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Abstract—Three-dimensional (3D) maps have become a shared
digital infrastructure for autonomous vehicles, especially in urban
areas. Point Cloud Data (PCD) maps are used for scan matching
to enable self-localization. Autonomous vehicles need to maintain
PCD maps along with the destination that is often decided on
demand and to keep the PCD map updated. In this paper, we
propose a system that delivers PCD maps cached at roadside
edges in real time. We implement the system in Autoware, an
open-source software for autonomous driving. Subsequently, we
evaluate whether the autonomous vehicle can simultaneously
download the PCD map from its edge and enable self-localization.
Our results show that autonomous vehicles can perform self-
localization while downloading the PCD map from the edge
server. Additionally, we measure the download time with vari-
able bandwidth and examine the bandwidth in which the self-
localization normally operates. In our results, the download time
of the PCD map at 60 Mbps was 1.16 s at maximum, and it is
indicated that 60 Mbps is the deadline for this system to work
properly.

Index Terms—Roadside edge, PCD map, autonomous vehicles

I. INTRODUCTION

Currently, autonomous driving is one of the most important
areas in next-generation research. Most autonomous vehicles
now use cameras, LIDAR, and other in-vehicle systems to rec-
ognize their surroundings, make decisions, and execute driving
commands. However, these systems have various problems.
For example, the range that can be detected by a vehicle is
limited, blind spots exist, and there is a limit to the computing
resources and storage that can be mounted on an autonomous
vehicle.

Autonomous driving is being developed by a variety of
organizations, but some software is being developed as open
source. This includes Autoware [1] by the Autoware Founda-
tion, apollo [2] by Baidu, and Nvidia Drive by Nvidia [3].

In autonomous driving software, it is important to accurately
know the position of the vehicle. Methods to obtain the
vehicle’s position include Global Navigation Satellite System
(GNSS) [4] applications represented by GPS, Simultaneous
Localization and Mapping (SLAM) [5], etc. It is known that
GNSS gives an error on the order of several meters, which
provides insufficient safety margin. Therefore, SLAM is often
used in self-driving software.

SLAM works by using point cloud data and Point Cloud
Data Maps (PCD Maps) [6]. The point cloud data is generated

by LIDAR. LIDAR illuminates the target with laser light and
measures the reflection with a sensor. Subsequently, differ-
ences in laser return times and wavelengths can be used to
make digital 3D representations of the target. The PCD map
is a collection of this point cloud data. Its format consists
of a header and a body. The header contains metadata that
describes the data in terms of type and size, etc. The body
contains binary data for each point, and the information is
read based on the metadata defined in the header.

The size of the PCD map data is large due to the typical
number of points collected by a LIDAR; for example, 120,000
points every 100ms. In the future, assuming that automated
vehicles will travel long distances, it will be difficult to store
all PCD maps on the route in a vehicle. In addition, it is nec-
essary to update the map frequently because the surrounding
environment changes each moment due to traffic accidents and
construction work. For these reasons, it is necessary to support
autonomous driving by transmitting PCD maps through inter-
vehicle or vehicle-edge communication. Here, the system in
which a vehicle solves these challenges by communicating
with other vehicles and edges is called Cooperative Intelligent
Transport System (CITS) [7].

In this paper, we propose a system for solving this problem.
Additionally, we show how to extend Autoware, an open-
source software, and conduct an experiment to download the
map of the vehicle’s surroundings from the edge. We also
measure and evaluate the delay in downloading the map.

The structure of this paper is as follows. In section II,
related technologies and related research, including standards
related to vehicle-to-vehicle communication, are introduced; in
section III, requirements for this research are set. Section IV
describes our proposed method of PCD map distribution. The
method used in field experiments for evaluating the proposed
method is described in section V. Section VI describes our
conclusions and future issues.

II. RELATED WORKS

C-ITS uses vehicle-to-everything (V2X) communication, in-
cluding vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication. In [8], [9], roadside infrastructure
support the cooperative perception of Autoware-based au-
tonomous vehicles via V2X communication. V2V and V2I are
communications between objects moving at very high speeds,



and therefore, vehicles and infrastructure do not communicate
via base stations or fixed networks as in traditional networks.
Vehicles and infrastructure communicate on the vehicular ad
hoc network (VANET), which is realized through P2P com-
munication. The communication standard used in VANETs
is Dedicated Short Range Communications (DSRC) [10].
Recently, some research has been performed on using D2D
communication over mobile networks such as 5G. DSRC and
5G communications are faster than conventional standards
and communication over the Internet. To take advantage of
this strength, there has been substantial research on edge
computing. Edge computing brings computation and data
storage closer to the devices that gather it, rather than relying
on a central location that can be thousands of miles away.

There are many types of research on the efficient distribution
of large-capacity data, such as maps using edges. Kim et
al. [11] proposed an algorithm to efficiently distribute data
in the cloud when the capacity of the storage at the edge
is limited. It is shown that the suboptimal solution can be
found in polynomial time by the verification experiment of
these algorithms. Gangadharan et al. [12] proposed optimal
map delivery using clouds and edges. This paper assumes a
scenario in which all edge and vehicle data are aggregated
into a cloud and analyzed, and the cloud provides instructions
based on the results. In this study, the experiment was carried
out by the simulation using MATLAB and the usefulness of
considering the motion of the vehicle when optimizing the
communication band was shown. Zhang et al. [13] proposed
a method to optimize the communication load, assuming a
scenario where an access point is located at the edge, and a car
acquires data via the edge. In this study, by using Named Data
Network (NDN) instead of IP as a communication protocol, it
was shown that autonomously caching data at the edge helps
to reduce communication time and communication bandwidth.

As described above, there have been no studies to verify
the downloading of maps used in actual autonomous driving
after constructing a practical network environment.

III. ISSUES AND REQUIREMENTS

In the future, we can consider autonomous driving over
long distances. There is an issue with storing all PCD maps
on the routes to perform autonomous driving. For example,
a multi-purpose vehicle with no destination would require a
huge amount of data, and a vehicle changing its destination
would require more data than it had initially. To solve the
above problems, we identify the following requirements.

1) Map distribution: PCD maps should be able to download
from the edge or the cloud. This is because the vehicle cannot
store all PCD maps on the route. Hence, if the vehicle does not
have the necessary PCD map, it should be able to download
it from a remote storage server.

2) Map delivery delay: The delay in downloading the PCD
maps must be small. If the vehicle does not have the map of
the point where it’s heading, the vehicle must obtain the map
before the vehicle reaches that point. Also, if the vehicle is
downloading the map via an access point at the edge, the map

must be downloaded while the vehicle is connected to the
access point. So, to solve the issue, it is necessary to reduce
the delay in downloading the PCD maps.

3) Freshness of maps: PCD maps should have near real-
time update frequency. For example, if an accident occurs in
the vehicle’s path and the surrounding environment changes
significantly, the vehicle must update the map to perform
autonomous driving. So, to solve the issue, it is necessary
to update the PCD map with near real-time frequency.

IV. PCD MAP DISTRIBUTION SYSTEM

A. System Design
In this study, we propose a system that satisfies the above

requirements. Fig. 1 shows the configuration of this system.
As shown in the figure, there are three types of nodes in the
system: cloud, edge, and vehicle. The cloud consists of a PCD
map registry (which is an HTTP server for managing PCD
maps), storage for PCD maps, and a database for storing the
file paths of the PCD maps. The edge consists of a sync server
that checks for PCD file updates in the cloud and storage for
PCD maps. The vehicle consists of the self-driving software
Autoware and a client for sending HTTP requests to the PCD
Map Registry.

Sync server
Edge

Storage

Edge

Edge

Internet

PCD Map 
Registry

Storage
Database

Cloud

Synchronization

Discovery of
latest map

Map Download

Gateway

Fig. 1: System configuration and process of system

Fig. 1 shows the flow of the system. As shown in the
figure, the edge is arranged between the vehicle and the cloud
server, and the map is distributed. First, before downloading
the map, the map is uploaded to cloud storage, and its file
path is registered in the database via the PCD map registry.
The download flow for the PCD map is as follows.

Map Synchronization
As this system is gradually spreading, it is necessary
not to break the existing architecture when the edge
network is newly installed. Therefore, caching PCD
maps to the edge network is accomplished via a push
mechanism. The edge network determines an area to
be managed in advance. The edge synchronization
server periodically checks the map for updates, stores
the map in edge storage and registers its file path.



Map update check
The vehicle detects a change in your location, and
HTTP Client requests the PCD map file paths from
the PCD Map Registry via Gateway.

Discovery of latest map
The PCD Map Registry refers to the database and
searches for the file path of the appropriate map. If
the map exists in the edge storage, the PCD Map
Registry sends the file path of the PCD map in the
edge storage to the HTTP client; otherwise, the PCD
Map Registry sends the file path of the map in the
cloud to the HTTP client.

Map Download
The HTTP client requests the PCD map from the
edge storage or the cloud storage via the gateway.
Then, the edge storage or the cloud storage sends
the PCD map to the client.

B. Implementation

In this study, we extended Autoware and created a system,
so we describe Autoware before explaining the implementation
of the proposed method.

1) Autoware: Autoware is based on the Robot Operating
System (ROS). ROS is a distributed computing platform
involving nodes and topics. The nodes represent the pro-
cessing module of tasks, and the nodes communicate with one
another via topics. Furthermore, ROS provides a powerful
tool named ROSBAG for recording and replaying the messages
in topics. Moreover, ROS includes a 3D visualization
tool named RViz. The processes for self-driving in Autoware
consist of sensing, localization, perception, decision, planning,
and actuation. The input information is the initial position
obtained from GNSS, a point group data obtained from the
LIDAR and the PCD map. The point group data obtained from
the LIDAR is compared with the PCD map, and the position
with the highest coincidence probability is estimated as the
self-position.

In addition, Autoware uses the Universal Transverse Mer-
cator (UTM) coordinate system [14], which can specify the
coordinates of the entire world by the geographic identifier.
Because it is derived from a projected coordinate system, the
area can be accurately identified. Meanwhile, the PCD map
files are maintained in such a way that they can be uniquely
identified by a coordinate in the Military Grid Reference Sys-
tem (MGRS) coordinate system [15]. MGRS is an extension
of the UTM coordinate system. Its level of detail can be
changed to fit scales such as 100 m square or 1000 m square.
Since the amount of data in PCD maps is very large, they
are stored in 100 m squares (the file size of each square is
about 100 MB at most, depending on compression). Therefore,
the PCD maps are managed in the MGRS coordinate system,
which is scalable.

2) Map Downloader: The detailed architecture of the
vehicle-side system is shown in Fig. 2.

The diagram shows only the relevant parts of Autoware’s
nodes and topics, showing the relationship to the edge
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Fig. 2: Detailed system architecture on the vehicle side

and the cloud. /filtered_points is the point cloud
data, filtered to reduce the amount of data. In Autoware,
points map loader loads the PCD map in the vehicle and
publishes to /points_map. Ndt matching subscribes to
/filtered_points. Subsequently, it implements the nor-
mal distributions transform (NDT) scan-matching [16], as-
sumes the current position of the vehicle, at 10Hz, and
subscribes to /ndt_pose which is the current position and
orientation of the vehicle. In this study, we implemented a new
node, remote map loader, and replaced points map loader.
This node downloads the PCD maps of surrounding areas
according to the position of the vehicle. To enable this, it
subscribes to /current_pose, which is the current position
and orientation of the vehicle.

The detailed flow of processing is shown in Fig. 3.
First, remote map loader subscribes to /current_pose,
indicating the current coordinates of the vehicle. Here,
/current_pose represents a self-position in the UTM co-
ordinate system. From there, remote map loader converts the
self-position into the MGRS coordinate system and searches
for the PCD maps including, in our study, 5 × 5 = 25 maps
around the grid in the position of the vehicle in the local
storage. If there is no map, it requests the file paths of PCD
maps from the PCD map registry. When it receives the file
paths, it requests the PCD maps from the storage. Finally,
when it receives all maps, it publishes to /points_map.
This process allows Autoware to load a PCD map of the
surrounding area according to the location of the vehicle.

Get the position 
of vehicle  

Calculate the MGRS 
code of the postion

Calculate the MGRS code
for the surrounding PCD map

Request PCD map File Path 
to PCD map Registry 

Request PCD map
to Storage server Load the PCD map

Locally locate a 
PCD map Yes

No

Fig. 3: Process on remote map loader



V. EVALUATION

A. Experimental environment

The purpose of this experiment was to evaluate whether
the vehicle can download maps in real time using wireless
communication while driving. The experiment was conducted
by reproducing previously recorded travel data from the Hongo
campus. To perform this experiment, an experimental environ-
ment was used. The environment used AWS EC2 instances
(Northern Virginia Region) for the PCD map registry and
Amazon S3 for cloud storage. The edge contained a PC
running MinIO [17] for the storage server and running the
sync server. To represent the vehicle, a PC running Autoware
to reproduce the running data was wirelessly connected to a
router.

The specifications of the communication parts used in this
experiment are shown in Table I.

TABLE I: Communication method within the edge

Place Communication system Bandwidth
PC1 · router Wi-Fi IEEE 802.11ac 638Mbps
PC2 · router Ethernet 1000Base-T 942Mbps
PC1 · EC2 - 592Kbps

We scanned the 4km road of the Hongo campus at the
University of Tokyo and created the PCD map published on
our website1. The original data size is about 1.35 GB. We
perform downsampling by the voxel grid filter with a leaf size
of 20 cm because the NDT scan matching works efficiently
with the downsampled PCD map. The voxel grid filter reduced
the data size to 90.6 MB. We conduct the experiments with
the downsampled PCD map.

B. Validation

First, the Autoware software running on the vehicle repro-
duces the data (ROSBAG) from a vehicle that has traveled
along the route. In ROSBAG, Autoware processes point cloud
data obtained by LIDAR while driving and stores selected
topics among published topics. Therefore, by reproducing the
ROSBAG, an experiment is performed by running the vehicle
in a simulated manner. In the ROSBAG, the average vehicle
speed was 13.1 km/h , and the maximum vehicle speed was
27.3 km/h . Then, the ROSBAG was played back, and the
newly implemented remote map loader node was run. In
this experiment, the vehicle downloaded 5 × 5 = 25 maps
surrounding the position of the vehicle.

Fig. 4 shows the actual running result in RViz. This figure
shows the 3D space visualization of each topic published by
Autoware. The white dots represent the point cloud data that
form the PCD map, the red dots represent the point cloud data
retrieved from LIDAR, and the yellow lines show the vector
map that represents the geological information. The vehicle is
located near the center of the point cloud data shown in red.
The figure shows the map in the vehicle when the vehicle is
stopped at the initial position, the one when the vehicle has

1https://tlab.hongo.wide.ad.jp/maps/hongo pointcloud

been running for some time, and the one when the PCD map
where the vehicle is located is switched, in the order of (a) to
(c).

The results show that it is possible to download 25 PCD
maps in real-time from edge storage using Wi-Fi while driving.

C. Download time measurement

First, we analyze the deadline for the download time of a
map tile, then we measured the time required to download the
map using the configuration in the previous section.

The deadline T is given by

T =
l

v × n
(1)

,where l is the length of a tile, v is the vehicle’s speed, and
n is the number of tiles required to download in a new map
area. In our scenario, l = 0.1km, and n = 5 at maximum,
assuming that the vehicle download all the neighboring map
tiles in a new area. Assuming that the vehicle is traveling at
20 km/h, the deadline T = 3.6 seconds ( 0.1

20×5 × 60 × 60).
Meanwhile, if the vehicle is traveling at 60 km/h, T = 1.2
seconds.

We conducted three experimental evaluations. In the first
trial, the vehicle downloaded all PCD maps at the Hongo
campus and measured the time required to download them
from a cloud server. The results are shown in Fig. 5. Fig. 6
also shows the download time from the edge server.

Downloading from the cloud storage took an average of
37.0 s to download from the cloud, with a maximum of 121
s. This result indicates that it does not fill the deadline.

In comparison, it took an average of 109 ms and a maximum
of 282 ms to download from the edge storage. The results show
that a PCD map on the Hongo campus can be downloaded in
no more than 290 ms. This indicates that it is possible to
download all maps at 60 km/h.

In the second experiment, the vehicle downloaded the PCD
maps with variable bandwidth for transmitting data by using
TC command [18]. This result is shown in Fig. 7. For
example, as shown in the figure, at 60 Mbps, the maximum
time to download a map is 1.16 s. Meanwhile, at 55 Mbps,
the maximum time to download a map is 1.27 s. From this
result, the bandwidth to fill the deadline of the bandwidth is
60 Mbps.

In the third experiment, we verify whether self-localization
can normally be performed for a vehicle with variable band-
width. It was found that self-localization was normally possi-
ble with up to 7 Mbps bandwidth between the vehicle and the
router but became impossible at 6 Mbps.

VI. CONCLUSIONS

Autonomous driving suffers from the issue that a vehi-
cle cannot store all maps on its route. Therefore, in this
work, we propose a prototype system that allows vehicles
to download maps from the edge or cloud storage. We also
implemented and evaluated this system by reproducing the
ROSBAG recording. It was found that by using edge storage,

https://tlab.hongo.wide.ad.jp/maps/hongo_pointcloud


Driving route

vehicle

(a) Stopped at the initial position

vehicle

(b) State awhile after starting

Newly downloaded map

vehicle

(c) State where the PCD map has changed
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from cloud storage server to vehicle
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Fig. 7: Time taken to download the
PCD map with variable bandwidth be-
tween the vehicle and the router

it is possible to perform self-localization while downloading
the PCD maps. In addition, we measured the download time
with variable bandwidth and examined the bandwidth in which
self-localization normally operates. The download time of the
PCD map at 60 Mbps was found to be 1.16 s at most, and it
was indicated that 60 Mbps is the deadline for this system to
work properly. As a future prospect, we would like to examine
a system to verify this operation when the number of vehicles
increases and consider a system to upload the PCD maps.
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