
HAL Id: hal-02997482
https://hal.science/hal-02997482

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Developing Customized & Secure Blockchains with Deep
Federation Learning to Prevent Successive Attacks

Soumya Banerjee, Soham Chakraborty, Paul Mühlethaler

To cite this version:
Soumya Banerjee, Soham Chakraborty, Paul Mühlethaler. Developing Customized & Secure
Blockchains with Deep Federation Learning to Prevent Successive Attacks. MSPN 2020 - 6th In-
ternational Conference on Mobile, Secure and Programmable Networking, Oct 2020, Paris / Virtual,
France. �hal-02997482�

https://hal.science/hal-02997482
https://hal.archives-ouvertes.fr

 1

Developing Customized & Secure Blockchains with

Deep Federation Learning to Prevent Successive Attacks
1
Soumya Banerjee

1
,

2
Soham Chakraborty,

3
Paul Mühlethaler

1
Trasna-Solutions, Ireland,

2
KIIT, Bhubaneshwar, India, ,

3
EVA Project,

Inria - Paris, 75012 Paris, France

Abstract

Recently, blockchain technology has been one of the most promising

fields of research aiming to enhance the security and privacy of systems.

It follows a distributed mechanism to make the storage system

fault-tolerant. However, even after adopting all the security measures,

there are some risks for cyberattacks in the blockchain. From a statistical

point of view, attacks can be compared to anomalous transactions

compared to normal transactions. In this paper, these anomalous

transactions can be detected using machine learning algorithms, thus

making the framework much more secure. Several machine learning

algorithms can detect anomalous observations. Due to the typical nature

of the transactions dataset (time-series), we choose to apply a sequence to

the sequence model. In this paper, we present our approach, where we use

federated learning embedded with an LSTM-based autoencoder to detect

anomalous transactions.

Keywords – Blockchain; Anomaly detection; Intelligent Algorithm;

Autoencoders; Sequence-to-sequence models; Federated Learning;

1. Introduction

Blockchain is a peer-to-peer, distributed ledger technology (DLT), which

stores data/transactions in a distributed data-structure. Anyone on the

network can explore and participate in the transactions on the blockchain

in a secure manner. Several techniques are involved, such as a

consensus mechanism and block mining . Although certain techniques

make it more secure and fault tolerant (e.g. Byzantine fault tolerance),

certain malicious and untrusted nodes/users still can persist. They can

severely affect the transactions and interrupt the security of the system [1].

The two main challenging security issues are double spending [2] and

record hacking (or record manipulating). There are several non-intelligent

algorithms for checking whether a transaction involves double spending

or a transaction is being hacked (e.g. maintaining transaction id, hashing

and cryptographic encryption). However, they seldom fail to investigate

1
 Associated Senior Researcher, INRIA-EVA, Paris

 2

the nature of malicious nodes and may lead to blocks getting

hacked/affected. Therefore, we can switch to using machine learning

driven intelligent algorithms [3] to detect the possibility of whether a

particular node is malicious or not . Predicting this phenomenon will

clearly be advantageous, as any malicious transactions can be halted at

that instant without the possibility of a spoofing attack. The remaining

part of this paper is as follows:

Section 2 briefly describes recent research breakthroughs in the field of

machine learning (ML) algorithms. The proposed model is presented in

Section 3, with while Section 3.1 giving the high level description of the

algorithm with the relevant mathematical parameters. Section 4 discusses

the experimental results yielded through the proposed model and finally

section 5 summarizes the contribution as conclusion with future

possibilities of extension of research in this regard.

2. Related Work

This paper is motivated by the ideas and implementations of

reinforcement learning towards enhancing the security of blockchains [4]

[5]. However, most studies tend to offer consolidated reviews of

blockchain, irrespective of blockchain implementations. Thus, the

authors in [5] point out that the principal of optimization in the context of

blockchains enabled the Internet of Vehicles (IoV). In contrast, this

present work sets out to achieve two main goals : a) to represent a

distributed training algorithm that applies an autoencoder to detect

anomalies in the chain of transactions in different nodes. The autoencoder

uses LSTM for sequence-to-sequence learning and the Adam

optimization algorithm to optimize the parameters. This choice was made

since Adam optimizers usually work better than RMSprop and SGD.

b) to analyze the complexity of blockchain processes

In parallel, the proposed model also executes the ML algorithm to

investigate suspicious spikes that appear during the process of creating

the blocks (it is known as the Growth model). Let α and β be positive and

non-negative probability distributions.

Let tk represent the (absolute) time at which block k is created, hk the length

of the local blockchain after being extended with block k, and zk the

cumulative maximum given by zk: =max {hi | i ≤ k}. The overall

complexity of conventional O(mn) is due to the computation of any

functional matrix d and its time complexity is O (nm + n
2
). It should be

noted that there are n iterations for any blockchain process, each requiring

O(n) and O(m) time to compute hk and dk, respectively. However, if a

single fast algorithm is used to compute hk, the average overall complexity

 3

is reduced. In the worst-case scenario, the complexity is O(k). Here, the

experimental evaluations suggest an average below O (β/α) (constant with

respect to k). Thus, the average runtime complexity is bounded by [O nm +

min {n
2
, n + nβ/α}], and this corresponds to O(nm), unless the blockchain

system is extremely fast (β≫α).

This paper subjects a challenging proposition over this typical complexity

evaluation of blockchain processes. In fact, the proposed model considers

the total process, including the complexity of ML with this present

blockchain complexity in parallel mode. Therefore, the objective is to

synchronize the process of intelligent algorithm in parallel mode with the

master blockchain algorithm.

3 Proposed Model
As a primary step, a minimum number of transactions are collected as

data to train the designated neural model on these transactions. We can

arrange the transactions in time window frames - a set of temporal

transaction vectors will be considered as a single observation point. As

the data mostly contains a balanced mixture of proper and non-malicious

transactions without relevant labels, we need to deploy an unsupervised

learning technique. The malicious transactions can be found by using

the encoder-decoder model. Here, the n-dimensional transactions will be

cast into a latent space. As the malicious activities will comprise different

patterns/trends than normal transactions(it is assumed that the number of

normal transactions is probably greater in number), therefore they will

be considered as outliers in the latent space. Once the decoder has been

applied we will again retrieve the n-dimensional search space containing

the non-malicious transactions. By comparing the previous search space

with the generated one, we can identify the malicious transactions. Once

the basic autoencoder model is trained, it is put into the distributed setting.

Here, we incorporate deep federated learning [9] for the purpose of

real-time distributed learning. The transaction data generated at every

connected client/node participating in the blockchain will be used to train

the federated model. Finally, the weights of the client models will be

updated and aggregated in the master model. Initially the pre-trained

encoder decoder model is set as the master model in the federated

learning setup. At every remotely connected nodes, a client model will be

responsible and prepared, which will use the weights of the master

model at the beginning. With time, transactions occur at nodes and the

corresponding client node updates it weights. After a particular interval

the aggregate of all the client node model’s weights is sent to the master

model for a final update.

There are certain basic features that have a correlation with the type of

 4

transactions – whether they are malicious or not. These are :

• time of transaction,

• frequency of transaction,

• sending transaction id,

• receiving transaction id.

A holistic view of functional flow is presented in Figure 1.

Figure 1: High-level functional flow

3.1 Algorithm

Input Data: The training dataset contains NF features and NO number of

observations. We take NW number of temporally consecutive

observations as a single observation window. So the input matrix X
WFO NNN

R
**

Output: Trained encoder parameters () and decoder parameters ()

Algorithm : Training Algorithm(X,  ,)

1: Initialize number of training loops as NT

2: for i  { 1, 2, …, NT } do

3: Select a window from training set; X
WX : X

W
 [XS, XS+1, …,

 XS+Nw]

4: s s+1

 5

5: Initialize encoder LSTM loop :
2

jh fLSTM (
1

jh) for

 j{1,2,3,… NW}

6: for n  { 2, 3, …, NW } do

7:
1n

jh  fLSTM (
n

jh ); for j  {1,2,3,… NW}

8: Initialize decoder LSTM loop :
2

jh fLSTM (
1

jh) for

 j  {1,2,3,… NW}

9: for n  { 2, 3, …, NW } do

10:
1n

jh  fLSTM (
n

jh ); for j  {1,2,3,… NW}

11: Objective Function :),(J 2,,

||

1

||

1

||'|| W

fw

W

fw

N

f

N

w

XX
FW

 


12: Calculate gradient : G
),(

),(





d

dJ

13: Update parameters :  , ADAM(G)

14: end for

Notation Interpretation

NT Number of training loops

X
W

 Window frame vector

NW Number of transactions in a window frame

hj hidden parameters for encoder

hj hidden parameters for decoder

NF Number of features

J Objective function

G Gradient

Table 1: Descriptions of Notations used in training algorithm

 6

Algorithm: Federated Learning algorithm

Local window frame size NW, number of participants m per iteration,

number of local epochs E.

Randomly initialize the parameters GG  ,

1: [Participant i]

2: LocalTraining(i,  ,):

3: Split local dataset Di to consecutive temporal window frame of

 size NW

4: Training Algorithm(Di,  ,)

5:

6: [Master Node]

7: Initialize GG
00 ,

8: for each iteration t from 1 to T do

9: Randomly choose a subset St of m participants from N

10: for each partipant i ∈ St parallely do

11: i
t

i
t 11 ,   ← LocalTraining(i, G

t
G

t  ,)

12: end for

13: G
t

G
t  , =

),*(t
i

t
i 

14: end for

Table 2: Notations used in the Federated Learning algorithm

Notation Interpretation

M number of participants considered for weight aggregation

GG  ,

Global parameters

E Number of local epoch

 , Local parameters

 7

In the original dataset, every individual transaction event is counted in

several window frames. So the degree of outliers in each of them can be

calculated by calculating the mean error between the predicted output

vector and the input vector that contains the particular transaction event.

2

1

||'||
1

)(W
N

i

W

W

t XX
N

Xscore
W





 (1)

where i represents the index of all the window frames that contain

transaction Xt, where X
W

is the actual frame and X’
W

is the predicted

frame.

4 Results and Discussion

In this proposed methodology, a distributed autoencoder model is set that

can summarize the state of the ledger, on a latent space and can itself

recreate the actual information from the latent space. The underlying idea

of this methodology is that whenever the state of the transactions is

consistent, the autoencoder preserves the original information from the

space. On the other hand, anomalous situations contain inconsistent

properties and values that result in unsuccessful reconstruction of the

original information. Let’s consider an instance where the amount of

transactions is too high compared to all other attributes of the transaction.

The autoencoder will represent this value as a noise and will

automatically ignore this at the time of reconstruction. In such cases, the

differences between the actual values and the recreated values depict

the score of outliers, which in turn depicts the degree of anomalous issues

over the transaction. Therefore, the transactions that have

abnormally high outlier scores will be considered as suspicious

transactions.

The dataset was collected from github [10]. This dataset was created on

historical transactions of BitCoin. The dataset contains 2906 samples with

24 attributes. The attributes of the dataset are listed in the table below

(Table 3).

Features

Date

btc_market_price

btc_total_bitcoins

btc_market_cap

btc_trade_volume

btc_blocks_size

 8

btc_avg_block_size

btc_n_orphaned_blocks

btc_n_transactions_per_block

btc_median_confirmation_time

btc_hash_rate

btc_difficulty

btc_miners_revenue

btc_transaction_fees

btc_cost_per_transaction_percent

btc_cost_per_transaction

btc_n_unique_addresses

btc_n_transactions

btc_n_transactions_total

btc_n_transactions_excluding_popular

btc_n_transactions_excluding_chains_longer_than_100

btc_output_volume

btc_estimated_transaction_volume

btc_estimated_transaction_volume_usd

Table 3: Features of the dataset

Some of the previously studied trends/patterns of certain attributes are

shown in Figure 2. In the dataset, some of the features had missing values.

To get an idea of the trend for interpolation, those features are plotted,

the missing data being replaced by forward filling method.

(a) (b)

 9

(c) (d)

Figure 2 : Exploratory Data Analysis

As discussed in the previous section, we have divided the data into

several time frames consisting of time-based transaction events. These

individual time frames were trained in the model, and an illustration of

the training loss curve is given represented in Figure 3.

Figure 3 : Loss Curve on training data

Finally, after the model has been trained we try to analyse the score of the

outliers. Here we analysed on the first 91 transaction events. Every

temporal window considered consisted of three transactions. Once the

autoencoder generated a new set of values for every window frame, it

was compared with the original timeframe values and the score was

calculated using Equation 1. The scores are graphically displayed in

 10

Figure 4. It can be clearly understood from the pictorial view that some of

the transactions have an abnormally high outlier score. These transactions

can be considered as suspicious transactions.

Figure 4 : Score for outliers in transaction events

5. Conclusion & Scope of Future Research

The main objective of this work was to detect an attack in a blockchain

network using federated learning embedded with a sequential

autoencoder model. As attacks are very rare among many transactions,

it is very difficult for anyone to label them manually. We considered an

unsupervised learning mechanism in a distributed framework. The

proposed model can be used to detect successive attacks beforehand with

the master-client mechanism of the federated learning system. In a

distributed manner, the model is trained on several client machines and

after every interval, the weights of the master model are updated. As soon

as any transaction falls as an outlier, it is predicted to be an attack or a

suspicious transaction. Using LSTM instead of generic RNN for our

training algorithm, we reduce the possibility of vanishing and exploding

gradient as the amount of data is large. The sequence-to-sequence deep

learning model helps to capture the underlying probability distribution for

normal consistent transactions.

The work has manifold future possibilities to integrate ML algorithms in

blockchain processes [6] [7] [8] [11]. It is worth investigating deep

learning deployment for energy perspectives blockchain. Therefore, the

parallel mode and optimized approach of block mining time with the

 11

detection of suspicious blocks might lead to sound synchronization of

blockchain process and such distributed machine learning interfaces.

References

1. C. Ye, G. Li, H. Cai, Y. Gu, and A. Fukuda. Analysis of security in

blockchain: Case study in 51%-attack detecting. In 2018 5th International

Conference on Dependable Systems and Their Applications (DSA), pages

15–24, 2018.

2. W. Chohan. The double spending problem and cryptocurrencies.SSRN

Electronic Journal, 01 2017.

3. A. L. Buczak and E. Guven. A survey of data mining and machine

learning methods for cyber security intrusion detection. IEEE

Communications Surveys Tutorials, 18(2):1153–1176, 2016.

4. Reinforcement Learning in Blockchain- Enabled IIoT Networks: A

Survey of Recent Advances and Open Challenges, MDPI

Sustainability : 24 June 2020.

5. Liu, M.; Teng, Y.; Yu, F.R.; Leung, V.C.; Song, M. Deep

Reinforcement Learning Based Performance Optimization in

Blockchain-Enabled Internet of Vehicle. In Proceedings of the ICC 2019.

2019 IEEE International Conference on Communications (ICC),

Shanghai, China.

6. Thang N Dinh and My T Thai. “AI and Blockchain: A Disruptive

Integration. eng. In: Computer 51.9 (2018), pp. 48–53. ISSN: 0018- 9162

7. A. Juneja and M. Marefat. Leveraging blockchain for retraining deep

learning architecture in patient-specific arrhythmia classification. In: 2018

IEEE EMBS International Conference on Biomedical Health Informatics

(BHI). Mar. 2018, pp. 393–397. doi: 10.1109/BHI.2018. 8333451

8. M. Shen et al. Privacy-Preserving Support Vector Machine Training

Over Blockchain-Based Encrypted IoT Data in Smart Cities. In: IEEE

Internet of Things Journal 6.5 (Oct. 2019), pp. 7702–7712. ISSN:

2372-2541.

9. Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin

Zheng, Qiang Yan. A Blockchain-based Decentralized Federated

Learning Framework with Committee Consensus, 2020.

10. https://github.com/Yrzxiong/Bitcoin-Dataset

11. M. A. Ferrag and L. Maglaras. DeepCoin: A Novel Deep Learning and

Blockchain-Based Energy Exchange Framework for Smart Grids. In:

IEEE Transactions on Engineering Management (2019), pp. 1–13. ISSN:

1558-0040. doi: 10.1109/TEM.2019.2922936.

https://arxiv.org/search/cs?searchtype=author&query=Li,+Y
https://arxiv.org/search/cs?searchtype=author&query=Chen,+C
https://arxiv.org/search/cs?searchtype=author&query=Liu,+N
https://arxiv.org/search/cs?searchtype=author&query=Zheng,+Z
https://arxiv.org/search/cs?searchtype=author&query=Zheng,+Z
https://arxiv.org/search/cs?searchtype=author&query=Yan,+Q

 12

Appendix

source code:

import libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import the dataset

data = pd.read_csv('bitcoin_dataset.csv')

test = pd.read_csv('test_set.csv')

plotting some of the features with missing value

%matplotlib inline

fig, axes = plt.subplots(1, 3, figsize=(12, 4))

axes[0].plot(data['btc_total_bitcoins'])

axes[0].set_title("btc_total_bitcoins")

axes[1].plot(data['btc_trade_volume'])

axes[1].set_title("btc_trade_volume")

axes[2].plot(data['btc_blocks_size'])

axes[2].set_title("btc_blocks_size")

fig, axes = plt.subplots(1, 3, figsize=(12, 4))

axes[0].plot(data['btc_median_confirmation_time'])

axes[0].set_title("btc_median_confirmation_time")

axes[1].plot(data['btc_difficulty'])

axes[1].set_title("btc_difficulty")

axes[2].plot(data['btc_transaction_fees'])

 13

axes[2].set_title("btc_transaction_fees")

filling the missing data with forward fill method

X = data.fillna(method='ffill')

#creating window frames from the temporally consecutive

transactions

l1=[]

for i in range(2,93):

 l = []

 l.append(list(X.iloc[i-2]))

 l.append(list(X.iloc[i-1]))

 l.append(list(X.iloc[i]))

 l1.append(l)

sequence = np.array(l1)

n_in = len(sequence)

#resahping the flattened array

sequence = sequence.reshape((n_in, 3, 22))

define model

model = Sequential()

model.add(LSTM(100, activation='relu', input_shape=(3,22)))

model.add(RepeatVector(3))

model.add(LSTM(100, activation='relu',

return_sequences=True))

model.add(TimeDistributed(Dense(22)))

model.compile(optimizer='adam', loss='mse',

metrics=['accuracy'])

fit model

history = model.fit(sequence, sequence, epochs=300,

verbose=0)

t = model.predict(sequence)

 14

plotting the loss curve of the model

plt.plot(history.history['loss'])

plt.legend()

xlabel('epochs')

ylabel('loss')

storing the actual transactions

actual=[]

actual.append(list(sequence[0][0]))

actual.append(list(sequence[0][1]))

actual.append(list(sequence[0][2]))

for i in range(1,len(sequence)):

 actual.append(list(sequence[i][2]))

storing the predicted transactions

pred=[]

pred.append(list(t[0][0]))

pred.append(list(t[0][1]))

pred.append(list(t[0][2]))

for i in range(1,len(t)):

 pred.append(list(t[i][2]))

finding the error between the actual and the predicted

transactions

error=[]

for i in range(len(pred)):

 e = 0

 for j in range(22):

 e = e + pow(abs(pred[i][j]*pred[i][j] -

actual[i][j]*actual[i][j]),(1/2))

 error.append(e)

plotting the outlier score vs transaction curve

import matplotlib.pyplot as plt

x = np.linspace(0,93,93)

 15

plot(x,error)

xlabel('transaction')

ylabel('score')

