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Benchmarking of monolithic MDO formulations and derivative
computation techniques using OpenMDAO

Scott Delbecq' @ . Marc Budinger? - Aurélien Reysset?

Abstract

The design optimization of coupled systems requires the implementation of multidisciplinary design optimization techniques
in order to obtain consistent and optimal solutions. The associated research topics include the development of optimization
algorithms, computational frameworks, and multidisciplinary design optimization formulations. This paper presents a
benchmarking of the combination of monolithic formulations and derivative computation techniques. The monolithic
formulations include typical literature formulations as well as new normalized variable hybrid formulation. A novel test
problem is proposed which consists in the sizing of a space launcher thrust vector control electro-mechanical actuator.
Solving the single multidisciplinary coupling present in this problem is complex due to the possibility to face one, two, or
no solutions depending on the external load and reducer gear ratio configuration. A larger scale version of this test problem
is also proposed and tested by adding a high degree of freedom point-to-point trajectory. The tests are carried out in order
to obtain typical performance criteria but also some proposed additional robustness criteria such as variation of the initial
conditions or the external load scale. These additional criteria are particularly relevant in an industrial engineering design
context where knowledge capitalization and reuse are sought. The most significant findings are the interesting performances
of the new formulation in terms of computational cost and the robustness. Furthermore, the effect of the choice of derivative
computation strategy on different performance criteria is assessed for the original and larger scale problem, and thus
underlines the benefits of full analytic gradient-based optimization.

Keywords Multidisciplinary design optimization - Coupled systems - Sizing - Robustness - Electro-mechanical actuator -
Thrust vector control

1 Introduction optimization based on the theory and the implementation of
numerical optimization. For the regular engineer individual,
Engineering design activities can gain productivity and  the difficulty is to choose and master the adequate methods
product performance through the practice of design  and tools that facilitate the problem implementation. The
problem implementation includes two aspects. The first is
the formulation of the design problem:“to obtain an optimal
product what should one set as a the design variables, the
constraints, the objective in his sizing code?” Secondly, is
the aspects regarding the methods and tools one should use:
Marc Budinger “which algorithm? which method to assess constraints? in
marc.budinger @insa-toulouse.fr what environment? is differentiation possible in the sizing
code?”’ An additional difficulty for engineers is to deal with
multidisciplinary couplings that are commonly present in
engineering design problems. Also, a worry for engineers
will be the capability of the code to be reused for different
system requirements with the least redevelopment or tuning
. . L effort. Reuse is a key to capitalization and thus time gain
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interest criteria can be underlined for an engineering when
attempting to implement a numerical optimization problem:

— Easiness of the implementation
— Performance (computational cost, convergence...)
— Robustness (initial conditions, scale change...)

The scientific literature seeks to help assess these criteria
for different numerical optimization methods in order to
enable individuals pick the adequate method regarding their
needs and what compels them. Most research focus on the
assessment of performance aspects with criteria such as
computation time (Chell et al. 2019), number of evaluations
(Tedford and Martins 2010; Gray et al. 2013), convergence
characteristics (Tedford and Martins 2010; Gray et al.
2013), or reliability (Beiranvand et al. 2017).

In the field of multidisciplinary design optimization
(MDO), many benchmarks focus on the comparison of
the MDO formulations, also referred to as architectures
(Martins and Lambe 2013). The comparison is often made
for a set of distributed formulations (collaborative opti-
mization, CO; concurrent subspace optimization, CSSO;
Bi-Level Integrated System Synthesis, BLISS) and mono-
lithic formulations (Multidisciplinary Feasible, MDF; Indi-
vidual Design Feasible, IDF; Simultaneous Analysis and
Design, SAND) (Kodiyalam and Sobieszczanski-Sobieski
2001; Martins and Lambe 2013; Gray et al. 2013). It is also
interesting to have a look at the derivative computation tech-
niques for the application of gradient-based optimization to
MDO or Multidisciplinary Design Analysis (MDA). Gray
et al. (2013) compared the effect of computing derivatives
analytically or numerically in the field of MDO. Conversely,
Chauhan et al. (2017) evaluated jointly the effectiveness of
derivative computation techniques and system analyzer for
MDA purposes.

Test cases are important resources for benchmarking in
numerical optimization (Beiranvand et al. 2017). For MDO
formulations benchmarking, one can often find analytic test
cases such as the Sellar problem (Sellar et al. 1996) and
scalable problem (Martins and Hwang 2013; Gray et al.
2013) as well as some more practical engineering design
problems such as the speed reducer (Tedford and Martins
2010) or electrical packaging design (Kodiyalam and
Sobieszczanski-Sobieski 2001). Larger engineering design
problems are tackled as well such as aircraft conceptual
design (Perez et al. 2004; Chell et al. 2019) or reusable
launcher design (Kodiyalam and Sobieszczanski-Sobieski
2001).

In most cases, benchmarkings in the field of Multi-
disciplinary Design Analysis and Optimization (MDAO)
evaluate separately the MDO and MDA purposes. In addi-
tion, formulations and the derivative computation strategies
are often compared independently. Also, one can often find

the same set of formulations or example test problems. Fur-
thermore, few literatures investigate choice criteria such
as robustness or reliability performance as well as aspect
regarding the easiness of the implementation.

This paper aims at addressing these points by proposing
a large set of test configurations that includes the derivative
computation strategy, the MDO formulation, and the
purpose (MDO or MDA). Here, a focus is made on
monolithic formulations where a formulation present in the
literature is included, the HYBRID, and a new formulation
that is proposed, the normalized variable hybrid (NVH),
in additional to two typical formulations (MDF and IDF).
The performance criteria include some typical ones such
as relative error, number of evaluations, and convergence
characteristics. This paper also includes novel criteria
regarding robustness by investigating the effect of initial
conditions variations, scale variations, and design space
exploration purposes. Finally, one can also find a novel test
problem from the field of engineering design, the optimal
sizing of a high dynamic electro-mechanical actuator.

The most significant findings are the interesting perfor-
mances of the new NVH formulation in terms of compu-
tational cost and the robustness to initial conditions and
scale changes of the external load and therefore enables
more reusable sizing codes. Furthermore, the effect of the
choice of derivative computation strategy on different per-
formance criteria is assessed and underlines the benefits of
full analytic gradient-based optimization.

To present the proposed approach, the paper is organized
as follows. Section 2 describes the proposed test problem
and the associated challenges. Also, the implementation of
MDO formulations chosen is given. Finally, a larger scale
version of the EMA design problem is depicted. Section 3
presents the tests related to the EMA design problem. First,
typical test performance is driven and the obtained results
are outlined. Then, additional tests regarding robustness
are ran and the associated results analyzed. In Section 4,
similar tests are performed on the larger scale EMA
design problem and differences with the original problem
underlined. Section 5 extends some of the benchmarking to
the Sellar problem and shows some recent applications of
the NVH formulation. Finally, Section 6 offers concluding
remarks.

2 The electro-mechanical actuator design
problem
2.1 Problem description

The case study presented here is a simple design optimiza-
tion problem that illustrates the multidisciplinary design of
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a mechatronic device. The low number of analysis functions
required to represent the problem makes it a convenient test
problem for MDO formulation benchmarking. The stud-
ied system is an electro-mechanical actuator designed for
dynamic applications such as an Individual Blade Con-
trol (IBC) (Kessler 2011) or Thrust Vector Control (TVC)
(Carnevale and Resta 2007). Despite the simplicity in terms
of number of analysis functions, the design of an electro-
mechanical actuator for TVC aerospace application is still
a challenging topic. Figure 1 shows that for launchers,
electro-hydraulic actuators were preferred because of the
high dynamic and high loading conditions.

Nevertheless, new permanent magnet motors have made
the use of electro-mechanical actuators (EMASs) a success
on small launchers (Stefano Bianchi 2005). However, such
applications are on the technological limit frontier of such
systems. For some requirements, there might be no existing
solution because of these technological constraints. Hence,
the numerical resolution of the sizing problem for TVC
electro-mechanical actuators is challenging.

The EMA is composed of a ball screw, a spur gear
set, and a brushless motor as shown in Fig. 2. The
maximum external load acting on the actuator and the
maximum acceleration and speed of the actuator have been
extracted from the mission profile. Since the application
is high dynamic, the effect of motor inertial acceleration
has to be considered when choosing the motor torque
performances. The sizing problem is expressed using
only algebraic analysis functions. For more complex
design problems where numerical simulations are necessary
(Delbecq 2018), it is possible to reduce them to algebraic
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functions using surrogate modelling techniques. These
techniques have been successfully used to replace lumped
parameter (0D-1D) models, e.g., 2D multibody simulation
for estimating the actuator load with respect to the
attachment locations (Budinger et al. 2014), or finite
element method (3D) models, e. g., 3D electromagnetic
FEM model for estimating the motor torque with respect to
its geometry (Sanchez et al. 2017b).

The EMA sizing problem is relatively simple to
implement but includes numerical difficulties which make
its resolution challenging. The problem is represented by the
following equations and inequalities:

Nred P
Tem = Jmor - Amax ~ + Fema (])
Nreq
55
T 3.
Jmm,‘ = Jmot,ef . T o (2)
eMyref
T 3.
Qmot = -Qmot,e/' . T — (3)
emyof
Nied
Qmot = Vmax : ~ (4)
p
%
T .
Mmot = Mmotref . T o (5)
eMyef

where T, is the motor electromagnetic torque, Jy,,; is the
motor inertia, A, i the maximum actuator acceleration,
Nyeq is the reducer gear ratio, p is the screw pitch, Vqx
and F,, are the maximum velocity and external load
of the actuator, £2,,,; the maximum mechanical speed of
the motor, and M,,,; its mass. The motor sizing scaling
laws are based on a reference motor where T}y, £ Imot,, o
Qmoz,ef, and Mm,,,ref are respectively its electromagnetic
torque, inertia, maximal mechanical rotational speed, and
mass (Budinger et al. 2014). Motor torque (1) and motor
inertia (2) are two coupled disciplines of the sizing problem
whereas motor speed (3), motor speed constraint (4), and
motor mass objective (5) are ordinary analysis functions.
The motor torque (1) and motor inertia (2) are coupled
through motor electromagnetic torque 7, and motor inertia
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Jmor- The ball screw efficiency is supposed equal to 1 and
independent of the pitch and the axial load.

The high-level design problem consists of minimizing
the motor mass M,,,;, with respect to reducer gear ratio
Nyed, subject to motor speed constraint (4).

The optimization problem formulation is the following:

minimize Mo
with respect to Nyed
. N
subject to Vinar * —% = Qo <0 (6)
p

The Extended Design Structure Matrix (XDSM) pro-
posed by Lambe and Martins (2012) is an efficient formal-
ism for representing a design optimization problem and the
associated formulation. In this paper, the XDSM diagrams
are simplified by removing the numbering of components
and the thin black line to streamline the diagrams. Neverthe-
less, for the considered problems, the execution order and
the process flow are deduced from the order of components
in XDSM structure as in the N2 chart. The optimization
problem, and the multidisciplinary coupling, is represented
in Fig. 3 using this formalism.

The analysis or optimization of this problem requests
to solve this multidisciplinary coupling. The mathematical
definition of the problem makes it possible to have one
or two or no solution when attempting to solve the
consistency of (1). The number of solutions depends on
the configuration in terms of external load F,,, and the
reducer gear ratio N,.4. Figure 4 depicts this particularity by
plotting the disciplines represented respectively by (1) and
(2).

One can see for instance that F,,, = 200[kN] and
Nyeq = 2 leads to one single existing solution whereas
changing the gear ratio to 10 will introduce an additional
solution. Conversely, the high load (F,,;,;, = 300[kN]) and
high gear ratio (N,.4 = 10) configuration has no existing

Fig.3 XDSM diagram for the
EMA design problem

solution. Figure 5 shows the effect of both of these variables
on the considered objective M,,,;. The value of M,,,; for
configurations where no solution for system consistency
exist has been set to 0. These configurations correspond to
high values of external load and reducer gear ratio as shown
in Fig. 5.

The multidisciplinary coupling can be solved using
different MDO strategies. Each of the strategies is described
and represented using the XDSM notation where the
mathematical notation is given in Table 1.

The benchmark of the different multidisciplinary design
optimization formulations is achieved using OpenMDAO
(Gray et al. 2019). This framework can be used as a
standard platform for benchmarking MDO formulations
developed by NASA (Gray et al. 2013). Analysis functions
are implemented using an explicit form by using the
ExplicitComponent class (Gray et al. 2019).

2.2 The multidisciplinary feasible formulation

The representation of the MDF strategy for the EMA
design problem is given in Fig. 6. It consists of a single
design variable, the reducer gear ratio, and a single
constraint, the maximum motor speed. The consistency of
the coupling between motor torque (1) and motor inertia
(2) disciplines is achieved by using a system analyzer. The
system analyzer determines the values of coupling variables
that match their respective analysis result. Since system
analysis is performed for every optimization iteration,
couplings variables remain consistent and independent of
the optimizer’s behavior. Here the first computed discipline
is the motor torque that requires an estimation of the motor
inertia computed by the subsequent discipline. In such
architecture, the decomposition of circular dependencies
can be achieved by using Gauss-Seidel or Jacobi iterative
methods (Martins and Lambe 2013). Gauss-Seidel uses

Motor torque

{ Tem / / Tem / Tem

Motor inertia

Motor speed

Motor speed
constraint

Motor mass
objective
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Fig.4 Zero, one, or two solutions for coupling variables consistency
with respect to F,q and Nyqq

a decomposition into lower and strictly upper triangular
elements, whereas the Jacobi method decomposes the
linear system into a diagonal element and a corresponding
remainder.

The coupling can also be solved by gradient-based
solvers like Newton-Raphson. In that case, a linear
solver is required to compute coupled derivatives. Gauss-
Seidel or Jacobi methods can be used to obtain coupled
derivatives. Another option is to use a non-iterative direct
linear solver. It uses the system Jacobian to compute the
coupled derivatives using lower-upper (LU) decomposition,
which is possible for any non-singular square matrix
(Bunch and Hopcroft 1974). The coupled derivatives are
also required to compute total system derivatives when

0.6
3.0

5.5 .
/V, 8.0 ? ©

e [“] 10.4 900

Fig.5 Illustration of inconsistent solutions (M,,,; = 0) in the design
space due to the technological limit of EMAs for TVC applications

Table 1 Mathematical notation for MDO problem data (adapted from
Lambe and Martins (2012))

Symbol Definition

X Vector of design variables

x©@ Vector of design variables initial values

v Vector of coupling variable targets

y- @ Vector of coupling variable targets initial values
y Vector of coupling variable responses

f Objective

g Vector of design constraints

8c Vector of consistency constraints

using gradient-based optimizers. All these solvers are
implemented within the OpenMDAO framework. Here, a
direct linear solver and a Newton non-linear solver perform
the multidisciplinary analysis. The choice of adequate
solvers is tricky and significantly impacts the effectiveness
of the MDA. Choosing the most adapted numerical solver
is highly dependent of the expertise and experience of the
engineer in MDO problem solving.

The MDF formulation enables us to use no additional
design variables or consistency constraints and delivers
a consistent design even if the optimizer fails to find a
feasible solution and reaches the maximum iteration limit.
In addition, MDF eases the incorporation of legacy analysis
tools which are often very effective to converge within
a particular type of physical discipline. The advantages
of system analysis have to be kept in perspective since
such approaches rely on the system analyzer effectiveness.
Indeed, the non-convergence of the analyzer results in non-
consistent designs despite that in some cases, convergence is
achieved. Furthermore, strongly coupled disciplines lead to
important number of analyzer iterations and hence a costly
system analyses.

In practice, the system analyzer for some samples tries to
converge the couplings by using negative electromagnetic
torque which make (2) singular. This was observed for
different analyzers (Newton and Gauss-Seidel) but also
for the HYBRID formulation. Therefore, (2) has to be
reformulated into (7) by introducing the absolute function to
make sure that the electromagnetic torque remains positive.

'J\‘U]

3.
| Tem |

Jmor = motyef (7)

Temref
2.3 The individual disciplinary feasible formulation

Individual disciplinary feasible (IDF) uses also a single
optimizer but an analysis for each individual discipline
is employed. As shown in Fig. 7, in this formulation, it
is the optimizer that coordinates the interactions between
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Fig.6 XDSM diagram for MDF
formulation of the EMA design
problem

Nrea

/ [ Mot

the disciplines analyses. The optimizer chooses values for
both design and coupling variables. In order to ensure
consistency between coupling variables, additional design
variables T, Jnmor and auxiliary equality constraints are
added. Here, the optimizer chooses a value for the motor
inertia of (1) and verifies that it is equal to the motor
inertia obtained by (2). Similarly, it chooses a value for the
motor torque of (2) and then verifies that it is equal to the
motor torque obtained by (1). The IDF approach enables
us to put aside the intricate concerns of system analyzer
effectiveness, but has notable shortcomings. Equality
constraints can introduce numerical solution difficulties
(Thareja and Haftka 1986) and provide feasibility only
at solution, rather than at each iteration (Alexandrov and
Lewis 2000). Furthermore, setting bounds on the coupling
variables is in some cases not straightforward and can
introduce a large dimension of the coupling variables. Large

Fig.7 XDSM diagram for IDF
formulation of the EMA design
problem

Nyh Td T

Optimizer

Motor torque

Motor torque Jem
Motor inertia
Motor speed ﬂ,lng
Motor speed
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Motor mass
objective

dimension of design variables has a significant effect on the
efficiency of the optimization. If the optimization process
is interrupted, the design corresponding to the last iteration
may be not consistent or feasible whereas MDF guarantees
the consistency between coupling variables if the system
analyzer is effective.

2.4 The HYBRID formulation

Balling and Sobieski proposed a hybrid formulation
to handle coupled variables consistency (Balling and
Sobieszczanski Sobieski 1996). This architecture is similar
to IDF except that, as illustrated in Fig. 8, the feedforward
consistency relationship is achieved by computing analysis
functions in a sequence, and the feedback consistency
relationship remains achieved by an auxiliary equality
constraint and an additional design variable J; . This

T Nrea ot Tem Tem

Motor inertia | ng

Motor speed

Motor speed

constraint

Motor inertia

constraint

Motor torque

95

constraint

Motor mass

I i Mot

objective
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Fig.8 XDSM diagram for
HYBRID formulation of the
EMA design problem
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approach has the same advantages and drawbacks as the IDF
approach but it enables to remove for the case study one
equality constraint and one design variable.

2.5 The normalized variable hybrid formulation

The success of attempts to use numerical optimization for
design depends strongly on how well the design problem
has been formulated. Reysset et al. (2015) proposed to refor-
mulate a multidisciplinary design problem with a view in
order to get the best from numerical optimization. This
formulation was underlined through a case study but was
never benchmarked and compared with other formulations.
The NVH formulation, represented in Fig. 9, similarly pro-
poses an evolution of the HYBRID formulation to consider
feedforward consistency relationship by computing analy-
sis functions in a set sequence but with a modification of
the governing equations. In addition, the feedback consis-
tency relationship is achieved by introducing a normalized
design variable and a single inequality constraint. Removing

Fig.9 XDSM diagram for NVH
formulation of the EMA design
problem

0) 5.£,(0)
N kG

Optimizer

objective

the equality constraint reduces the risk of numerical solution
difficulties. Furthermore, the reduction of the new design
variable dimension ([1.0-10.0] for most design problems
or [0.1-10.0] in particular cases) improves the numerical
solution accuracy and the ability to achieve convergence.
The difficulty is that this approach requires a reformulation
effort which makes it less generic and more invasive than
traditional MDO formulations. You must determine how to
modify the equations and the form of the new constraint
in order to decouple the feedback. Here, discipline (1) is
reformulated as in (8), where the normalized design variable
is introduced in order to (in this case) oversize the chosen
electromagnetic torque. Furthermore, the additional consis-
tency inequality (9) is added to the design problem to verify
(in this case) that the chosen electromagnetic torque is suf-
ficient to face the inertial acceleration and the equivalent
EMA external load.

91

Tom = kos * Fema - N (8)
red
Nyeds kb Y Nrea /
Motor torque Tem
Motor inertia mot
Motor speed %ﬁm /
Motor torque
consistency
constraint
Motor speed
constraint
Motor mass

/ [+ Mot

objective
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Nred P
Tem = Jmot : Amax — + Fema ~ (9)
Nyed
The optimization problem becomes
min. M0
w.I.t Nred, kos
N,
S.t. Vinax - ﬂ - Qmot <0
p
Nred 04
Jmot : AmaxL + Fema_ - Tem = 0. (10)

Nyed

A few guidelines to implement the NVH formulation for
other problems can be given. The NVH uses a normalized
variable k,; which is used to scale the feedforward coupling
variable with respect to an initial guess. If one is sure that
the final guess is greater than the initial guess, then the lower
bound of k, is equal or greater than 1. Conversely, if one
is sure that the final guess is smaller than the initial guess,
then the upper bound of k,, is equal or smaller than 1. If one
is not sure, the lower bound shall be smaller than 1 and the
upper bound greater than 1. Generally, for most problems,
it is straightforward to find an initial guess that limit to
[0.1-10.0] as described previously. The most difficult task
that enables the NVH to use an inequality instead of an
equality as a constraint is that one has to be sure about the
effect of k,s on the function objective as the optimizer will
seek naturally to make this constraint active. In our case,
it is obvious that increasing the motor torque will increase
the motor mass. For more complex cases, one may use the
monotonicity analysis approach proposed by Papalambros
and Wilde (2000).

Table 2 summarizes the different formulation character-
istics.

The NVH formulation does not use any equality
constraint and only one inequality constraint to solve the
coupling. It uses one consistency design variable that has
a smaller dimension (in terms of bounds width) when
compared with IDF or HYBRID approach. The following
section presents some benchmarking results that assess
typical performances criteria of each formulation.

Table 2 Formulations characteristics for the larger scale EMA design
problem

Form. Solver Number Number Number
type of design  of equality of inequality
variables constraints constraints
MDF Solver 201 2 1
IDF Optimizer 203 4 1
HYBRID Optimizer 202 3 1
NVH Optimizer 202 2 2

2.6 The larger scale EMA design problem

A larger scale version of the EMA design problem is pro-
posed in order to extend the benchmarking and investigate
the effect of larger scale on the derivative computation
techniques and MDO formulations performance. The larger
scale EMA design problem consists in implementing an
additional discipline that models the trajectory of the actu-
ator. The trajectory is a point-to-point motion profile (Park
1996). Hence, the actuator requirements are a position to
reach within a time limit instead of a maximum speed and
acceleration. To have a high degree of freedom and differen-
tiable trajectory and speed, it is proposed to use the Fourier
series to model the position, the speed, and the accelera-
tion. The mathematical form of these physical variables are
sums of sinusoids which guarantee a position, a speed, and
an acceleration which are equal to zero at ¢ = 0:

N
Aema(t) = Zan cos(nt) + by sin(nt) — ay a1

n=1

N
1 1
Vema(t) = Zan— sin(nt) — by, — cos(nt)
n n

n=1

1
—ant + by~ (12)
n

al 1 1.
Xema(t) = Z —an—3 cos(nt) — b,,n—2 sin(nt)

n=1
I, 1

——ant” + b, —t. (13)
2 n

The previous EMA design problem assumed that the
actuator had to be designed for short operating time
applications for which the thermal performance of the motor
is not predominant. Hence, the electromagnetic torque
considered was the peak torque and was estimated using
a constant external load and an additional inertial load
evaluated at the maximum acceleration of the mission
profile as depicted in (1). However, for repetitive operations,
the temperature increase due to the Joule losses in the
windings has to be taken into account. In preliminary
design, it is common to choose the root mean square (RMS)
torque which indirectly assesses the limitation effect of
these losses (Roos et al. 2006). Hence, (1) is replaced by
(14).

Nred p
F,
+ Fema Nied

where A, is the RMS acceleration of the motion profile
which can be expressed as follows:

1 I final )
Apms = f Aema(D)2 (15)
Lfinal Jo

(14)

Tem = Jmor - Arms
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Fig. 10 XDSM diagram for the
larger scale EMA design
problem

N a0
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This new evaluation of the electromagnetic torque also
requires to choose the continuous torque of the reference
component for Ty, ror instead of its peak torque.

The trajectory model has to be expressed in the form
of an optimization problem. The design variables are the
Fourier series coefficients a,, and b,, with asize N = 100.
Two equalities have to be implemented. One ensures that the
final position X finq; = 0.15 mis reached at the final time
trinat = 1.5 s. The other ensures that the final position is
reached at zero speed Vyipgr = 0 m s~! to avoid damaging
the mechanical end-stops. To run the trajectory alone, the
objective chosen could be to minimize the RMS acceleration
of the motion profile.

In the case of the larger scale EMA design problem, this
trajectory model is added to the original problem where
the objective was to minimize the motor mass. Thus, the
optimization problem becomes

min. Mot
W.I.t Nyed, an, by
N,
S.t. Vmax . red - Qmot = 0
Xfinal = 0.15]
Vfinal = 0. (16)

The structure of the larger scale EMA design problem is
depicted in Fig. 10.

The MDO formulations to solve the multidisciplinary
coupling between the motor torque and motor inertia are
implemented in exactly the same manner as the ones
outlined previously.

An example of resulting trajectory when running an
optimization of the larger scale EMA design is shown in
Fig. 11.

This resulting trajectory minimizes the motor mass
and respects the motor speed limit constraint as well as
performing the point-to-point motion profile within the
given time.

Ve

Motor speed
constraint
Trajectory
constraints
Motor mass
objective

Table 3 summarizes the characteristics of the larger scale
version of the design problem:

All the formulations see themselves added twice 100
design variables as well as 2 equality constraints due to the
addition of the trajectory discipline.

3 Benchmarking of the EMA design problem

3.1 Typical MDO formulation benchmarking tests
results

3.1.1 Tests setup

The OpenMDAO 2.6.0 version is used for the tests whereas
similar tests were performed with OpenMDAO 1.7.3 in
Delbecq (2018). The tests are ran for each previous
monolithic MDO formulation alongside of two different
optimizers of the OpenMDAO optimizers suite. This way
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Example of resulting trajectory when minimizing the motor
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Table 3 Formulations characteristics for the EMA design problem

Form. Solver Number Number Number
type of design  of equality of inequality
variables constraints constraints
MDF Solver 1 0 1
IDF Optimizer 3 2 1
HYBRID Optimizer 2 1 1
NVH Optimizer 2 0 2

the Sequential Least Squares Programming (SLSQP) (Kraft
1988) gradient-based optimizer can be compared with
the derivative-free COBYLA optimizer (Powell 1994). In
addition, different derivative computation methods are used
with the SLSQP optimizer since they each conduct to
different performances. The methods are referred to as
full analytic, semi-analytic, and monolithic derivatives as
proposed in the OpenMDAO paper (Gray et al. 2019). The
full analytic derivative method uses the analytic derivatives
of the model analysis functions (obtained by hand) and the
analytic derivatives of the total model (obtained using the
MAUD architecture implemented in OpenMDAO (Hwang
and Martins 2017; Gray et al. 2019)). The semi-analytic
derivative method is similar to the full analytic except
that the model analysis functions derivatives are computed
numerically (with finite difference (FD) in this study). The
monolithic derivative method estimates directly the total
system derivatives numerically (with FD in this study)
and does not require any knowledge of analysis function
derivatives. Therefore, for each MDO formulation, four test
configurations are used:

SLSQP optimizer with full analytic derivatives
SLSQP optimizer with semi-analytic FD derivatives
SLSQP optimizer with monolithic FD derivatives
COBYLA optimizer (derivative-free)

Eallb o e

For the test configurations 3 and 4, it is considered that no
knowledge about the analysis functions is available. Hence,
the derivative-free Gauss-Seidel solver is used in the MDF
formulation for these configurations.

The tolerance was set to 107°. The bounds of the
additional design variables that enable coupling consistency
are the same for the IDF and HYBRID formulations. The
bounds of the global design variables are the same for all
formulations. The initial values of variables are the same for
each formulation and are set so that the coupling is initially
consistent.

As underlined by Gray et al. (2013), there are multiple
ways to measure the effectiveness of MDO formulations. In
order to standardize the evaluation of these formulations, it
is chosen to first use the typical criteria suggested by Gray
et al. (2013):

1. Proximity to known solution
2. Total function evaluations
3. Convergence characteristics

3.1.2 Proximity to known solution

The values given in Table 4 show the absolute difference
between the known optimum and the optimization results
for each formulation. MDF, IDF, HYBRID, and NVH
converge to the known optimum within the 107 tolerance
for the SLSQP with full analytic and semi-analytic FD
configurations. However, for the SLSQP with monolithic
FD, the HYBRID formulation slightly fails to respect the
fixed tolerance. During this last test configuration, MDF and
NVH show a small absolute error.

3.1.3 Total function evaluations

The number of function and derivative evaluations gives an
indication about the computational cost of each formulation.
In the MDF formulation, the multidisciplinary coupling
is isolated in an OpenMDAO Group with its own system
analyzer. Thus, the number of function and derivative
evaluations is evaluated on these components for all
the formulations. Table 5 summarizes the number of
function and derivative evaluations for the different MDO
formulations and the test configurations.

It can be depicted that the less costly configuration is the
SLSQP optimizer with full analytic derivatives. The lowest

Table 4 Absolute error from
known optimum

M,or = 7.145101 for all
formulations and test
configurations solving the

SLSQP with
full analytic

derivatives

SLSQP with

semi-analytic

SLSQP with

monolithic

COBYLA
(derivative-free)
FD derivatives
A Objective

FD derivatives

A Objective A Objective

EMA design problem Formulation A Objective
MDF 0.000000
IDF 0.000000
HYBRID 0.000000
NVH 0.000000

0.000000 0.000000 0.000001
0.000000 0.000000 0.000000
0.000000 0.000002 0.000000
0.000000 0.000000 0.000002
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Table 5 Number of function
evaluations # s, and derivative
evaluations #g4,, for all
formulations and test

SLSQP with
full analytic

SLSQP with

semi-analytic

SLSQP with

monolithic

COBYLA

(derivative-free)

. : : derivatives FD derivatives FD derivatives
configurations solving the
EMA design problem Formulation  # 7, Haer  #fun H#aer  # fun Hder ¥ fun Hder
MDF 24 22 139 22 757 110 186 0
IDF 14 14 84 14 168 14 74 0
HYBRID 9 49 8 88 8 587 0
NVH 8 36 7 78 7 26 0

computational cost formulation is the NVH, followed by
HYBRID, IDF, and MDF. The MDF formulation is greatly
penalized by the system analyzer function evaluations. This
ranking remains the same for all test configurations. By
removing an additional design variable and an additional
equality constraint, the HYBRID approach is more effective
than the IDF approach. Besides, the fact to transform an
equality constraint into an inequality and to reduce the
dimension of the additional design variable is very efficient
as shown in the NVH results. IDF is also penalized by the
dimension of the coupling variables especially the motor
inertia which is typically between 1.0 - 10* and 1.0 - 1076
kg m? for the power required in this application depending
if the motor is a high torque or a high speed design. The
same effect of motor inertia dimension can be noticed for
the HYBRID formulation.

Regarding the gradient-based test configurations, it is
clear that the full analytic derivatives is the most efficient
followed by the semi-analytic FD and the monolithic FD.
This proves the interest of the modular analysis and unified
derivatives (MAUD) (Hwang 2015; Hwang and Martins
2017) and the sophistication of the OpenMDAO framework
for gradient-based optimization. The full analytic and semi-
analytic FD test configurations are more efficient than
the gradient-free optimizer COBYLA except for the IDF
formulation. However, the COBYLA optimizer has a much
smaller computational cost than the SLSQP optimizer with
monolithic FD for all formulations. Therefore, the choice of
derivation computation technique has an evident effect on
the number of function evaluations.

3.1.4 Convergence characteristics

For ease of reading, the convergence characteristics are
given in different figures for each test configuration. The
convergence plots represent the value of the relative error
between the objective value and the known objective value
for each major iteration (optimizer iteration).

Figures 12 and 13 show that the full analytic and
semi-analytic FD tests have the same convergence at the
optimizer level.

The MDF and NVH formulations converge the most
rapidly and are followed by the HYBRID and IDF
formulations. However, as shown in Fig. 14, the monolithic
FD has a negative effect on the convergence for the MDF
whereas it reduces the iteration number for the HYBRID
strategy. The IDF and NVH strategies are insensitive to this
change of derivative method.

The COBYLA optimizer test configuration results show
some slightly different trends. The MDF convergence is
the most efficient followed by the NVH and the IDF. This
time however the convergence rate of the HYBRID is much
slower with over 500 iterations (Fig. 15).

It is important to underline that the choice of the feed-
forward discipline in the HYBRID formulation influences
the effectiveness of the optimization especially when the
dimension of the coupling variables are different.

3.2 Additional tests results

This section aims to perform some additional tests in order
to evaluate the effectiveness of formulations and derivative
strategies for common engineering design practices.
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Fig. 12 Relative error vs iteration number for all formulations

running the EMA design with the SLSQP optimizer and full analytic
derivatives
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Fig. 13 Relative error vs iteration number for all formulations running
the EMA design with the SLSQP optimizer and semi-analytic FD
derivatives

3.2.1 Robustness to initial conditions variations

In design optimization, it is not always straightforward to
establish some initial conditions which will guarantee to
find the global optimum in a limited computation time.
This is particularly true during preliminary design where
the bounds of the design variables have large dimensions.
Hence, optimization strategies that offer robustness to
the initial conditions can be particularly interesting in
engineering design tasks. Therefore, it is proposed to
assess such robustness using the following test. The idea
is to perform several optimizations with different initial
conditions and this for all test cases and formulations
proposed in Section 3.1.1. For this purpose, a randomized
Latin Hypercube Sampling (LHS) Design of Experiments
(DOE) is accomplished for the reducer gear ratio N;.q4, the
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Fig. 14 Relative error vs iteration number for all formulations running

the EMA design with the SLSQP optimizer and monolithic FD
derivatives
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Fig. 15 Relative error vs iteration number for all formulations running
the EMA design with the COBYLA optimizer (derivative-free)

design variable, and the motor electromagnetic torque 7,
and inertia Jy,,;, the coupling variables. The DOE bounds
are the same as in the optimization problem in Section 3.1
and the number of samples is set to 50. To assess the
robustness, it is chosen to evaluate the mean, maximum,
and minimum number of function evaluations for all
formulations and test cases. In addition, the percentage of
success in solving the multidisciplinary coupling is given.
A test is successful if the constraints are respected and the
known objective is found for the given optimizer tolerance
(10_6). The mean, maximum, and minimum values are
estimated for only successful samples. The test results of the
robustness to initial conditions variations are summarized in
Table 6.

The test results show, again, that for this test case,
the full analytic derivatives strategy is the most efficient
for all MDO formulations to succeed in solving the
optimization problem and with the lowest number of
function evaluations. The NVH formulation has the smallest
mean, maximum, and minimum number of evaluations for
all the derivative strategies. The MDF formulation comes
second in mean evaluations for the full analytic derivative
case but ends just after the HYBRID for the semi-analytic
FD case for which the IDF comes last. However, both IDF
and HYBRID do not succeed to solve the coupling for
all the samples conversely to the MDF. The NVH fails
for 12% of the samples. Hence, the MDF is the most
robust formulation regarding initial condition variations.
The results show that the monolithic FD derivative strategy
has a lower computational cost than the COBYLA optimizer
except for the MDF and the IDF. In a general manner,
this derivative-free strategy does not show an acceptable
robustness to initial conditions variations as most samples
end up not successful for all formulations for this test case.
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Table 6 Mean, maximum, and minimum number ([mean - max. - min.]) of function evaluations #y,, and % of success for all formulations and
test configurations when performing the robustness to initial conditions variations test

SLSQP with
full analytic

SLSQP with
semi-analytic

SLSQP with
monolithic

COBYLA

(derivative-free)

derivatives FD derivatives FD derivatives
Form. # fun % of # fun % of # fun % of # fun % of
success success success success
MDF [21.6 - 46 - 9] 100 [119.7 - 221 - 54] 100 [455.9 - 827 - 234] 98 [193.9 - 272 - 146] 86
IDF [26.5-107 - 12] 62 [119.8 - 335 - 25] 76 [202.5- 357 - 48] 66 [212.8 - 587 - 52] 34
Hybr. [24.9 - 107 - 6] 56 [89.2 - 380 - 32] 60 [152.0 - 632 - 77] 48 [175.7 - 587 - 46] 26
NVH [6.9-9-4] 88 [32.5-41-16] 88 [70.8 - 89 - 34] 88 [95.8 - 865 - 23] 88

3.2.2 Robustness to scale variations

The system design is achieved for a set of requirements.
Many products are used for different scales and therefore
different values in requirements. For instance in the case of
actuation systems, a same family of actuators can contain
actuators that move load on a relative scale from 1x to
30x depending on the applications. One additional need or
request for a design engineer is to have a generic sizing code
for all of its product portfolio. This can be made possible for
products that have the same physical architecture. In order
to evaluate the capability of the different formulations and
derivative strategies to fulfill such request, a robustness to
scale variations is performed. The test consists in applying a
coefficient kr, _ on the actuator external load F,,, to vary

ema

the scale of the problem. Thus, (1) becomes

Nred p
+k . .
Fema ema Nred

Tem = ot - Amax (17)

A set of four samples is chosen which corresponds to
different values of kf,, : 1, 10, 20, 30. The optimization
problem, the initial values of the variables, and the value of
the parameters of the problem are kept identical the typical
test results of Section 3.1. The only exception is the upper
bounds of the consistency variables J! , and T}, of the
IDF and HYBRID formulation that have to be increased so
that a technological solution of the electrical motor exists
for the increased load value kr,,, - Fema. These new upper
bounds are estimated for each sample thanks to a scaling
law with respect to kf,,,,. For each sample of the test, the
number of function evaluations is counted and compared for
all test cases and formulations proposed in Section 3.1. In
this sense, the results are outlined using a bar plot for which
the different kr, , values are indexes as well as the over-
sizing coefficient k,; with the NVH in order to underline
the increasing numerical complexity. The values are set
to O if the formulation failed solving the multidisciplinary

coupling.

Figure 16 shows that the scale variation does not affect
significantly the HYBRID and NVH formulations’ number
of function evaluations when compared with the MDF
formulation in the case of full analytic derivatives. Besides,
the IDF fails to solve the multidisciplinary coupling for the
samples of kr,,  with values of 10, 20, and 30.

The same observations can be made for Figs. 17 and
18 which correspond to respectively the semi-analytic FD
and monolithic FD strategies. Therefore, the derivative
computation strategy affects the computational cost linearly
with the scale change but does not lead to failures in solving
the couplings except the MDF using the monolithic FD.

Figure 19 outlines the test results for the test case of
the derivative-free optimizer COBYLA. Here, conclusions
are more difficult except that only the NVH formulation
manages to succeed for all the samples. However, it
is notable that the number of evaluations increases
significantly with the scale change for the NVH which was
not the case for the tests with the SLSQP optimizer.
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Fig. 16 Number of function evaluations vs scale factor for all
formulations running the EMA design with the SLSQP optimizer and
full analytic derivatives
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Fig. 17 Number of function evaluations vs scale factor for all
formulations running the EMA design with the SLSQP optimizer and
semi-analytic FD derivatives

Therefore, for this test case, the HYBRID and NVH
formulations are robust to scale variations. Alongside, the
MDF formulation remains capable of finding a consistent
solution, especially for full analytic and semi-analytic
FD, but with an increasing computational cost. The IDF
formulation fails when the scale of the load increases which
makes it not adapted for the implementation of generic
sizing codes. In addition, the utilization of gradient-based
optimization is more adequate if a generic sizing code is
sought.

3.2.3 Robustness in design space exploration

In engineering design, the pure design optimization
approach is not adequate for all purposes. One might prefer
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Fig. 18 Number of function evaluations vs scale factor for all
formulations running the EMA design with the SLSQP optimizer and
monolithic FD derivatives
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Fig. 19 Number of function evaluations vs scale factor for all
formulations running the EMA design with the COBYLA optimizer
(derivative-free)

a design space exploration approach in order to better sense
the alternatives in the design space rather than obtain one
single alternative. Hence, here, a test is ran in order to
evaluate the robustness of the different MDO formulations
and derivative strategies for the application of design space
exploration. This test aims at assessing the capability of
the test cases to converge the multidisciplinary coupling,
i.e., to perform a Multidisciplinary Design Analysis (MDA),
for different configurations in the design space. For this
purpose, as achieved for the robustness to initial conditions
variations, a randomized LHS DOE is accomplished for the
reducer gear ratio N,.4, the actuator external load F,,,,, the
load maximum acceleration Ay, and the ballscrew pitch
p. For the IDF, HYBRID and NVH formulations consist in
running the DOE on top of an optimization problem that
performs the MDA. The optimization problem using the
NVH formulation is

min. M, 01
w.r.t kos
Nyea
S.t. Jmot . Amaxl + Femai - Tem = 0
Nied

Conversely, the MDF uses a system analyzer (numerical
solver) to perform the MDA. The choice and configuration
of the numerical solver depends on the derivative strategy
test case as described in Section 3.1. Figure 20 shows the
structure of this test for the case of the NVH formulation.

It is important to note that the formulations that use
an optimizer to perform the MDA require us to define an
objective for the optimizer to solve the consistencies, which
is not the primary purpose of design exploration. Defining
the wrong objective can lead to inconsistent designs during
the exploration. Hence, this can be considered a drawback
when compared with the MDF.
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Fig.20 XDSM diagram for
NVH formulation of the EMA
design problem

[si

The DOE bounds are the same as in the optimization
problem in Section 3.1 for the variable N,.q; whereas
the lower and upper bounds of Fepq, Amax, and p are
respectively x 0.5 and x 2 of the fixed value they had in
that problem. The number of samples is set to 50. To assess
the robustness, it is chosen to evaluate the mean, maximum,
and minimum number of function evaluations for all
formulations and test cases. In addition, the percentage of
success in solving the multidisciplinary coupling is given.
The mean value is estimated for only successful samples.
A sample is successful if the consistency constraint is
respected for the given optimizer tolerance (10~°). The
results of the robustness to design space exploration tests
are summarized in Table 7. The MDF formulation is
distinguished at the bottom to underline that it does not
involve any optimizer.

The results show that at least 6% of the samples (3
configurations) have no existing solution. For the case that
analytic derivatives are used, the most efficient formulation
is the NVH. The SLSQP optimizer with full analytic
derivatives despite the MDO formulation to perform the

Nreds Femay Amaz, P

Motor speed
Motor torque
consistency
constraint
Motor mass

objective

MDA is the most robust compared with the use of the
implementation of MDF with the Newton non-linear solver
and the direct linear solver. The Newton solver used is the
basic one provided by the OpenMDAO framework with
no specific line search methods. This corresponds to the
comparison of the effectiveness of the optimizer and system
analyzer. However, the MDF remains the most efficient
in terms of number of functions calls. Conversely to the
previous tests, the IDF formulation requires in mean less
number of function evaluations than the HYBRID for all
test cases except for the COBYLA optimizer case (with
a percentage of success of 10%). The NVH formulation
shows the best performance for all test cases in terms of
robustness and computational cost except the case where
analytic derivatives are used as the MDF requests less
function calls. Therefore, the most efficient formulation to
perform an MDA when analytic derivatives are available is
the MDF. Conversely, when derivatives are not available,
the NVH formulation is the most efficient for all derivative
strategies (semi-analytic FD, monolithic FD, and derivative-
free) and is the most robust for all cases.

Table 7 Mean, maximum, and minimum ([mean - max. - min.]) number of function evaluations #y,, and % of success for all formulations and
test configurations when performing the robustness to design space exploration test on the EMA design problem

SLSQP with SLSQP with SLSQP with COBYLA

full analytic semi-analytic monolithic FD (derivative-free)

derivatives FD derivatives derivatives
Form # fun % of # fun % of # fun % of # fun % of

success success success success

IDF [44-6-4] 74 [26.5 - 36 - 24] 78 [52.1-72-48] 66 [81.4-154-31] 28
Hybr. [8.35-39-3] 80 [35.5-73 - 24] 72 [63.8 - 157 - 34] 64 [17.4-19-15] 10
NVH [3.7-5-2] 92 [16.4-26-11] 94 [35.5-55-23] 94 [14.3-15-13] 70
MDF [3.1-4-3] 44 [18.7 -24 - 18] 52 [18.5-24 - 18] 46 [15.5-21-11] 28
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Table 8 Absolute error from
known optimum

My0r = 15.381369 for all
formulations and test

SLSQP with
full analytic

SLSQP with

semi-analytic

SLSQP with

monolithic

COBYLA
(derivative-free)
FD derivatives
A Objective

FD derivatives

A Objective A Objective

! ; : derivatives
configurations solving the . L
larger scale EMA design Formulation A Objective
problem

MDF 0.000000
IDF 0.007275
HYBRID 0.001814
NVH 0.007111

0.000000 - -
0.007275 - _
0.001814 - _
0.007111 - -

4 Benchmarking of the larger scale EMA
design problem

Similar to the previous section, this section deals with
some typical and additional tests applied to the larger scale
EMA design problem which includes the new trajectory
discipline. One main remark here is that the tests carried
out for the SLSQP optimizer with monolythic FD and the
derivative-free COBYLA configurations all fail due to the
increased complexity of the problem. This is the case for all
four of the proposed MDO formulations. Hence, the results
presented will only relate to the full analytic and semi-
analytic FD derivate computation techniques. In addition,
the robustness in design space exploration is not achieved
here as speed and acceleration are now determined by the
trajectory discipline.

4.1 Typical MDO formulation benchmarking tests
results

4.1.1 Proximity to known solution

The values given in Table 8 show the absolute difference
between the known optimum and the optimization results
for each formulation. The MDF manages to converge
exactly to the global optimum M,,, = 15.381369.
Conversely, the IDF, the HYBRID, and the NVH stop
near this optimum leading to non nill, however acceptable,
absolute errors.

4.1.2 Total function evaluations

As for the original problem, the number of function
evaluations is evaluated to assess the computational cost
of each configuration. Table 9 summarizes the number of
function and derivative evaluations for the different MDO
formulations and the test configurations.

The less costly configuration is the SLSQP optimizer
with full analytic derivatives. The lowest computational cost
formulation is the IDF, followed by the NVH, the HYBRID,
and finally the MDF. The MDF formulation is greatly
penalized when swapping to semi-analytic FD. Besides, for
this derivative computation technique, the NVH becomes
the most performant formulation.

4.1.3 Convergence characteristics

The convergence plot given in Fig. 21 is valid for the SLSQP
optimizer using full analytic derivatives and semi-analytic
FD derivatives test configurations.

All MDO formulations show a similar convergence
behavior. It can be noted that the HYBRID and the
MDF request more major iterations at the optimizer level.
This contributes to the higher computational cost observed
previously for both formulations.

These first test results for the larger scale EMA
design problem are the opportunity to emphasize the
benefit of the MAUD approach. Increasing the scale of
the problem leads to failure of the monolythic FD and

Table 9 Number of function
evaluations # s, and derivative
evaluations #4,, for all
formulations and test

SLSQP with
full analytic

SLSQP with
semi-analytic

SLSQP with
monolithic

COBYLA

(derivative-free)

. : : derivatives FD derivatives FD derivatives

configurations solving the

larger scale EMA design Formulation #fun Hier #fun Hder #fun Hder #fun Hier

problem
MDF 2858 2194 13833 2194 — — — .
IDF 780 305 2305 305 — — - -
HYBRID 1229 497 3714 497 - - - -
NVH 895 328 2207 328 — — — —
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Fig.21 Relative error vs iteration number for all formulations running
the larger scale EMA design problem with the SLSQP optimizer using
full analytic derivatives and semi-analytic FD derivatives

derivative-free approaches. Despite that increasing the
scale induces a significant increase in the computational
cost for the full-analytic and semi-nalytic FD derivative
computation techniques, the MAUD approach enables to
find a solution. This reminds the adequacy of this approach
and the OpenMDAO framework to solve large scale MDAO
problems.

4.2 Additional tests results
4.2.1 Robustness to initial conditions variations

The robustness to initial conditions variations test is
performed as for the original EMA design problem in
Section 4.2.1 using the same assumptions. The test is driven
by variations of the design variables initial conditions except
for the ones defining the trajectory, a,, and b,. Thus, a LHS
DOE is accomplished for the reducer gear ratio N,.4, the
design variable, and the motor electromagnetic torque 7,

and inertia Jy,,;, the coupling variables. The DOE bounds
are the same as in the optimization problem in Section 4.1
and the number of samples is set to 50. The test results of
the robustness to initial conditions variations for the larger
scale design problem are summarized in Table 10.

The test results show, again, that the full analytic
derivatives strategy is the most efficient for all MDO
formulations to succeed in solving the optimization problem
and with the lowest number of function evaluations.
The NVH formulation has the smallest mean, maximum,
and minimum number of evaluations for both derivative
strategies. The MDF formulation comes last in mean
evaluations for the full analytic derivative case but with a
better percentage of success. The IDF and HYBRID have
a lower percentage of success but also a lower number of
function evaluations. The same infers can be outlined for the
semi-analytic FD derivatives results.

4.2.2 Robustness to scale variations

The robustness to scale variations test is performed as for
the original EMA design problem in Section 3.2.2 using the
same assumptions. Nevertheless, a smaller range of scale
changes is taken since above 10x the original external load,
the complexity of the problem gets too high and results in
a failure of all test configurations. Hence, the set of kf,,,
coefficients taken to evaluate the robustness to scale change
for the larger scale problem is [1, 2, 5, 10].

Figure 22 shows that the scale variation affects the
performance of all formulations in terms of number of
function evaluations. The MDF fails for a coefficient greater
or equal to 2. The failure comes from the MDA numerical
solver which is driven by the optimizer into numerically
difficult points of the design space. Conversely, the other
formulations are successful but show differences between
their performances. The effect of scale change on the
HYBRID formulation is considerable making it the one that
requests the most function evaluations except for kg, = 1

Table 10 Mean, maximum, and minimum number ([mean - max. - min.]) of function evaluations # 7, and % of success for all formulations and
test configurations when performing the robustness to initial conditions variations test for the larger scale design problem

SLSQP with SLSQP with SLSQP with COBYLA
full analytic semi-analytic monolithic FD (derivative-free)
derivatives FD derivatives derivatives

Form # fun % of # fun % of #fun % of # fun % of

success

success success success

MDF  [3145.6 - 4616 - 1856] 98
IDF [1129.1 - 2239 - 623] 86
Hybr.  [1101.7 - 2517 - 618] 70
NVH  [834.1 - 1151 - 623] 92

[3129.5 - 6388 - 2093]
[3351.1 - 6579 - 1597]
[2114.7 - 3123 - 1491]

[15028.3 - 22404 - 9247]

96 —
76 —
68 —
92 —

o o o o
I
o o o o
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Fig. 22 Number of function evaluations vs scale factor for all
formulations running the larger scale EMA design problem with the
SLSQP optimizer and full analytic derivatives

where the MDF is more costly. This effect is also notable
for the IDF and NVH formulations but to a lesser extent.
For the full analytic derivative computation technique,
the IDF is more performant than the NVH. Besides, their
number of function evaluations increases with the same
proportions with respect to the kf,,,, coefficient. However,
it can be noted in Fig. 23 that the NVH becomes the most
performant when semi-analytic differentiation is used.
Therefore, this test permits to underline that the IDF,
HYBRID and NVH formulations are robust to scale
variations conversely to MDFE. The most performant
formulations are the IDF and NVH respectively for the full
analytic and the semi-analytic FD derivative computation
techniques. When comparing with the results obtained for
the original EMA design problem, it can be noted that
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Fig. 23 Number of function evaluations vs scale factor for all
formulations running the larger scale EMA design problem with the
SLSQP optimizer and semi-analytic FD derivatives

there are significant differences when moving to a larger
scale optimization problem. The IDF formulation takes the
advantage of the degrees of freedom of the trajectory to
solve the multidisciplinary coupling between the motor
torque and its inertia. This is not the case for the HYBRID
and the NVH formulations which see their performances
fall with the increase of the number of design variables.
Furthermore, this additional degree of freedom is critical for
the MDF which has to attempt to solve numerically difficult
point of the design space.

5 Applications

This section aims at illustrating how the NVH formulation
can be extended to other engineering problems. First, the
benchmark approach proposed in this paper is applied
to the typical MDO test case, the Sellar problem (Sellar
et al. 1996), with a particular focus on performance for
the optimization and robustness to initial conditions. Then,
previous applications of the NVH formulation approach are
outlined.

5.1 Benchmarking the Sellar problem

The approach taken is extended to the well-known MDO
test case: the Sellar problem (Sellar et al. 1996). Many
researches in the field of MDO have assessed the
performance of monolithic and distributed formulations on
this test case (Gray et al. 2013; Ciampa and Nagel 2017).
The contribution here is to perform the benchmarking
for two additional formulations that is the HYBRID and
the NHV. In addition, the derivative strategies comparison
includes the monolithic FD. The Sellar problem presents
one multidisciplinary coupling that has to be solved by
an MDO formulation. Table 11 summarizes the different
formulation characteristics for this problem.

5.1.1 Number of function and derivative evaluations

The first performance test is a typical optimization with
the following initial conditions: z; = 5, zp = 2,

Table 11 Formulations characteristics for the Sellars problem

Form Solver Number Number Number
type of design  of equality of inequality
variables constraints constraints
MDF Solver 3 0 2
IDF Optimizer 5 2 2
HYBRID Optimizer 4 1 2
NVH Optimizer 4 0 3
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Table 12 Number of function
evaluations # s, and derivative
evaluations #g4,, for all
formulations and test

SLSQP with
full analytic

SLSQP with

semi-analytic

COBYLA

(derivative-free)

SLSQP with

monolithic

. : : derivatives FD derivatives FD derivatives
configurations solving the
Sellar problem Formulation #fun Hder #fun Hder #fun Her #fun Her
MDF 21 20 105 20 184 31 233 0
IDF 27 18 99 18 (93) 14) (179 0)
HYBRID 6 6 30 6 30 5 65 0
NVH 7 6 31 6 31 5 83 0

y = 0,x = 5. The tests were ran for the same four
test configurations as the EMA design problem which are
presented in Section 3.1.1. The results for each test case in
terms of number of function and derivative evaluations are
outlined in Table 12.

The results show that the ranking in terms of compu-
tational cost are similar to the EMA design problem. The
HYBRID is slightly in front of the NVH, followed by the
IDF and the MDFE. An exception can be noted for the full
analytic derivatives strategy where the MDF required less
function calls than the IDF. It is important to note that
the IDF fails to find the exact optimum for the monolithic
FD and the COBYLA optimizer despite that all the con-
straints are respected. Furthermore, it is possible to observe
that for the HYBRID and the NVH formulations, the com-
putational cost of the semi-analytic and monolithic FD
is the same whereas for the other formulations and the
EMA design problem, the monolithic strategy was the most
costly. Finally, a last observation can be made regarding
the comparison between monolithic FD and the COBYLA
optimizer. The monolithic is less costly than the optimiza-
tion with COBYLA for the Sellar problem conversely to the
EMA design problem.

5.1.2 Robustness to initial conditions variations

Similarly to the test achieved for the EMA design problem
in Section 4.2.1, several optimizations with different initial
conditions are performed for the four test configurations and
all monolithic formulations. For this purpose, a randomized
LHS DOE is accomplished for x € [0 — 10], z; € [—10 —
10], and zo € [0 — 10]. The results for each test case
in terms of mean, maximum, and minimum number of
function evaluations as well as the percentage of success are
shown in Table 13.

In a general manner, this test shows that the Sellar
problem is difficult to solve for a large part of the design
space. The MDF formulation is the less efficient during
this test on initial condition variations. It presents the least
percentage of success and the highest mean number of
function evaluations for all the test configurations except
for the monolithic FD and COBYLA cases where the
percentage of success is lower for IDF and HYBRID. The
HYBRID and the NVH are the formulations that request
the less function evaluations. However, their percentage of
success is lower than the IDF for the full analytic and semi-
analytic FD derivative strategies. The percentages of success

Table 13 Mean, maximum, and minimum number ([mean - max. - min.]) of function evaluations # s, and % of success for all formulations and
test configurations when performing the robustness to initial conditions variations test to the Sellar problem

SLSQP with SLSQP with SLSQP with COBYLA

full analytic semi-analytic monolithic FD (derivative-free)

derivatives FD derivatives derivatives
Form. #fun % of #fun % of #fun % of #fun % of

success success success success

MDF [28.6 - 48 - 20] 40 [145.5 - 316 - 105] 34 [294.3 - 948 - 208] 36 [240.7 - 332 - 184] 42
IDF [27.4-90 - 6] 58 [85.6 - 140 - 35] 54 [118.1-301 -43] 22 [91.9-115-73] 30
Hybr. [69-9-5] 48 [33.7 - 45 - 25] 46 [36.5 - 45 - 25] 46 [81.25 - 114 - 70] 32
NVH [15.7 - 142 - 6] 54 [57.7-93 - 30] 50 [58.3-93-30] 44 [88.2-179 - 56] 56
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DC/DC Converter

Number of
Application Disciplines
Variables | Constraints | Couplings
Response surface of transient lumped
11 4 3 parameter simulation / Kinematics /
Electromechanics / Heat Transfer
Surrogate model of FEM for Heat
Transfer / Surrogate model of FEM for
12 10 2 CFD / Surrogate model of FEM for
Electromagnetics / Surrogate model of
FEM for Structural Mechanics
Surrogate model of FEM for Heat
7 6 2 Transfer / Surrogate model of FEM for

Electromagnetics / Power Electronics

Surrogate model of FEM for: Heat
Transfer, CFD, Electromagnetics,

Electric Thrust Reverser Actuation System

1 .
Structural Mechanics / Power
Primary Flight Control Actuation System Electronics / Mechanical Design
Response surface of transient lumped
arameter simulation / Power
8 9 2 P /

Electronics / Electromechanics /
Trajectory Optimization

Fig.24 Summary of the applications using the NVH formulation

of each formulation remain relatively close to each other.
Hence, this test case is not the best to prove the robustness
of each formulation when compared with the EMA
design case. Nevertheless, the computational efficiency
observations lead to the same ranking of formulations as the
previous test.

5.2 Recent applications of the NVH formulation

The NVH formulation has been employed in more
complex problems especially for actuation system design
applications. The design optimization of an EMA for
spoiler flight control surfaces was achieved using the NVH
formulation with the particularity of using a response
surface of dynamic lumped parameter simulations to
estimate the effects of 2D kinematics on the actuator loads
(Budinger et al. 2014). A similar approach was then used
in addition to surrogate models of FEM simulations used
to assess the thermal behavior in a confined space of an
aileron rotary EMA (Sanchez and Delbecq 2016). The same
methodology was applied to the design of a DC/DC power
converter where there where multidisciplinary couplings
between the component choice and the assessment of their
temperature (Sanchez et al. 2017a). Similar work was

achieved for a linear EMA architecture with the specificity
of using a co-simulation Functional Mock-up Unit for the
thermal response of the actuator (Delbecq et al. 2017).
More complex systems were then addressed with a higher
number of analysis functions (over 100 equations) such as
a primary flight control actuation system (Delbecq et al.
2018b; Delbecq 2018) and an electrical thrust reverser
actuation system (Delbecq et al. 2018a; Delbecq 2018). A
summary of the characteristics of these applications is given
in Fig. 24.

Therefore, despite that the NVH requires to modify some
models, an additional variable and inequality constraint,
it can be adapted to most engineering problems. The
modification effort has to be compared with the significant
robustness and computational efficiency this formulation
may lead to when compared with more classic monolithic
formulations.

6 Conclusions

The main purpose of this paper is the simultaneous
benchmark of monolithic formulations and derivative
computation techniques using the OpenMDAO framework.
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For this purpose, a new test problem was used. This test
problem corresponds to the sizing problem of an high
dynamic EMA for thrust vector control applications. The
particularity of this problem is that it is possible to increase
the strength of the coupling by scaling the actuator external
load. This leads to numerical difficulties as the solution can
be non unique or absent making the problem original.

The problem implementation was then presented for
each of the studied formulations: MDF, IDF, HYBRID,
and NVH. The new NVH formulation was presented; it
consisted of modifying an equation by adding an over-sizing
coefficient and setting the former equation as an inequality
constraint leading to two design variables and two inequality
constraints.

The benchmarking included the comparison of four
different derivative computation techniques. The full
analytic strategy used analytic equations to compute the
partial derivatives of the analysis functions and the MAUD
approach to compute the total derivatives. Similarly, the
semi-analytic strategy used FD to compute the partial
derivatives of the analysis functions. The monolithic FD
used FD to compute directly the total derivatives of the
system. Finally, the derivative free strategy was illustrated
by using the COBYLA optimizer.

To achieve the benchmarking, typical performance
criteria were used such as the absolute error with known
optimum, the number of function evaluations, and the
convergence characteristics. This paper also proposed some
original performance criteria that focused on robustness.
The first criteria was the capability of the configurations to
find the global optimum when varying the initial conditions.
Another test was achieved to assess the robustness to
solve the multidisciplinary coupling when scaling up the
problem and thus the numerical complexity. The last test
enabled to assess the design exploration capacities of
the configurations to solve the multidisciplinary couplings
when running an MDA in a larger design space.

The benchmarking results have shown that the most
efficient configuration was dependent on the criteria.
Regarding computational cost, the HYBRID and the
NVH formulations outperform the IDF and the MDEF.
Regarding robustness, the NVH is the best choice except
for the variation of initial conditions where the MDF
succeeded totally. Therefore, in a general manner, the most
computationally efficient and robust configuration is the
NVH formulation.

The benchmarking of the larger scale EMA design
problem enables to infer on additional aspects. The
main result is that the monolythic FD and derivative-free
techniques fail in solving the problem due to the increase of
the number of design variables and the complexity introduce
by the trajectory analysis. Hence, this recalls the benefit
of the MAUD approach for large-scale MDAO. An other

conclusion is that the performance of the MDO formulations
changes when compared with the original problem. Here,
the IDF and the NVH are the two formulations that show
the best computational cost and robustness.

Using the same benchmark approach to the Sellar
problem enabled to outline that the problem is strongly
dependent on the initial conditions. Furthermore, it showed
the interest of a using novel test problem as the EMA
design problem since the Sellar did not lead to significant
difference between the derivative computation techniques in
terms of robustness performance.

This benchmark has also shown that the HYBRID for-
mulation is worth looking into for small-scale problem as
it is in most cases simpler and more efficient than the IDF
and does not require any model manipulation conversely
to the NVH. Indeed, the NVH formulation’s main disad-
vantage is that this approach requires a modification of the
governing equations which makes it less generic and more
invasive than traditional MDO formulations. Finally, the
most efficient and robust for all the formulations was the full
analytic strategy which is encouraging for research on effi-
cient gradient-based optimization especially for large scale
problem.
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