion sets which relates to the geometry of the corresponding
zonotope. We prove along the way that these various interpretations are equivalent.

Throughout this section, A is a hyperplane arrangement. We fix a normal vec-
tor eH to each hyperplane H ∈ A, so that H = {v ∈ V | 〈eH , v〉 = 0}. We consider
the half spaces H+ = {v ∈ V | 〈eH , v〉 ≥ 0} and H− = {v ∈ V | 〈eH , v〉 ≤ 0} where
the boundary in both cases is H. For convenience, we choose the direction of the
vector eH such that the base region B lies in H+.

3.1. Covectors and oriented matroids. In this section, we introduce basic ori-
ented matroid terminology to deal geometrically with our hyperplane arrangements.
As we only consider hyperplane arrangements, we focus on realizable oriented ma-
troids. Moreover, we only consider covectors, and do not discuss other perspectives
on oriented matroids. A more general setting and background on oriented matroids
can be found in the book by A. Björner, M. Vergas, B. Sturmfels, N. White and
G. M. Ziegler [BVS+99].

The sign map of the hyperplane arrangement A is the map

σ : V → {−, 0,+}A

defined for v ∈ V by σ(v) =
(
σH(v)

)
H∈A where

σH(v) = sign(〈v, eH〉) =


+ if 〈v, eH〉 > 0,

− if 〈v, eH〉 < 0,

0 if 〈v, eH〉 = 0.

This map may be extended to assign to each face of A a vector in {−, 0,+}A as
follows. Denote by int(F ) the set of points in the relative interior of the face F .
The face sign map of the hyperplane arrangement A is the map

σ̂ : FA → {−, 0,+}A
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defined by σ̂(F ) = σ(v) for v ∈ int(F ). This map is well-defined since, for arbi-
trary v and w in int(F ), we have that σ(v) = σ(w). However, note that for v on
the boundary of F we could have that σH(v) = 0 even if σ̂H(F ) 6= 0 for H ∈ A.
Thus for v ∈ F r int(F ) either σH(v) = σ̂H(F ) or σH(v) = 0 for each H ∈ A. Note
that a face F is easily recovered from its covector:

F =
⋂
H∈A

H σ̂H(F ).

By abuse of notation we let σ̂H(F ) be denoted by F (H). The sign vector σ̂(F ) is
called covector of the face F , and the image L(A) := σ̂(FA) of all faces in FA by
the face sign map σ̂ is the set of covectors of the hyperplane arrangement A.

Example 3.1. We have represented in Figure 5 the covectors of all faces of the
type A2 Coxeter arrangement in Figure 2.

H3H1

H2

(+,+, 0) (0,+,+)

(−, 0,+)

(−,−, 0)(0,−,−)

(+, 0,−)

(+,+,+)

(−,+,+)

(−,−,+)

(−,−,−)

(+,−,−)

(+,+,−)

(0, 0, 0)

Figure 5. The type A2 Coxeter arrangement where the faces are
identified by their associated covectors. See Example 3.1.

We next define some useful operations on sign vectors which we use throughout
this paper. For two sign vectors F,G ∈ {−, 0,+}A, define

• the opposite of F : −F (H) =


+ if F (H) = −,
− if F (H) = +,

0 if F (H) = 0.

• the composition of F and G: (F ◦G)(H) =

{
F (H) if F (H) 6= 0,

G(H) otherwise.

• the reorientation of a F by G: (F−G)(H) =

{
−F (H) if G(H) = 0,

F (H) otherwise.

• the separation set : S(F,G) = {H ∈ A | F (H) = −G(H) 6= 0} .
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Example 3.2. For instance, on the arrangement of Figure 5, for F = (−, 0,+)
and G = (0,−,−), we have

−F = (+, 0,−), F ◦G = (−,−,+), F−G = (+, 0,+) and S(F,G) = {H3}.

Note that if F and G are covectors in L(A), then the opposite −F of F and
the composition F ◦ G of F and G are both covectors in L(A), or in other words
faces in FA. If furthermore, G ⊆ F then the reorientation F−G of F by G is a
covector in L(A) as well. Moreover, G ⊆ F−G as faces. Note that the separation
set of regions from Subsection 2.2 is the same separation set as given for covectors
of regions. It is well-known that the set of covectors L(A) of the arrangement A is
an oriented matroid in the sense of the following definition. Cryptomorphic defini-
tions for oriented matroids can be found in the book by A. Björner, M. Vergnas,
B. Sturmfels, N. White and G. M. Ziegler [BVS+99].

Definition 3.3. An oriented matroid is a pair
(
A,L

)
where L is a collection of

sign vectors in {−, 0,+}A satisfying the following four properties:

(i) 0 ∈ L.
(ii) If F ∈ L then (−F ) ∈ L.
(iii) If F,G ∈ L then (F ◦G) ∈ L.
(iv) Elimination axiom: If F,G ∈ L and H ∈ S(F,G) then there exists

X ∈ L such that X(H) = 0 and X(H ′) = (F ◦G)(H ′) = (G ◦ F )(H ′) for
all H ′ /∈ S(F,G).

The notion of oriented matroids allows us to have a nice algebraic interpretation
of what it means for a face F to be a face of G. We can either do a comparison
between the two faces relative to the hyperplanes or we check how their covectors
interact through composition.

Proposition 3.4. The following assertions are equivalent for two faces F,G ∈ FA:

(i) F ⊆ G as faces,
(ii) for all H ∈ A either F (H) = 0 or F (H) = G(H), and

(iii) G = F ◦G as covectors.

Proof. The equivalence of (iii) and (ii) is readily seen by definition of the composi-
tion F ◦G. Furthermore, if F ⊆ G as faces then it is readily seen that for all H ∈ A
either F (H) = 0 or F (H) = G(H).

It remains to show that (ii) implies (i). Suppose contrarily that F 6⊆ G. If F ) G
then there exists some H ∈ A such that G(H) = 0 6= F (H) since F 6= G. Else
if F 6⊇ G and F 6⊆ G there is an H ′ ∈ A which separates G and F . In other
words 0 6= G(H ′) = −F (H ′). �

In fact, the sign of a face relative to a hyperplane tells us a lot about the regions
containing the face. Recall that for a region R, the separation set between the base
region B and R is denoted by S(R).

Lemma 3.5. For a face F ∈ FA with facial interval [mF ,MF ] and a hyper-
plane H ∈ A,

(i) F (H) = − if and only if H ∈ S(mF ),
(ii) F (H) = 0 if and only if H ∈ S(MF ) and H /∈ S(mF ),

(iii) F (H) = + if and only if H /∈ S(MF ).
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In other words,

S(mF ) = {H ∈ A | F (H) < 0} and S(MF ) = {H ∈ A | F (H) ≤ 0} .

Proof. We show the first case, the other two being similar. First, recall that by the
definition of interval, H ∈ S(mF ) if and only if for all R ∈ [mF ,MF ] thenH ∈ S(R).
In other words, if and only if H separates the base region B from F . This is true
if and only if for some v ∈ int(F ) then 〈v, eH〉 < 0 since B ⊆ H+ by our chosen
orientation given at the beginning of this section. In other words, if and only
if F (H) = −. �

This lemma allows us to be a little more precise as to which faces are faces of B
and gives us a stronger method of finding these faces. Not only are the faces of B
the faces with all non-negative components in their covector, but, in fact, we can
strengthen this by only needing to look at the hyperplanes which bound B.

Corollary 3.6. The following assertions are equivalent for a face F ∈ FA:

(i) F ⊆ B,
(ii) F (H) ≥ 0 for all H bounding B, and

(iii) F (H) ≥ 0 for all H ∈ A.

Proof. The points (i) and (iii) are equivalent by Proposition 3.4 and the fact
that B(H) > 0 for all H ∈ A. Additionally, (iii) implies (ii) is readily seen.

To show that (ii) implies (iii), let B be the set of boundary hyperplanes of B.
Suppose that there exists H ∈ A r B such that F (H) = −. Then H ∈ S(mF )
by Lemma 3.5, therefore mF 6= B. This implies H ′ ∈ S(mF ) for some H ′ ∈ B as
well, since some H ′ ∈ B must separate B and mF by definition of B. In other
words, F (H ′) = − for some H ′ ∈ B. �

We conclude with an observation which ensures that a face is not contained in
a given hyperplane.

Lemma 3.7. Let F and G be two distinct faces in FA. If there exists H ∈ A such
that G = F ∩H, then F (H) 6= 0.

Proof. Suppose contrarily that F (H) = 0. Then F = F ∩ H = G contradicting
that F and G are distinct. �

3.2. Covectors and the facial weak order. It is well-known that the face poset
of the arrangement A can be interpreted as the poset of covectors of L(A) ordered
coordinatewise by 0 < − and 0 < +. Adding a maximum element to both posets
allows us to interpret the face lattice as a lattice of covectors. Here, we consider
instead a twisted order that relates to the facial weak order.

Definition 3.8. Given two covectors F,G ∈ L(A), let the order ≤L be defined by

F ≤L G ⇐⇒ G(H) ≤ F (H) for all H ∈ A,
where the order on signs is the natural order − < 0 < +.

We are ready to state our first main theorem, stating the equivalence between
three descriptions of the facial weak order using Definition 2.9, Proposition 2.14
and Definition 3.8 respectively.

Theorem 3.9. The following assertions are equivalent for two faces F,G ∈ FA:

(i) F ≤FW G in the facial weak order FW(A, B),
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(ii) there exists a sequence of faces F = F1, F2, . . . , Fn = G such that for each
i, |dimFi − dimFi+1| = 1 and either Fi ⊆ Fi+1 and MFi = MFi+1 or
Fi+1 ⊆ Fi and mFi = mFi+1 .

(iii) F ≤L G in terms of covectors.

Due to this theorem, the two classes of cover relations from Proposition 2.14
describe all the cover relations for the facial weak order.

Corollary 3.10. For two faces F,G ∈ FA, we have F lFW G in the facial weak
order if and only if |dimF−dimG| = 1 and either F ⊆ G and MF = MG or G ⊆ F
and mF = mG if and only if F ≤FW G, |dimF − dimG| = 1 and either F ⊆ G
or G ⊆ F .

Before proving Theorem 3.9, we need the following two lemmas.

Lemma 3.11. For F,G ∈ L(A), if F ≤L G then F ≤L F ◦G ≤L G ◦ F ≤L G.

Proof. Suppose F ≤L G, i.e., for all H ∈ A, we have G(H) ≤ F (H). Then

• if G(H) = + then G(H) = (G ◦ F )(H) = (F ◦G)(H) = F (H) = +,
• if G(H) = 0 then G(H) ≤ (G ◦ F )(H) = (F ◦G)(H) = F (H),
• if G(H) = − then G(H) = (G ◦ F )(H) = − ≤ (F ◦ G)(H) ≤ F (H). The

first inequality is an equality when F (H) = 0 else the second inequality
becomes an equality.

Therefore in all three cases we have G(H) ≤ (G ◦F )(H) ≤ (F ◦G)(H) ≤ F (H) for
arbitrary H giving us the desired result. �

Lemma 3.12. If F <L G and S(F,G) 6= ∅, then there exists F <L X <L G.

Proof. Since S(F,G) is non-empty, by the elimination axiom in Definition 3.3
for each H ∈ S(F,G) there exists a X ∈ L(A) such that X(H) = 0 and for
all H ′ /∈ S(F,G) then X(H ′) = (F ◦ G)(H ′) = (G ◦ F )(H ′). Thus let H be an
arbitrary hyperplane in S(F,G) and let X be the associated covector in L(A).

SinceH ∈ S(F,G) andG(H) ≤ F (H) we are forced to haveG(H) = − and F (H) = +.
Furthermore, since X(H) = 0 we see that our three faces are distinct, F 6= X 6= G.
It therefore suffices to show that G(H ′) ≤ X(H ′) ≤ F (H ′) for all H ′ ∈ Ar {H}.

Suppose first thatH ′ ∈ S(F,G). SinceG(H ′) ≤ F (H ′) and F (H ′) = −G(H ′) 6= 0
then G(H ′) = − and F (H ′) = +. Thus G(H ′) ≤ X(H ′) ≤ F (H ′) as desired.

Suppose next that H ′ /∈ S(F,G). Since G(H ′) ≤ F (H ′) and −G(H ′) 6= F (H ′)
or G(H ′) = F (H ′) = 0, there are three cases to consider:

• if F (H ′) = G(H ′) then F (H ′) = G(H ′) = (F ◦G)(H ′) = X(H ′),
• if F (H ′) = 0 and G(H ′) = − then X(H ′) = (F ◦G)(H ′) = G(H ′) < F (H),
• if F (H ′) = + and G(H ′) = 0 then X(H ′) = (F ◦G)(H ′) = F (H ′) > G(H).

Therefore G(H ′) ≤ X(H ′) ≤ F (H ′) and thus F <L X <L G. �

We now prove Theorem 3.9.

Proof of Theorem 3.9. We show that the points (i), (ii), and (iii) are equivalent by
showing the implications (ii) ⇒ (i) ⇒ (iii) ⇒ (ii).

(ii) ⇒ (i) By Proposition 2.14 the sequence F1, . . . , Fn gives a a chain of cov-

ers F = F1 lFW F2 lFW · · ·lFW Fn = G and therefore F ≤FW G as desired.
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(i) ⇒ (iii) Suppose F ≤FW G in the facial weak order, i.e., mF ≤PR mG

and MF ≤PR MG. To show F ≤L G it suffices to show G(H) ≤ F (H) for arbitrary
hyperplane H ∈ A. If G(H) = −, then G(H) ≤ F (H) always. If G(H) = + then
by Lemma 3.5, H /∈ S(MG). But since MF ≤PR MG then S(MF ) ⊆ S(MG), in
other words, H /∈ S(MF ). Applying Lemma 3.5 again gives F (H) = +. Finally,
if G(H) = 0 then by Lemma 3.5, H ∈ S(MG) r S(mG). Therefore H /∈ S(mG)
and since mF ≤PR mG we get H /∈ S(mF ). Thus by Lemma 3.5, F (H) 6= −
and G(H) = 0 ≤ F (H) as desired.

(iii) ⇒ (ii) We do this by induction on the path length from F to G. Our base

case of F = G trivially holds. Suppose now that F <L G. By Lemma 3.11, we
have F ≤L F ◦G ≤L G. There are three cases two consider:

• Suppose first that our inequalities are strict, i.e., F <L F ◦G <L G. Then
by induction F <L F ◦ G and F ◦ G <L G gives a chain of covers lFW

such that F = F1lFW · · ·lFWFilFWF ◦GlFWG1lFW · · ·lFWGj = G.
• If G = F ◦G, then by Proposition 3.4, F ⊆ G. In particular, there exists a

chain of faces, F = F0 ⊆ F1 ⊆ · · · ⊆ Fn = G such that |dimFi − dimFi−1| = 1
for all i by the face lattice being graded. It remains to show MFi

= MFi+1
.

Since Fi ⊆ Fi+1 then for eachH ∈ A, either Fi(H) = 0 or Fi(H) = Fi+1(H).
If Fi(H) = Fi+1(H) then H ∈ S(MF ) if and only if H ∈ S(MFi+1).
If Fi(H) = 0 then Fi+1(H) = − (else F (H) = 0 and G(H) = + by in-
clusion, contradicting the fact that F <L G). By Lemma 3.5 Fi(H) = 0
implies H ∈ S(MFi

) and Fi+1(H) = − implies H ∈ S(MFi+1
). There-

fore S(MFi
) = S(MFi+1

) implying MFi
= MFi+1

as desired.
• If F = F ◦G we have two further cases to consider. First, if

S(F,G) = {H ∈ A | F (H) = −G(H) 6= 0} = ∅

then G ◦ F = F ◦G = F . In particular, by Proposition 3.4, as F = G ◦ F
then G ⊆ F and using the sequences of faces G = Fn, Fn−1, . . . , F1 = F ,
then as in the previous case we have |dimFi − dimFi+1|, Fi ⊇ Fi+1

andmFi
= mFi+1

as desired. Finally, suppose S(F,G) 6= ∅. By Lemma 3.12
there exists a X such that F <L X <L G. Thus, by inducting on this
gives us the desired result. �

Moreover, using the covector definition, we show that the structure of an interval
in FW(A, B) is not altered by a change of base region as long as the new region is
below the bottom element of our interval.

Proposition 3.13. Let X,Y be covectors in L(A) such that X ≤FW Y in FW(A, B).
If B′ is a region such that B′ ≤FW X in FW(A, B), then the intervals [X,Y ]
in FW(A, B) and in FW(A, B′) are isomorphic.

Proof. Changing the base region from B to B′ switches the orientation on any
hyperplane in the separation set S(B,B′) and leaves the other hyperplanes with
the same orientation. Since B′ ≤FW X, we have X(H) = − whenever H ∈ S(B,B′)
where B is the base region. Hence, Z(H) = − as well whenever X ≤FW Z. After
the reorientation, X(H) = + = Z(H) for H ∈ S(B,B′). As the orientations of the
hyperplanes not in S(B,B′) are unchanged, we conclude that the interval [X,Y ] is
the same in FW(A, B′) as in FW(A, B). �
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We finally derive a criterion to compare two faces of the base region B in the
facial weak order.

Corollary 3.14. For any faces F,G of the base region B, we have F ⊇ G if and
only if F ≤FW G. Similarly, for any faces F,G of the region −B opposite to the
base region B, we have F ⊆ G if and only if F ≤FW G.

Proof. Consider a hyperplane H ∈ A. Since F is a face of the base region B, we
have F (H) ≥ 0 by Corollary 3.6. Since F ⊇ G, we have G(H) = 0 or G(H) = F (H)
by Proposition 3.4. Therefore, F (H) ≥ G(H) in both cases. We conclude that F ≤FW G.
The converse can be deduced from Proposition 3.4. The proof for the second as-
sertion is identical. �

3.3. Root inversion sets. We now provide an alternative combinatorial encoding
of the covectors in terms of certain sets of normal vectors that will be related to
the geometry of the corresponding zonotope in the next section. Recall that, by
convention in this paper, eH is the fixed normal vector to the hyperplane H ∈ A
such that the base region B lies in H+. We need the following three sets:

Φ+
A := {eH | H ∈ A} , Φ−A := {−eH | H ∈ A} , and ΦA := Φ+

A ∪ Φ−A.

We call the elements in ΦA the roots2 of the arrangement A and the elements
in Φ+

A and Φ−A the positive and negative roots respectively. For X ⊆ ΦA, we denote

by X+ :=X ∩ Φ+
A the positive part and by X− :=X ∩ Φ−A the negative part. An

example of this construction is given in Figure 2 where the roots give the root
system for the type A2 Coxeter arrangement.

Definition 3.15. The root inversion set of a face F ∈ FA is

R(F ) = {e ∈ ΦA | 〈x, e〉 ≤ 0, for some x ∈ int(F )} .

The following lemma shows the relationship between a root being present in a
root inversion set and the sign of the covector for the associated hyperplane. An
example of this relationship can be seen in Figure 5 and Figure 6.

Lemma 3.16. For any F ∈ FA and H ∈ A,

(i) F (H) = − if and only if eH ∈ R(F ) and −eH /∈ R(F ).
(ii) F (H) = 0 if and only if eH ∈ R(F ) and −eH ∈ R(F ).

(iii) F (H) = + if and only if eH /∈ R(F ) and −eH ∈ R(F ).

In other words,

R(F )+ = {eH | H ∈ A, F (H) ≤ 0} and R(F )− = {−eH | H ∈ A, F (H) ≥ 0} .

Proof. We show the first case, the other cases being similar. Recall that e ∈ R(F )
if and only if 〈x, e〉 ≤ 0 for x ∈ int(F ). Furthermore, since −e /∈ R(F ) we
have 〈x, e〉 < 0. By definition of the sign map, since 〈x, e〉 < 0 we have σH(x) = −,
i.e., F (H) = − as desired.

Conversely if F (H) = − then σH(x) = − for x ∈ int(F ) ⊆ F . Then 〈x, e〉 < 0
implying that e ∈ R(F ). Furthermore, 〈x,−e〉 > 0 gives −e /∈ R(F ) as desired. �

Corollary 3.17. For any F ∈ FA and e ∈ ΦA, we have R(F ) ∩ {e,−e} 6= ∅.

2This terminology is once again inherited from Coxeter systems, but it should be noted that
these roots do not necessarily form root systems.
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Figure 6. The type A2 Coxeter arrangement. On the left is the
zonotope created by the τ map in Lemma 3.21. On the right
we label each face with the root inversion set for that face. See
Example 3.20 and Example 3.23.

Following up Theorem 3.9, we are now ready to show our second main result,
providing two more equivalent descriptions of the facial weak order. Recall that
for X ⊆ ΦA, we set X+ :=X ∩ Φ+

A and X− :=X ∩ Φ−A.

Theorem 3.18. The following assertions are equivalent for two faces F,G ∈ FA:

(iii) F ≤L G in terms of covectors,
(iv) R(F )rR(G) ⊆ Φ−A and R(G)rR(F ) ⊆ Φ+

A,
(v) R(F )+ ⊆ R(G)+ and R(F )− ⊇ R(G)−.

Proof of Theorem 3.18. The points (iv) and (v) are clearly equivalent. We thus
just need to prove the equivalence between (iii) and (v).

(iii) ⇒ (v) Assume that F ≤L G so that G(H) ≤ F (H) for all H ∈ A by

Theorem 3.9. Then for any H ∈ A, we obtain by Lemma 3.16 that

• if eH ∈ R(F ), then F (H) ≤ 0, so that G(H) ≤ 0, so that eH ∈ R(G),
• if −eH ∈ R(G), then G(H) ≥ 0, so that F (H) ≥ 0, so that −eH ∈ R(F ).

Therefore R(F )+ ⊆ R(G)+ and R(F )− ⊇ R(G)−.

(v) ⇒ (iii) Assume that R(F )+ ⊆ R(G)+ and R(F )− ⊇ R(G)−. Then for

any H ∈ A, we obtain by Lemma 3.16 that

• if G(H) = +, then eH /∈ R(G), so that eH /∈ R(F ), so that F (H) = +,
• if G(H) = 0, then −eH /∈ R(G), so that −eH /∈ R(F ), so that F (H) ≥ 0.

Therefore G(H) ≤ F (H) for all H ∈ A, so that F ≤L G as desired. �

3.4. Zonotopes. We conclude this section with an interpretation of the root in-
version sets in terms of the geometry of certain polytopes associated to hyperplane
arrangements.

Recall that a polytope is the convex hull of finitely many points in V , or equiv-
alently a bounded intersection of finitely many half-spaces of V . The faces of P
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are its intersections with its supporting hyperplanes (and the faces ∅ and P itself),
and its facets are its codimension 1 faces. For a face F of a polytope P , the inner
primal cone of F is the cone C(F ) generated by {u− v | u ∈ P , v ∈ F}, and the
outer normal cone of F is the cone C�(F ) generated by the outer normal vectors
of the facets of P containing F . Note that these two cones are dual to one another.
The normal fan of P is the complete polyhedral fan formed using the outer normal
cones of all faces of P . See [Zie95] for more details.

Here, we still consider a normal vector eH to each hyperplane H ∈ A such that
the base regionB is contained in the positive half-spaceH+ = {v ∈ V | 〈eH , v〉 ≥ 0}.
We are interested in the corresponding zonotope defined below. Details on zono-
topes can be found in the book by G. M. Ziegler [Zie95] and in the article by
P. McMullen [McM71].

Definition 3.19. The zonotope ZA of the arrangement A is the convex polytope

ZA :=

{ ∑
H∈A

λHeH

∣∣∣∣ − 1 ≤ λH ≤ 1 for all H ∈ A
}
.

Example 3.20. The zonotope for a Coxeter arrangement is called a permutahe-
dron, see [Hoh12]. We have represented on the left of Figure 6 the zonotope of
the arrangement of Example 2.1 and Figure 2. It has 6 vertices corresponding to
the 6 regions of the arrangement, and 6 edges corresponding to the 6 rays of the
arrangement.

Note that this zonotope depends upon the choices of the normal vectors eH of the
hyperplanes H ∈ A, but its combinatorics does not. Namely, P. H. Edelman gives
in [Ede84, Lemma 3.1] a bijection between the nonempty faces of the zonotope ZA
and the the faces FA of the arrangement A using the τ map (given in the following
lemma) which was first defined by McMullen in [McM71, p. 92].

Lemma 3.21. The map τ defined by

τ(F ) =

{ ∑
F 6⊆H

F (H)eH +
∑
F⊆H

λHeH

∣∣∣∣ − 1 ≤ λH ≤ 1 for all F ⊆ H ∈ A
}

is a bijection from the faces FA to the nonempty faces of the zonotope ZA. More-
over, F is the outer normal cone C�

(
τ(F )

)
of τ(F ), so that the fan of the arrange-

ment A is the normal fan of ZA.

We now relate the root inversion sets of Subsection 3.3 to the faces of the zono-
tope ZA.

Proposition 3.22. The cone of the root inversion set R(F ) is the inner primal
cone of the face τ(F ) in the zonotope ZA, i.e.,

cone
(
R(F )

)
= C

(
τ(F )

)
and R(F ) = C

(
τ(F )

)
∩ ΦA.

Proof. Let F be an arbitrary face in FA and let u be a point in ZA. By con-
struction we have u =

∑
H∈A λHeH where |λH | ≤ 1 for all H ∈ A. Let v be

a point in τ(F ). The inner primal cone associated to F in the zonotope ZA,
is C

(
τ(F )

)
= {u− v | u ∈ ZA and v ∈ τ(F )}.

More explicitly, ifH ∈ AF then the eH component of u−v is given by (λH − λ′H)eH
where |λH | ≤ 1 and |λ′H | ≤ 1. In particular ±eH ∈ C

(
τ(F )

)
. If H /∈ AF then the

component of eH for u− v is given by (λH − µH)eH where |λH | ≤ 1 and µH = ±1.
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Recall from Lemma 3.21 that µH = −1 if F (H) = −, etc. Suppose µH = +1,
then−eH ∈ C

(
τ(F )

)
, but eH /∈ C

(
τ(F )

)
. Similarly, when µH = −1, eH ∈ C

(
τ(F )

)
and −eH /∈ C

(
τ(F )

)
. �

Example 3.23. An example of the equality between the cone of the root inversion
set with the inner primal cone of the face of the associated zonotope can be seen in
Figure 6 for the type A2 Coxeter arrangement. In Figure 6 we have the zonotope ZA
on the left and the root inversion set for each face on the right. For a face F of A,
the cone of the root inversion set of F is the same as the inner primal cone of τ(F )
in ZA.

4. Lattice properties of the facial weak order

It was shown in [DHP18] that the facial weak order on Coxeter arrangements
is a lattice. The aim of this section is to extend this result to any hyperplane
arrangement with a lattice of regions.

Theorem 4.1. If A is an arrangement where PR(A, B) is a lattice, then FW(A, B)
is a lattice.

In order to prove this result we use the BEZ lemma which provides a local
criterion to characterize finite posets which are lattices.

Lemma 4.2 ([BEZ90, Lemma 2.1]). If L is a finite, bounded poset such that the
join x ∨ y exists whenever x and y both cover some z ∈ L, then L is a lattice.

So the proof of Theorem 4.1 reduces to proving the following statement.

Theorem 4.3. Let A be a hyperplane arrangement where PR(A, B) is a lattice and
let X,Y, Z be three faces of A. If Z lFW X and Z lFW Y , then the join X ∨FW Y
exists.

The proof of this theorem is the aim of the next two sections. The idea of the
proof is as follows. We first consider our cover relations ZlFWX and ZlFWY . We
know from Corollary 3.10 that this is equivalent to |dimZ−dimX| = 1, Z ≤FW X,
and either Z ⊆ X or X ⊆ Z and similarly for Y . By symmetry of X and Y , we
thus obtain the following three cases:

(1) X ∪ Y ⊆ Z and dimX = dimY = dimZ − 1,
(2) Z ⊆ X ∩ Y and dimX = dimY = dimZ + 1, and
(3) X ⊆ Z ⊆ Y and dimX + 1 = dimY − 1 = dimZ.

In each case we consider the subarrangement associated to the largest face contained
in all three faces. Namely, the subarrangement AX∩Y = {H ∈ A | X ∩ Y ⊆ H} for
case (1), the subarrangement AZ = {H ∈ A | Z ⊆ H} for case (2) and the subar-
rangement AX = {H ∈ A | X ⊆ H} for case (3) .

In the next subsection we show that the join in the poset of regions of a sub-
arrangement can be extended to a join in the poset of regions of the arrangement
itself. Finally, for each case we find the join inside the appropriate subarrangement,
culminating in the proof of Theorem 4.3.

Before we begin, we give a conjecture stating that the converse of Theorem 4.1
is true as well.

Conjecture 4.4. For any hyperplane arrangement A and any base region B of A,
the poset of regions PR(A, B) is a lattice if and only if the facial weak order FW(A, B)
is a lattice.
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4.1. Joins and subarrangements of faces. A subarrangement of an arrange-
ment A is a subset A′ of A. There is a natural map FA → FA′ that projects each
face G in FA to the smallest face GA′ in FA′ such that the relative interior of G
is contained in the relative interior of GA′ , i.e., for H ∈ A′ then GA′(H) = G(H).
Note that this map is surjective and preserves the facial weak order: if F ≤FW G
in A, then FA′ ≤FW GA′ in A′.

We particularly focus on the following special subarrangements. For a face F ∈ FA,
letAF := {H ∈ A | F ⊆ H} be the subarrangement ofA with all hyperplanes which
contain F . This subarrangement AF is known as the support of F or the localiza-
tion of A to F . We denote by πF the projection map FA → FAF

described above
in this specific case, and we often use the shorthand GF for πF (G) = GAF

. Note
that the surjection πF restricts to a bijection between {G ∈ FA | F ⊆ G} and FAF

.

Example 4.5. Figure 7 gives an example of these maps for the subarrangementAF1

of the type A2 arrangement discussed in Example 2.1. Since H2 is the only hyper-
plane containing F1, our subarrangement contains one hyperplane AF1 = {H2}.
Then πF1 : FA → FAF1

is the map with the following equalities (some of which are

shown in the figure, but not all).

πF1
(R2) = πF1

(F2) = πF1
(R3) = πF1

(F3) = πF1
(R4)

πF1(F1) = πF1(0) = πF1(F4)

πF1(R1) = πF1(F0) = πF1(B) = πF1(F5) = πF1(R5)

It can be seen in the figure that πF1 is a bijection from {R1, R2, F1} to AF1 .

Given an arrangement A whose poset of regions PR(A, B) is a lattice, it is
not necessary that any arbitrary subarrangement will also have a lattice of regions.
However, when the subarrangement is associated to a face, then the lattice property
of the poset of regions is preserved through facial intervals. This follows from the
well-known fact that an interval of a lattice is a lattice. This lattice property,
combined with the fact that the base region of a lattice of regions is always simplicial
(see [Ede84, Theorem 3.1 and 3.4]) gives the following proposition.

Proposition 4.6. Let A be an arrangement whose poset of regions PR(A, B) is
a lattice. For a face F ∈ FA the subarrangement AF is a central subarrangement
and PR(AF , BF ) is a lattice of regions with simplicial base region BF .

H3H1

H2

F0

F1

F2F3

F4

F5
B

R1

R2

R3

R4

R5

H2

πF1
(0)

πF1
(B) = πF1

(F0)

πF1
(R3) = πF1

(F3)

Figure 7. The map πF1
from an arrangement A to a subarrange-

ment AF1
. See Example 4.5.
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Lemma 4.7. For any three faces X,Y, Z ∈ FA such that [X,Y ] is an interval
in FW(A, B) and Z ⊆ X ∩ Y , then the interval [X,Y ] in FW(A, B) is isomorphic
to [XZ , YZ ] in FW(AZ , BZ).

Proof. We first prove that the map W 7→WZ defines an injective order preserving
map from [X,Y ] to [XZ , YZ ]. Let W ∈ [X,Y ]. We aim to show Z is a face of W .
By Proposition 3.4 it suffices to show Z(H) = W (H) when Z(H) 6= 0. Suppose
that there is H ∈ A such that Z(H) 6= W (H) and Z(H) 6= 0. This implies
Z(H) = X(H) = Y (H). As W ∈ [X,Y ], then Y (H) ≤W (H) ≤ X(H). Hence
W (H) = X(H) = Z(H), a contradiction. Therefore, Z is a face of W . Thus, the
localization map [X,Y ]→ [XZ , YZ ] is injective.

The inverse map [XZ , YZ ]→ [X,Y ] is defined by extending WZ to a covector W
with W (H) = Z(H) for H ∈ A r AZ . As this map is also order preserving, the
proof is complete. �

This lemma gives us another way to view facial intervals as the faces of a subar-
rangement. With the above lemma, given a facial interval [mF ,MF ] for a face F ,
then mF (resp. MF ) is the region in A associated to the base region BF (resp. to
its opposite region −BF ) in FAF

. We now show that a join in the poset of regions
of a subarrangement extends to a join in the poset of regions of the arrangement
itself. The following is possible by Proposition 4.6.

Proposition 4.8. For any three faces X,Y, Z ∈ FA such that Z ⊆ X ∩ Y , if
there exists a face W containing Z such that WZ = XZ ∨FW YZ in FW(AZ , BZ)
then W = X ∨FW Y in FW(A, B).

Proof. Suppose U ∈ FA is a face such that X ≤FW U and Y ≤FW U . Since
the projection map πF : FA → FAF

preserves the facial weak order, we have
that WZ = XZ ∨FW YZ ≤FW UZ in the facial weak order of the subarrangement.
In other words, for allH ∈ AZ , we have UZ(H) ≤WZ(H), and thus U(H) ≤W (H).

Next let H ′ be a hyperplane in ArAZ . Since H ′ /∈ AZ , we have Z(H ′) 6= 0. Fur-
thermore, by Proposition 3.4, 0 6= Z(H ′) = X(H ′) = Y (H ′) = W (H ′) since Z ⊆ X ∩ Y
and Z ⊆W . Then, since X ≤FW U , we have U(H ′) ≤ X(H ′) = W (H ′).

In other words, U(H) ≤ W (H) for all H ∈ A. Therefore W ≤FW U imply-
ing W = X ∨FW Y . �

4.2. Joins in subarrangements. As discussed, we now describe the three distinct
cases that arise using the cover relations of the facial weak order. Then, for each
case, we restrict ourselves to the subarrangement associated to the largest face
contained in all three faces and find the join in the subarrangement. Combining
these results with Proposition 4.8 proves Theorem 4.3.

Consider three faces X,Y, Z ∈ FA such that ZlFWX and ZlFWY . Recall that
by Corollary 3.10, we have ZlFWX if and only if |dimZ−dimX| = 1, Z ≤FW X,
and either Z ⊆ X or X ⊆ Z, and similarly for Y . By symmetry on X and Y , this
gives us three different cases:

(1) X ∪ Y ⊆ Z and dimX = dimY = dimZ − 1,
(2) Z ⊆ X ∩ Y and dimX = dimY = dimZ + 1, and
(3) X ⊆ Z ⊆ Y and dimX + 1 = dimY − 1 = dimZ.

We now look at each case individually. We have broken down their proofs into
three subsections to better facilitate their reading. We let B(R) denote the set of
boundary hyperplanes of a region R.
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4.2.1. First case: X ∪ Y ⊆ Z and dimX = dimY = dimZ − 1. Since X ∩ Y is the
largest face contained in X, Y and Z, we restrict to the subarrangement AX∩Y and
find the join there. An example (in rank 2) is given in Figure 8. By Proposition 4.6,
the poset of regions PR(AX∩Y , BX∩Y ) is a lattice. Thus, without loss of generality,
it suffices to prove the following proposition.

Proposition 4.9. Consider an arrangement A whose poset of regions is a lat-
tice with three faces X, Y and Z such that Z lFW X, Z lFW Y , {0} = X ∩ Y
and X ∪ Y ⊆ Z. Then {0} = X ∩ Y = X ∨FW Y .

Proof. We first prove that X ≤FW X ∩ Y = {0}. Assume by contradiction that
there is H ∈ A such that X(H) = −. Since X ⊆ Z, we obtain that Z(H) = − by
Proposition 3.4. Moreover, since Z lFW Y , we have Y (H) ≤ Z(H) = −.

Let [mZ ,MZ ] be the facial interval in the poset of regions associated to Z. As
dimX = dimY = dimZ − 1, there exist boundary hyperplanes H1 and H2 of mZ

such that X = Z∩H1 and Y = Z∩H2. Since X 6= Z 6= Y , we obtain by Lemma 3.7
that Z(H1) 6= 0 6= Z(H2). Since 0 = X(H1) ≤ Z(H1) and 0 = Y (H2) ≤ Z(H2), we
conclude that Z(H1) = Y (H1) = + and Z(H2) = X(H2) = +.

Let A′ := {H1, H2, H} be the subarrangement of A with these three hyperplanes.
Since Z(H1) = Z(H2) = + and Z(H) = −, the face ZA′ is a region in A′. More-
over, we have (X ∩Y )A′(H) = 0 because (X ∩Y )(H) = 0. We thus obtain that H1

and H2 are the only boundary hyperplanes of ZA′ in A′. Therefore, for any re-
gion R ∈ RA′ r {ZA′}, then either H1 or H2 is in the separation set S(R,ZA′).
Since ZA′(H1) = ZA′(H2) = +, then either R(H1) = − or R(H2) = −. It follows
that no region of A′ is all positive, a contradiction since the base region BA′ is all
positive.

We conclude that X(H) ≥ 0 for all H ∈ A, so that X ≤FW X ∩ Y = {0}. By
symmetry, we also obtain that Y ≤FW X ∩ Y = {0}.

H2H1

YX

...
...

B = Z

0 = X ∩ Y

Figure 8. The construction of the join for the first case when
X ∪ Y ⊆ Z.



THE FACIAL WEAK ORDER ON HYPERPLANE ARRANGEMENTS 21

Finally, to prove that {0} = X ∩Y = X ∨FW Y , we consider an arbitrary face U
in A such that X ≤FW U and Y ≤FW U . Then, U(H) ≤ min

(
X(H), Y (H)

)
for

all H ∈ A. Since (X ∩ Y )(H) = 0 ≤ min
(
X(H), Y (H)

)
for all H ∈ A, the faces X

and Y of FA are contained in B by Corollary 3.6. By Proposition 4.6, B is simplicial
and therefore, there exists H3, H4 in B(B) such that X ∩ Y = X ∩H3 = Y ∩H4

with X(H) = Y (H) = 0 for all H ∈ B(B)r {H3, H4}. Note that H3 and H4

could be the same H1 and H2 as before. Therefore, 0 = min
(
X(H), Y (H)

)
for all H ∈ B(B). We conclude that U(H) ≤ 0 for all H ∈ B(B). By Corol-
lary 3.6, U(H) ≤ 0 for all H ∈ A. Therefore, X ∩ Y ≤FW U . �

4.2.2. Second case: Z ⊆ X ∩ Y and dimX = dimY = dimZ + 1. Since Z is the
largest face contained in X, Y and Z, we restrict to the subarrangement AZ and
find the join there. An example (in rank 2) is given in Figure 9. By Proposition 4.6,
the poset of regions PR(AZ , BZ) is a lattice. Therefore, without loss of generality,
we consider an arrangement A whose poset of regions is a lattice with distinct
faces X, Y , and Z = {0} such that {0} = Z lFW X and {0} = Z lFW Y . Observe
that this implies by Corollary 3.6 that X and Y are rays of the region −B opposite
to the base region B. Since PR(A, B) is a lattice, −B is simplicial, and therefore
there is a 2-dimensional face W of −B containing both X and Y . This gives us the
join of X and Y .

Proposition 4.10. Consider an arrangement A whose poset of regions is a lattice
with distinct faces X, Y , and Z = {0} such that {0} = ZlFWX and {0} = Z lFW Y .
Then X ∨FW Y = W where W is the 2-dimensional face of −B containing both X
and Y .

Proof. Since X ⊆ W are all faces of −B, we have X ≤FW W by Corollary 3.14.
Similarly, we have Y ≤FW W .

H1H2

Y X

W

...
...

B

0 = Z

Figure 9. The construction of the join for the second case when
Z ⊆ X ∩ Y .
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Conversely, consider a face U ∈ FA such that X ≤FW U and Y ≤FW U .
For any H ∈ A, we have X(H) ≤ 0 by Corollary 3.6 since X is a face of −B.
Since X ≤FW U , we have U(H) ≤ X(H) ≤ 0 for all H ∈ A, which implies
that U is a face of −B by Corollary 3.6. Since X ≤FW U , Corollary 3.14 implies
that X ⊆ U . Similarly, Y ⊆ U and thus W ⊆ U . We conclude that W ≤FW U by
Corollary 3.14. �

4.2.3. Third case: X ⊆ Z ⊆ Y and dimX+1 = dimY −1 = dimZ. Since X is the
largest face contained inX, Y and Z, we restrict to the subarrangementAX and find
the join there. An example (in rank 2) is given in Figure 10. By Proposition 4.6, the
poset of regions PR(AX , BX) is a lattice. Therefore, without loss of generality, we
consider an arrangement A whose poset of regions is a lattice with three faces X =
{0}, Y and Z such that ZlFWX = {0}, ZlFWY and {0} = X ⊆ Z ⊆ Y . Observe
that this implies that Z is a ray of the base region B by Corollary 3.6. Remember
that for two faces F and G, we denote by F−G the reorientation of F by G (see
Subsection 3.1). Observe that Z is a ray of the 2-dimensional cone Y−Z , and let W
denote its other ray. We aim to prove the following proposition.

Proposition 4.11. Consider an arrangement A whose poset of regions is a lat-
tice with three faces X = {0}, Y and Z such that Z lFW X = {0}, Z lFW Y
and {0} = X ⊆ Z ⊆ Y . Then X ∨FW Y = −W where W is the ray of Y−Z distinct
from Z.

We will prove that X ∨FW Y = −W in Lemma 4.14 and Lemma 4.15. We first
identify two crucial boundary hyperplanes of the base region B.

Lemma 4.12. There exists two unique boundary hyperplanes H1 and H2 of the
base region B such that {0} = X = Z ∩H1 and Z = Y ∩H2.

Proof. As Z is a ray of the (simplicial) base region B, there is a unique H1 ∈ B(B)
such that {0} = X = Z ∩ H1. For the second hyperplane, we first claim that

H2H1

Z W

−W

Y−Z

Y

...
...0 = X

Figure 10. The construction of the join in the third case when
X ⊆ Z ⊆ Y .
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there is a unique boundary hyperplane H2 of the base region such that Y (H2) = −
while Z(H2) = 0. Indeed, if there were two such hyperplanes H2 and H ′2, we
would have Z ( Y ∩ H2 ( Y contradicting that dimY = dimZ + 1. Moreover,
since Z ≤FW Y , there is no hyperplane H such that Y (H) = + and Z(H) = 0. We
conclude that H2 is the unique hyperplane of B(B) such that Z = Y ∩H2. �

Lemma 4.13. Consider the two boundary hyperplanes H1 and H2 of the base
region given in Lemma 4.12. Then

0 = W (H1) = X(H1) < Y (H1) = Z(H1) = +,

− = Y (H2) < X(H2) = 0 = Z(H2) < W (H2) = +, and

0 = W (H) = X(H) = Y (H) = Z(H) for all H ∈ B(B)r {H1, H2}.

Proof. Since X = {0}, we have X(H) = 0 for all H ∈ B(B). By definition of H1

and H2 and Lemma 3.7, we have X(H1) = 0 6= Z(H1) and Z(H2) = 0 6= Y (H2).
Since Z ≤FW X and Z ≤FW Y , this implies that Z(H1) = + and Y (H2) = −.
Moreover, as Z is a face of Y , we obtain that Y (H1) = +. Finally, for any hy-
perplane H ∈ B(B)r {H1, H2}, we have Z(H) = 0 by uniqueness of H2, and
therefore Y (H) = 0 since dimY = dimZ + 1 and Z = Y ∩H2.

By definition of the reorientation operation, we thus obtain that Y−Z(H1) = +
and Y−Z(H2) = +, while Y−Z(H) = 0 for all H ∈ B(B)r {H1, H2}. In other
words, Y−Z is the 2-dimensional face of the base region B given by its intersection
with all hyperplanes of B(B)r {H1, H2}. Finally, since W is the ray of Y−Z
distinct from Z, we obtain that W (H1) = 0, that W (H2) = + and that W (H) = 0
for all H ∈ B(B)r {H1, H2}. �

Lemma 4.14. We have X lFW −W and Y ≤FW −W in the facial weak order.

Proof. By Lemma 4.13, W (H) ≥ 0 for all H ∈ B(B), therefore W (H) ≥ 0 for
all H ∈ A by Corollary 3.6. We therefore obtain that both W and Z are rays of
the base region B, and thus Y−Z is a 2-dimensional face of B as well.

SinceX = {0} andW is a ray of the base regionB, we have that−W (H) ≤ X(H)
for any H ∈ A so that X ≤FW −W . Since X ⊆ −W and dim(−W )− dim(X) = 1,
we obtain that X lFW −W by Proposition 2.14.

Assume now by contradiction that Y 6≤FW −W . Then there exists H ∈ A such
that Y (H) < −W (H). Since W (H) ≥ 0, it implies that Y (H) = − and W (H) = 0.
But since Y−Z(H) ≥ 0, we obtain by definition of reorientation that Z(H) = 0
and Y−Z(H) = +. We conclude that W (H) = Z(H) = 0 while Y−Z = +, contra-
dicting the fact that Y−Z is the 2-dimensional face with rays W and Z. �

Lemma 4.15. We have X ∨FW Y = −W .

Proof. Consider a face U of FA such that X ≤FW U and Y ≤FW U . We have
that U(H) ≤ X(H) = 0 for all H ∈ A and, moreover, U(H2) ≤ Y (H2) = −. There-
fore, we obtain that U is a face of −B and −W ⊆ U . We conclude that −W ≤FW U
by Corollary 3.14. �

4.3. Further lattice properties of the facial weak order. We end this section
by describing some lattice properties of the facial weak order. In particular we show
that the lattice is self-dual, show the poset of regions is a sublattice, describe all
the join-irreducible elements and show semidistributivity.
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4.3.1. Duality. Recall that the dual of a lattice (L,≤) is the order (L,≤op) where
for u, v ∈ L, we have u ≤ v if and only if v ≤op u. A lattice is self-dual if it
is isomorphic to its dual. As with the poset of regions, the facial weak order is
self-dual. This follows from the fact that the poset of regions is itself self-dual and
from the fact that the negative of every covector must also be in the set of covectors
by the definition of oriented matroid.

Proposition 4.16. The map F 7→ −F := {−v | v ∈ F} is a self-duality of the fa-
cial weak order FW(A, B).

4.3.2. Sublattice. In this subsection we show that ifA is simplicial, not only is PR(A, B)
an induced subposet of FW(A, B) by Remark 2.12 and a lattice by Theorem 2.3,
but it is in fact a sublattice of FW(A, B). Recall that a sublattice L′ of a lattice L
is an induced subposet such that u ∨ v ∈ L′ and u ∧ v ∈ L′ for any u, v ∈ L′. The
proof requires the following lemma which, just like the BEZ lemma, gives us a local
way to verify if a subposet is a sublattice of a lattice, see [Rea16, Lemma 9-2.11].
Recall that a poset is connected when the transitive closure of its comparability
relation forms a single equivalence class.

Lemma 4.17. If P is a connected finite induced subposet of a lattice L such
that x ∨ y ∈ P for all x, y, z ∈ P with zlx and zly, and x∧y ∈ P for all x, y, z ∈ P
with xl z and y l z, then P is a sublattice of L.

With this tool, we can prove the following statement.

Proposition 4.18. For a simplicial arrangement A, the lattice of regions is a
sublattice of the facial weak order FW(A, B).

Proof. By Remark 2.12, PR(A, B) is an induced subposet of FW(A, B). It is clearly
connected as it contains the minimal and maximal elements of FW(A, B). Finally,
by Proposition 4.16, we just need to prove one of the two criteria of Lemma 4.17.
Consider thus three distinct regions X,Y, Z ∈ RA such that ZlPRX and ZlPRY .

HXHY

Z

X Y

V

...
...

W

Figure 11. The construction of the join when X and Y are regions.
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See Figure 11 for a (rank 2) example. Since Z lPR X, there is a hyperplane HX

separating X and Z such that S(X) = S(Z) ∪ {HX}. Similarly, there is a hyper-
plane HY separating Y and Z such that S(Y ) = S(Z)∪{HY }. Since Z is simplicial,
the face W :=Z ∩HX ∩HY has codimension 2. We thus consider the rank 2 sub-
arrangement AW . Since Z(HX) = Z(HY ) = +, the face ZW is the base region
of AW . Moreover, since XW (HX) = X(HX) = − and YW (HY ) = Y (HY ) = −,
the join V of XW and YW in AW satisfies V (HX) = V (HY ) = − and is thus the
opposite of the base region in AW . By Proposition 4.8, the join of X and Y is
the face U of A containing W and such that UW = V . We conclude that X ∨ Y
is full dimensional, thus is a region. This concludes the proof by Lemma 4.17 and
Proposition 4.16. �

4.3.3. Join-irreducible elements. We next aim to find all the join-irreducible ele-
ments of the facial weak order. An element x of a finite lattice L is join-irreducible
if x 6=

∨
L′ for all L′ ⊆ L r {x}. Equivalently, x is join-irreducible if and only if

it covers exactly one element x? of L. A meet-irreducible element y is defined in a
similar manner where y? is the unique element covering y.

For ease of notation, we denote by JIrr(FW) and JIrr(PR) (resp. MIrr(FW)
and MIrr(PR)) the sets of join-irreducible (resp. meet-irreducible) elements in the
facial weak order and in the poset of regions.

It turns out that the join-irreducible elements of the facial weak order are
characterized by the join-irreducible elements of the poset of regions. Each re-
gion R ∈ JIrr(PR) gives a join-irreducible face R in the facial weak order. Addi-
tionally, the facet between R and the unique region R? it covers in the poset of
regions is also a join-irreducible element in the facial weak order. We give a small
lemma before characterizing the join-irreducible elements in the facial weak order
of a simplicial arrangement.

Lemma 4.19. Suppose A is a simplicial hyperplane arrangement and F a face of
the arrangement. There exists exactly codim(F ) facets of F weakly below F in the
facial weak order.

Proof. If F is a codimension codim(F ) face then its span is the intersection of at
least codim(F ) hyperplanes. Since A is simplicial, exactly codim(F ) of these hy-
perplanes bound the base region of AF . Let H be this set of bounding hyperplanes.
For each H ∈ H there exists a unique face G such that G(H) = + and G(H ′) = 0
for all H ′ ∈ Hr{H} since the base region must be simplicial by Proposition 4.6. In
other words, there exists exactly codim(F ) many codimension codim(F ) − 1 faces
covered by F in the facial weak order. �

Proposition 4.20. Suppose A is a simplicial hyperplane arrangement and let F
be a face with associated facial interval [mF ,MF ]. Then F ∈ JIrr(FW) if and only
if MF ∈ JIrr(PR) and codim(F ) ∈ {0, 1}.

Proof. We first suppose that F is join-irreducible in FW(A, B). Since a join-irre-
ducible element can cover at most one element, Lemma 4.19 implies codim(F ) ≤ 1.

Suppose first that codim(F ) = 0. Then F is a region and mF = MF = F . Let F?
be the unique face covered by F . By Corollary 3.10, |dim(F )− dim(F?)| = 1 and
therefore codim(F?) = 1. Therefore, there exists a unique hyperplane H bound-
ing MF such that H ∈ S(MF ) and H ∩MF = F?. Thus, there is a unique region R
such that S(R) = S(MF )r {H}. In other words, MF ∈ JIrr(PR).
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Suppose next that codim(F ) = 1. Again by Corollary 3.10 only codimen-
sion 0 and codimension 2 faces can be covered by F in the facial weak order. By
Lemma 4.19 there exists at least one codimension 0 face covered by F . Therefore F?
is a region and, as F is join-irreducible, F does not cover any codimension 2 face. If
contrarily MF /∈ JIrr(PR) then there exists a boundary hyperplane H of MF such
that H ∩MF 6= F . Let G = H ∩MF . Then G ∩ F is a face with codimension 2
such that G ∩ F ⊆ F and MF = MG. Thus G ∩ F is a codimension 2 face covered
by F , a contradiction.

To show the other direction, we conversely suppose that MF ∈ JIrr(PR) and
codim(F ) ∈ {0, 1}. Since MF ∈ JIrr(PR) it covers the unique region MF ? and
there is a unique face G between the two regions with facial interval [MF ?,MF ].
If codim(F ) = 0 then F = MF and, since only codimension 1 faces can be covered
by F , then G is the unique facet of F which is covered by F , i.e., F ∈ JIrr(FW). If
codim(F ) = 1 then F = G and MF ? lFW F by construction. To prove F doesn’t
cover another face it suffices to observe that if there was another face G′ covered
by F it must be of codimension 2 by Lemma 4.19. But then, MF ∩ G′ = G′

since G′ ⊆ F ⊆MF . In other words, there exists a second facet to MF weakly
below MF by simpliciality, a contradiction. �

As we saw previously, these join-irreducibles come in pairs. This comes from
introducing the edges of the poset of regions as vertices in the facial weak order.

Corollary 4.21. Let F and F ′ be faces of codimension 1 and 0 respectively such
that F lFW F ′. Then F is join-irreducible in the facial weak order if and only if F ′

is join-irreducible in the facial weak order.

Proof. If F is a codimension 1 face then there exists a unique codimension 0 face
covering it. Conversely, for every codimension 0 face (excluding the base region)
there is at least one codimension 1 face covered by it. In other words, F exists if
and only if F ′ exists (where F ′ is not the base region). Furthermore, F lFW F ′

implies F is the face strictly below the region F ′. In other words, MF = MF ′ . But
this implies MF ∈ JIrr(PR) if and only if MF ′ ∈ JIrr(PR). Since codim(F ) = 1
and codim(F ′) = 0 this implies F is join-irreducible if and only if F ′ is join-
irreducible. �

Recalling that our lattice is self-dual by Proposition 4.16 we have the following
two corollaries.

Corollary 4.22. Suppose A is a simplicial arrangement and let F be a face with as-
sociated facial interval [mF ,MF ]. Then F ∈ MIrr(FW) if and only if mF ∈ MIrr(PR)
and codim(F ) ∈ {0, 1}.

Corollary 4.23. Let F and F ′ be faces of codimension 0 and 1 respectively such
that F lFW F ′. Then F is meet-irreducible in the facial weak order if and only
if F ′ is meet-irreducible in the facial weak order.

4.3.4. Semidistributivity. In this subsection, we show that our lattice is semidis-
tributive. A lattice is join-semidistributive if x∨y = x∨z implies x∨y = x∨(y∧z).
Similarly, a lattice is meet-semidistributive if the dual condition holds. A lattice is
semidistributive if it is both meet-semidistributive and join-semidistributive.

Recall that for a join-irreducible element x, the unique element it covers is de-
noted by x?, i.e., x? l x. Likewise, for a meet-irreducible element y, the unique
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element covered by it is denoted y?, i.e., yl y?. Given a join-irreducible element x
and a meet-irreducible element y for a finite lattice L, we say that (x?, x) and (y, y?)
are perspective if x ∧ y = x? and x ∨ y = y?. We have the following lemma, see
[FJN95, Theorem 2.56].

Lemma 4.24. A finite lattice is meet-semidistributive if and only if for every
join-irreducible element x there exists a unique meet-irreducible element y such
that (x?, x) and (y, y?) are perspective.

We will use the following theorem, see [Rea03, Theorem 3].

Theorem 4.25. For a simplicial arrangement A, its poset of regions is a semidis-
tributive lattice.

It turns out that due to the self-duality of the facial weak order and its intimate
connection with the poset of regions that perspective pairs do exist. This will give
us that the facial weak order is semidistributive. Recall that JIrr(FW) (JIrr(PR))
and MIrr(FW) (MIrr(PR)) are the sets of join-irreducible and meet-irreducible
elements in the facial weak order (poset of regions) respectively.

Proposition 4.26. The facial weak order is meet-semi-distributive.

Proof. By Lemma 4.24 it suffices to show for every face F ∈ JIrr(FW) there ex-
ists a unique face G ∈ MIrr(FW) such that (F?, F ) and (G,G?) are perspective,
i.e., F ∧FW G = F? and F ∨FW G = G?. An example can be seen in Figure 12.
Let [mF ,MF ] denote the facial interval of F . Since F ∈ JIrr(FW), by Proposi-
tion 4.20, MF ∈ JIrr(PR) and codimF ∈ {0, 1}.

Suppose codim(F ) = 1. Since F ∈ JIrr(FW) by Lemma 4.19 there exists a
unique face F ′ of codimension 0 such that F lFW F ′ and MF = MF ′ . By Corol-
lary 4.21 F ′ ∈ JIrr(FW) with F = F ′?. We then have the following chain of
covers F? lFW F = F ′? lFW F ′.

Since MF ′ = MF ∈ JIrr(PR), by Theorem 4.25 and Lemma 4.24, there exists
a unique meet-irreducible region MG such that ((MF ′)?,MF ′) and (MG, (MG)?)
are perspective in the poset of regions. Let G = MG be the codimension 0 face
associated to the region MG. Since MG = mG is meet-irreducible in the poset of
regions, then G is meet-irreducible in the facial weak order by Corollary 4.22 since
it is of codimension 0. Then, by definition of meet-irreducible, there exists a unique
face G′ of codimension 1 such that GlFW G′. Furthermore, by Corollary 4.23, G′

is meet-irreducible in the facial weak order with mG = mG′ . We then have the
following chain of covers GlFW G? = G′ lFW G′

?
.

Recalling that ((MF ′)?,MF ′) and (MG, (MG)?) are perspective in the poset of
regions, and furthermore, since MF ′ = MF and MG = mG = mG′ we have:

(�) MF ∧PR mG′ = mF MF ∨PR mG′ = MG′ .

This implies that the pair (F?, F ) and (G,G?) and the pair (F ′?, F
′) and (G′, G′?)

are both perspective. Indeed, looking at the first case (F?, F ) and (G,G?), we want
to show F ∧FW G = F? and F ∨FW G = G? = G′. For F ∧FW G = F?, since F
covers only F? by definition of join-irreducible, it suffices to show F? ≤FW G. Sim-
ilarly, since G is only covered by G? = G′, to show F ∨FW G = G′, it suffices
to show F ≤FW G′. To show F ≤FW G′ it suffices to observe that mF ≤PR mG′

andMF ≤PR MG′ . Indeed, by (�), we haveMF ∧PR mG′ = mF , implyingmF ≤PR mG′

and MF ∨PR mG′ = MG′ giving MF ≤PR MG′ as desired. To show F? ≤FW G
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we follow a similar approach by proving that mF?
≤PR mG and MF?

≤PR MG.
Since MF ∧PR mG = MF ∧PR mG′ = mF = mF? , therefore mF? ≤PR mG. Also,
since G and F? are of codimension 0 we have MF? = mF? ≤PR mG = MG as de-
sired. Therefore F? ≤FW G in the facial weak order.

The case (F ′?, F
′) and (G′, G′?) is handled similarly.

Notice that the case where codim(F ) = 0 was handled in the proof above since F ′

is a join-irreducible element in the facial weak order with codimension 0. �

Combining this proposition with the fact that the lattice is self-dual, we get join-
semidistributivity for free. In particular, we get that our lattice is semidistributive.

Theorem 4.27. For a simplicial arrangement A, the facial weak order is semidis-
tributive.

5. Topology of the facial weak order

In this section, we determine the homotopy type of intervals of the facial weak
order; see Theorem 5.6. Before proving this theorem, some preliminary results on
the topology of posets are given in Subsection 5.1.

5.1. Poset topology. In this section, we recall some standard tools and definitions
concerning simplicial complexes that we use in the proof of Theorem 5.6. The main
result we need is Lemma 5.1.

An abstract simplicial complex ∆ is a ground set E with a collection ∆ of subsets
of E (called faces) such that if F ∈ ∆ and G ⊆ F then G ∈ ∆. The dimension of
a face F ∈ ∆ is given by dim(F ) = |F | − 1 and the dimension of ∆ is the maximal
dimension of all faces. An abstract simplicial complex of dimension d can be realized
geometrically in R2d+1 by a union of simplices well-defined up to homeomorphism.
We denote this geometrical realization by ‖∆‖. The deletion del∆(F ) of F from ∆
is the subcomplex of faces disjoint from F . The link lk∆(F ) of F is the subcomplex
of faces G for which F ∩ G = ∅ and F ∪ G is a face of ∆. The join ∆ ∗ ∆′ of
two complexes with disjoint ground sets is the simplicial complex with faces F tF ′
where F ∈ ∆, F ′ ∈ ∆′. The cone {v} ∗ ∆ is the join of ∆ with a one-element
complex. The suspension susp ∆ is the join of ∆ with a discrete two-element
complex. A fundamental homotopy equivalence connecting the deletion and link to
the original complex is the following, which can be proved using the Carrier Lemma
(e.g. [Wal81, Lemma 2.1]).

mF = F?

F

MF = F ′ G′

MG′ = G′
?

mG′ = G

Figure 12. Meet-semidistributivity in the facial weak order.
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Lemma 5.1. Let F be a face of a simplicial complex ∆.

(i) If lk∆(F ) is contractible, then ∆ is homotopy equivalent to del∆(F ).
(ii) If del∆(F ) is contractible, then ∆ is homotopy equivalent to the suspension

of lk∆(F ).

Given elements x, y of a poset P , the open interval (x, y) (resp. closed inter-
val [x, y]) is the set of z ∈ P such that x < z < y (resp. x ≤ z ≤ y). We let P<x
(resp. P>x) denote the set of elements y ∈ P such that y < x (resp. y > x). The
order complex ∆(P ) of a poset P is the simplicial complex of chains x0 < · · · < xd
of elements of P . The link of a face x0 < · · · < xd is isomorphic to the join of the
order complexes of P<x0

, (x0, x1), . . . , (xd−1, xd), P>xd
. Hence, the local topology

of ∆(P ) is completely determined by the topology of open intervals and principal
order ideals and filters of P . In the remainder of this section, whenever we write
about the topology of P , we mean the topology of its order complex.

In Subsection 5.2, we explicitly determine the homotopy types of intervals of the
facial weak order. To this end, we will use some consequences of Lemma 5.1.

Lemma 5.2. Let P be a poset, and let X ⊆ P such that P<x is contractible for
all x ∈ X. Then P is homotopy equivalent to P rX.

Proof. Let X = {x1, x2, . . . , xn} so that whenever i ≤ j, we have xi ≮ xj . We
claim that P is homotopy equivalent to P r {x1, . . . , xi} for any i. First observe
that lk∆(P )(x1) = ∆(P<x1

) ∗∆(P>x1
) is contractible, so P is homotopy equivalent

to P r {x1}. More generally, from the assumption on the ordering of elements of X,
we have lk∆(Pr{x1,...,xi−1})(xi) = ∆(P<xi)∗∆′ for some simplicial complex ∆′. This
is again contractible, so by induction, P is homotopy equivalent to Pr{x1, . . . , xi}.
Taking i = n, we have completed the proof. �

A closure operator (resp. dual closure operator) on a poset P is an idempotent,
order preserving, increasing (resp. decreasing) function f : P → P .

Lemma 5.3 (Corollary 10.12 [Bjö95]). If f : P → P is a closure operator or a
dual closure operator, then P is homotopy equivalent to f(P ).

This lemma may be proved in many ways, e.g. by repeated application of Lemma 5.1
as we did for Lemma 5.2 or by application of Quillen’s Fiber Lemma [Bjö95, The-
orem 10.5].

5.2. Topology of intervals of the facial weak order. Let A be a real, central
hyperplane arrangement with base region B. As usual, we orient the hyperplanes
in A so that

B =
⋂
H∈A

H+.

Recall that the poset of regions PR(A, B) is the set of regions with the partial
order R ≤PR R′ if and only if S(R) ⊆ S(R′). With this ordering, B is the unique
minimum element of the poset of regions. Given faces X,Y of A, we say that X is
incident to Y if X ⊇ Y .

P. H. Edelman and J. W. Walker determined the local topology of the poset of
regions [EW85]. As this result will be used in the proof of Theorem 5.6, we state
it here.
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Theorem 5.4 ([EW85]). For each face X ∈ FA, the set of regions incident to X is
an interval [R1, R2]≤PR of the poset of regions such that the open interval (R1, R2)≤PR

is homotopy equivalent to a sphere of dimension codim(X)−2. Every other interval
is contractible.

Recall that span(X) denotes the subspace spanned by a face X. The poset
of intersection subspaces, or simply intersection poset , is the poset on the sub-
spaces L(A) =

{⋂
H∈I H | I ⊆ A

}
ordered by reverse inclusion. As before this

poset is a lattice when the vector space V is added as the bottom element and is
called the intersection lattice. ForX and Y in L(A), the join is given byX ∨L Y = X ∩ Y
and the meet by X ∧L Y =

⋂
X∪Y⊆Z Z. For further information on the intersection

lattice we refer the reader to P. Orlik and H. Terao’s book [OT92, Section 2]. For
a face X, let AX denote the restriction of A to span(X) where

AX = {H ∩ span(X) | H ∈ ArAX} .
The set AX is an arrangement of hyperplanes in the vector space spanned by X.
For a covector X, we recall the map πX : FA → FAX

where for any covector Y
of A, its image is the covector with πX(Y )(H) = Y (H) for H ∈ AX . Similarly, one
can define a map ιX : FAX → FA such that for a covector Y of AX we have

ιX(Y )(H) =

{
Y (H) if H ∈ AX

0 if H ∈ AX
.

It is clear that ιX is injective, so if Y is a face of A contained in span(X),
we write (ιX)−1(Y ) for the corresponding face of AX . To simplify notation, we
define Y X to be (ιX)−1(Y ) in this case.

Lemma 5.5. Let X,Y be covectors such that X ≤FW Y in FW(A, B), and let Z
be a covector such that span(Z) = span(X) ∧L span(Y ). Then the interval [X,Y ]
of FW(A, B) is isomorphic to the interval [XZ , Y Z ] of FW

(
AZ , XZ ◦ (−Y Z)

)
.

Proof. For H ∈ A such that X(H) = 0 = Y (H), any covector W in the inter-
val [X,Y ] must satisfyW (H) = 0. Consequently, span(W ) ⊆ span(Z) forW ∈ [X,Y ],
so the restriction WZ is a covector of AZ . Moreover, the map [X,Y ]→ L(AZ) is a
bijection onto its image. Since span(XZ)∧Lspan(Y Z) = span(Z) in the intersection
lattice, the concatenation XZ ◦ (−Y Z) is a region of AZ . Moreover, for H ∈ AZ ,
we have XZ ◦ (−Y Z)(H) = XZ(H) if XZ(H) 6= 0, and XZ ◦ (−Y Z)(H) = +
otherwise. Hence, XZ ≤FW Y Z in FW

(
AZ , XZ ◦ (−Y Z)

)
, and if W ∈ [X,Y ],

then WZ ∈ [XZ , Y Z ]. Conversely, every element of [XZ , Y Z ] is the restriction of
some covector in [X,Y ]. �

We are now ready to prove the main theorem. We make use of the fact that the
proper part of the face lattice of a polyhedral cone of dimension d is homeomorphic
to a sphere of dimension d− 2.

Theorem 5.6. Let A be an arrangement with base region B. Let X,Y be covectors
such that X ≤FW Y and set Z = X ∩ Y . If X ≤FW Z ≤FW Y and Z = X−Z ∩ Y ,
then the order complex of the open interval (X,Y ) in FW(A, B) is homotopy equiv-
alent to a sphere of dimension dim(X)+dim(Y )−2 dim(Z)−2. Every other interval
is contractible.

Proof. Let X,Y ∈ FW(A, B) such that X ≤FW Y and set Z = X ∩ Y . Let Q be
the open interval (X,Y ) in the facial weak order. We determine the topology of Q.
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If Z = X then Q is an interval in the face lattice, so it is homeomorphic to a
sphere of dimension dim(Y )− dim(X)− 2, as desired. Similarly, if Z = Y , then Q
is homeomorphic to a sphere of dimension dim(X) − dim(Y ) − 2. Hence, we may
assume X,Y, Z are all distinct.

By Lemma 4.7, we may assume that Z = 0 since the poset Q = (X,Y ) is iso-
morphic to (XZ , YZ). Hence, we write −X for the covector X−Z . By Lemma 5.5,
we may assume that span(X) ∧L span(Y ) = V in the intersection lattice. In par-
ticular, X ◦ Y and Y ◦X are regions. We will make these assumptions for most of
the proof unless indicated otherwise.

Assume Z ∈ Q and Z = (−X) ∩ Y both hold, and let ∆ be the order complex
of Q. We prove that del∆({Z}) is contractible by induction on dim(Y ).

Let L>Y denote the set of faces strictly less than the face Y in the face lattice,
i.e., L>Y = {Z | Z >L Y } = {Z | Z ( Y }. Applying the inductive hypothesis with
Lemma 5.2, the poset Qr {Z} is homotopy equivalent to Qr L>Y . We note that
this statement is vacuously true if dim(Y ) = 1. Set P = QrL>Y . Define a map f
on the closed interval [X,Y ] of the facial weak order, where f(W ) = W ◦ Y . This
is well-defined by Lemma 3.11. We claim that f is a closure operator. It is clear
that f is idempotent by properties of composition. Since Z <FW Y in the facial
weak order, every entry of Y is either 0 or −. Hence, f can only change some 0
entries of w to −, so it is order preserving and increasing. Since W ◦ Y ⊆ Y only
if W is a face of Y , the operator f restricts to P . Lemma 5.3 implies that P ' f(P ).

Now define g on [X,Y ] where g(W ) = W ◦ X. This map is a dual closure
operator. Assume that W ∈ Q such that g

(
f(W )

)
= X. Then f(W ) must be a

face of X. Since W is a face of f(W ), we deduce that W is a face of X. The set
of faces of X intersected with [X,Y ] is an order ideal of [X,Y ] in the facial weak
order. Since (−X) ∩ Y = 0, the composite X ◦ Y is a region distinct from X.
Then X ◦ Y ≤FW W ◦ Y , so W ◦ Y is not a face of X. This is a contradiction.
Hence, g restricts to f(P ), and we conclude that P ' g

(
f(P )

)
.

Since X and Y have disjoint supports, the composite Y ◦X is a region. Hence,
the image of g ◦ f is the set of regions in Q. This set of regions has a maximum
element, namely Y ◦X. Hence, it is contractible, as desired.

Since del∆({Z}) is contractible, we conclude that ∆ is homotopy equivalent to
the suspension of lk∆({Z}) by Lemma 5.1. By definition, lk∆({Z}) = ∆((X,Z)) ∗∆((Z, Y )).
But ∆((X,Z)) (resp. ∆((Z, Y ))) is the order complex of the proper part of the face
lattice of the coneX (resp. Y ). Hence, ∆((X,Z)) is homeomorphic to Sdim(X)−dim(Z)−2.
Since Sp ∗ Sq ∼= Sp+q+1 and susp(Sp) ' Sp+1, we have

∆ ' susp
(

lk∆({Z})
)

' susp
(
∆((X,Z)) ∗∆((Z, Y ))

)
' susp

(
Sdim(X)−dim(Z)−2 ∗ Sdim(Y )−rk(Z)−2

)
' Sdim(X)+dim(Y )−2 dim(Z)−2

Now assume that Z /∈ Q. We prove that Q is contractible.
Since Z is not between X and Y , there exists H ∈ A such that Z(H) = 0 and

either X(H) = Y (H) = − or X(H) = Y (H) = +. Replacing B with −B, we may
assume without loss of generality that X(H) = Y (H) = − and Z(H) = 0. If W
is any face of Y with W ≤FW Y , then W (H) = −. But (W ∩X) ⊆ Z, so W ∩X
is not between X and W . By induction, Q is homotopy equivalent to Q r L>Y .
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Let P = Qr L>Y . As before, we consider operators f and g on [X,Y ]. These two
operators again restrict to P , and g

(
f(P )

)
is the subposet of regions in Q. If Y

is not a region, then Y ◦ X is the unique maximum element of g
(
f(P )

)
. If X is

not a region, then X ◦ Y is the unique minimum element of g
(
f(P )

)
. In either

case, the interval Q = (X,Y ) is contractible. If both X and Y are regions, then Q
is contractible by Theorem 5.4 since g

(
f(P )

)
is an open interval of the poset of

regions that is not facial.
Finally, assume that Z ∈ Q but Z 6= X−Z ∩ Y . We prove that Q is contractible.
Assume X is not a region. Then Y ∩ (−X) is a proper face of Y , as otherwise

there would exist a hyperplane H ∈ A containing both X and Y . Let

P = Qr {W ∈ L>Y | (−X) ∩W 6= Z} and P>Z = {W ∈ P |W > Z} .
By induction, P is homotopy equivalent to Q. Then P>Z is contractible since
L>Y r {Z} is the proper part of the face lattice of the cone Y , and P>Z is the
deletion of some face from this sphere.

Consequently, P ' P r {Z}. We prove that P r {Z} is contractible by in-
duction on dim(Y ). We have already proved that (X,Y ′) r {Z} is contractible
for Y ′ ∈ L>Y ∩ P r {Z}. Hence, P r {Z} ' P r L>Y . Set P ′ = P r L>Y .
Using the operators f and g from before, we deduce that Q is homotopy equiv-
alent to g

(
f(P ′)

)
. Since X is not a region, g

(
f(P ′)

)
has a minimum element,

namely X ◦ Y . Hence, it is contractible.
If X is a region but Y is not a region, then a dual argument shows that Q is

contractible. Hence, we may assume both X and Y are regions. Since this is the last
remaining case, we deduce that for W ∈ Q the interval (X,W ) is not contractible
if and only if W is an upper face of X. Hence, Q is homotopy equivalent to L>X .
This set of covectors has a maximum element in Q, namely W = Z. Hence, Q is
contractible. �

5.3. Möbius function. Recall that the Möbius function of a poset P is the func-
tion µ : P × P → Z defined inductively by

µ(x, y) =


1 if x = y,

−
∑
x≤z<y µ(x, z) if x < y,

0 otherwise.

For more information on the Möbius function we refer the reader to [Sta11].
We recall that the Möbius function can be restated using its homotopy type. In

fact, µ(x, y)+1 =
∑

(−1)i rkHi(∆((x, y))) where Hi(∆((x, y))) is the simplicial ith
homology group and ∆((x, y)) is the order complex for the open interval (x, y). The
rank of the ith homology group is sometimes referred to as the ith Betti number .

Recall further that a contractible interval (x, y) has trivial homology (homo-
topy equivalent to a point). Thus H0(∆((x, y))) ∼= Z and Hi(∆((x, y))) ∼= {0}
for all i > 0, i.e.,

∑
(−1)i rkHi(∆((x, y))) = 1. Therefore we have µ(x, y) = 0.

Additionally, recall that a sphere Sn has homology H0(Sn) ∼= Z, Hn(Sn) ∼= Z
and Hi(Sn) ∼= {0} for 0 < i < n, i.e.,

∑
(−1)i rkHi(∆((x, y))) = 1 + (−1)n. There-

fore if our interval (x, y) is homotopy equivalent to Sn we have µ(x, y) = (−1)n.
For more information on how the Möbius function relates to homology we refer
the reader to the book by Stanley [Sta11], the book by Munkres [Mun84], or the
chapter by Björner [Bjö95].

As a consequence to Theorem 5.6 we have the following corollary.
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Corollary 5.7. Let A be an arrangement with base region B. Let X,Y be covectors
such that X ≤FW Y and set Z = X ∩ Y .

µ(X,Y ) =

{
(−1)dim(X)+dim(Y ) X ≤FW Z ≤FW Y and Z = X−Z ∩ Y
0 otherwise.
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